Skip to main content

Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies

  • Chapter
  • First Online:
New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 165))

Abstract

Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12(2):180–187

    CAS  Google Scholar 

  2. Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–651

    CAS  Google Scholar 

  3. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. In: MAbs. vol 5. Taylor & Francis, pp 443–452

    Google Scholar 

  4. Castilho LR (2014) Continuous animal cell perfusion processes: the first step toward integrated continuous biomanufacturing. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim

    Google Scholar 

  5. Chotteau V (2015) Perfusion processes. In: Al-Rubeai M (ed) Animal cell culture. Springer, Cham, pp. 407–443

    Google Scholar 

  6. Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31(8):479–492

    CAS  Google Scholar 

  7. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 104(3):813–820

    CAS  Google Scholar 

  8. Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45(8):836–849

    CAS  Google Scholar 

  9. Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475

    CAS  Google Scholar 

  10. Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9(6):766–775

    CAS  Google Scholar 

  11. Klutz S, Holtmann L, Lobedann M, Schembecker G (2016) Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci 141:63–74

    CAS  Google Scholar 

  12. Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27

    CAS  Google Scholar 

  13. Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110(1):206–219

    CAS  Google Scholar 

  14. Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12

    CAS  Google Scholar 

  15. Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19

    CAS  Google Scholar 

  16. Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, Temming M, Schembecker G (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130

    CAS  Google Scholar 

  17. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029

    CAS  Google Scholar 

  18. Chang HN, Yoo I-K, Kim BS (1994) High density cell culture by membrane-based cell recycle. Biotechnol Adv 12(3):467–487

    CAS  Google Scholar 

  19. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765

    CAS  Google Scholar 

  20. Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1-3):163–175

    CAS  PubMed Central  Google Scholar 

  21. Boedeker BG (2013) Recombinant Factor VIII (Kogenate) for the treatment of hemophilia A: the first and only world-wide licensed recombinant protein produced in high-throughput perfusion culture. In: Knäblein J (ed) Modern biopharmaceuticals: recent success stories. Wiley, pp 429–443

    Google Scholar 

  22. Cohen EP, Eagle H (1961) A simplified chemostat for the growth of mammalian cells: characteristics of cell growth in continuous culture. J Exp Med 113(2):467–474

    CAS  PubMed Central  Google Scholar 

  23. Sinclair R (1974) Response of mammalian cells to controlled growth rates in steady-state continuous culture. In Vitro 10:295–305

    CAS  Google Scholar 

  24. Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67(1):25–34

    CAS  Google Scholar 

  25. Matsuoka H, Takeda T (2005) Effect of glucose and glutamine concentration on metabolism of animal cells in chemostat culture. In: Gòdia F, Fussenegger M (eds) Animal cell technology meets genomics. Springer, Dordrecht, pp. 617–620

    Google Scholar 

  26. Matsuoka H, Watanabe J-y, Takeda T (2006) Influence of both glucose and glutamine concentration on mAb production rate in chemostat culture of CHO cells. In: Iijima S, Nishijima K-I (eds) Animal cell technology: basic and applied aspects. Springer, Dordrecht, pp. 121–125

    Google Scholar 

  27. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-γ glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347

    CAS  Google Scholar 

  28. Desai SG (2015) Continuous and semi-continuous cell culture for production of blood clotting factors. J Biotechnol 213:20–27

    CAS  Google Scholar 

  29. Jen AC, Wake MC, Mikos AG (1996) Review: Hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364

    CAS  Google Scholar 

  30. Kühtreiber WM, Lanza RP, Chick WL (eds) (2013) Cell encapsulation technology and therapeutics. Springer Science & Business Media, New York

    Google Scholar 

  31. Meuwly F, Ruffieux P-A, Kadouri A, Von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25(1):45–56

    CAS  Google Scholar 

  32. Piret JM, Cooney CL (1990) Immobilized mammalian cell cultivation in hollow fiber bioreactors. Biotechnol Adv 8(4):763

    CAS  Google Scholar 

  33. Tyo MA, Spier RE (1987) Dense cultures of animal cells at the industrial scale. Enzyme Microb Technol 9(9):514–520

    CAS  Google Scholar 

  34. Kitano K, Shintani Y, Ichimori Y, Tsukamoto K, Sasai S, Kida M (1986) Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol 24(4):282–286

    CAS  Google Scholar 

  35. Shintani Y, Kohno Y-I, Sawada H, Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnology 6(3):197–208

    CAS  Google Scholar 

  36. Takazawa Y, Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridomas. Appl Microbiol Biotechnol 32(3):280–284

    Google Scholar 

  37. Hülscher M, Scheibler U, Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39(4):442–446

    Google Scholar 

  38. Feder J, Tolbert WR (1983) The large-scale cultivation of mammalian cells. Sci Am 248:36–43

    CAS  Google Scholar 

  39. Ghanem A, Shuler M (2000) Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol Prog 16(3):471–479

    CAS  Google Scholar 

  40. Kim JH, Park JH, Kang WK, Yoon SK (1999) Perfusion culture using microcarrier for the production of Varicella-Zoster virus in human embryonic lung cells. Biotechnol Lett 21(2):129–133

    CAS  Google Scholar 

  41. Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol Bioeng 32(8):1001–1014

    CAS  Google Scholar 

  42. Croughan MS, Hamel JF, Wang DI (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29(1):130–141

    CAS  Google Scholar 

  43. Thompson KJ, Wilson JS (1998) Particle settler for use in cell culture. US Patent US5817505 A

    Google Scholar 

  44. Acrivos A, Herbolzheimer E (1979) Enhanced sedimentation in settling tanks with inclined walls. J Fluid Mech 92(03):435–457

    Google Scholar 

  45. Boycott A (1920) Sedimentation of blood corpuscles. Nature 104:532

    CAS  Google Scholar 

  46. Searles J, Todd P, Kompala D (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10(2):198–206

    CAS  Google Scholar 

  47. Kohara Y, Ueda H, Suzuki E (1995) Enhanced settling of mammalian cells in tanks with inclined plates/simulation by fluid mechanical model and experiment. J Chem Eng Japan 28(6):703–707

    CAS  Google Scholar 

  48. Shen Y, Yanagimachi K (2011) CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Biotechnol Prog 27(5):1282–1296

    CAS  Google Scholar 

  49. Wang Z, Belovich JM (2010) A simple apparatus for measuring cell settling velocity. Biotechnol Prog 26(5):1361–1366

    CAS  Google Scholar 

  50. Choo CY, Tian Y, Kim WS, Blatter E, Conary J, Brady CP (2007) High-level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler. Biotechnol Prog 23(1):225–231

    CAS  Google Scholar 

  51. Lipscomb ML, Mowry MC, Kompala DS (2004) Production of a secreted glycoprotein from an inducible promoter system in a perfusion bioreactor. Biotechnol Prog 20(5):1402–1407

    CAS  Google Scholar 

  52. Vogel JH, Nguyen H, Giovannini R, Ignowski J, Garger S, Salgotra A, Tom J (2012) A new large-scale manufacturing platform for complex biopharmaceuticals. Biotechnol Bioeng 109(12):3049–3058

    CAS  Google Scholar 

  53. Batt BC, Davis RH, Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6(6):458–464

    CAS  Google Scholar 

  54. Hecht V, Duvar S, Ziehr H, Burg J, Jockwer A (2014) Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog 30(3):607–615

    CAS  Google Scholar 

  55. Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29(1):222–229

    CAS  Google Scholar 

  56. Hamamoto K, Ishimaru K, Tokashiki M (1989) Perfusion culture of hybridoma cells using a centrifuge to separate cells from culture mixture. J Ferment Bioeng 67(3):190–194

    Google Scholar 

  57. Takamatsu H, Hamamoto K, Ishimura K, Yokoyama S, Tokashiki M (1996) Large-scale perfusion culture process for suspended mammalian cells that uses a centrifuge with multiple settling zones. Appl Microbiol Biotechnol 45(4):454–457

    CAS  Google Scholar 

  58. Tokashiki M, Arai T, Hamamoto K, Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnology 3(3):239–244

    CAS  Google Scholar 

  59. Björling T, Dudel U, Fenge C (1995) Evaluation of a cell separator in large scale perfusion culture. In: Animal cell technology: developments towards the 21st century. Springer, pp 671–675

    Google Scholar 

  60. Jäger V (1992) High density perfusion culture of animal cells using a novel continuous flow centrifuge. In: Animal cell technology: Basic & applied aspects. Springer, pp 209–216

    Google Scholar 

  61. Chatzisavido N, Björling T, Fenge C, Boork S, Lindner-Olsson E, Apelman S (1994) A continuous cell centrifuge for lab scale perfusion processes of mammalian cells. In: Animal cell technology: basic & applied aspects. Springer, pp 463–468

    Google Scholar 

  62. Johnson M, Lanthier S, Massie B, Lefebvre G, Kamen AA (1996) Use of the Centritech Lab Centrifuge for perfusion culture of hybridoma cells in protein-free medium. Biotechnol Prog 12(6):855–864

    CAS  Google Scholar 

  63. Kim BJ, Chang HN, Oh DJ (2007) Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Biotechnol Prog 23(5):1186–1197

    CAS  Google Scholar 

  64. Kim S-C, An S, Kim H-K, Park B-S, Na K-H, Kim B-G (2015) Effect of transmembrane pressure on Factor VIII yield in ATF perfusion culture for the production of recombinant human Factor VIII co-expressed with von Willebrand factor. Cytotechnology 68:1689–1696

    Google Scholar 

  65. Pattasseril J, Varadaraju H, Lock L, Rowley JA (2013) Downstream technology landscape for large-scale therapeutic cell processing. Bioprocess Int 11(3):38–47

    Google Scholar 

  66. Mehta S (2014) Automated single-use centrifugation solution for diverse biomanufacturing process. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 385–400

    Google Scholar 

  67. Kilburn D, Clarke D, Coakley W, Bardsley D (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34(4):559–562

    CAS  Google Scholar 

  68. Shirgaonkar IZ, Lanthier S, Kamen A (2004) Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Biotechnol Adv 22(6):433–444

    Google Scholar 

  69. Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Groschl M, Benes E (1994) A novel ultrasonic resonance field device for the retentiojn of animal cells. Biotechnol Prog 10(4):428–432

    CAS  Google Scholar 

  70. Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12(1):73–76

    CAS  Google Scholar 

  71. Bierau H, Perani A, Al-Rubeai M, Emery A (1998) A comparison of intensive cell culture bioreactors operating with hybridomas modified for inhibited apoptotic response. J Biotechnol 62(3):195–207

    CAS  Google Scholar 

  72. Crowley J (2004) Using sound waves for cGMP manufacturing of a fusion protein with mammalian cells. Bioprocess Int 2(3):46–50

    CAS  Google Scholar 

  73. Gorenflo VM, Angepat S, Bowen BD, Piret JM (2003) Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol Prog 19(1):30–36

    CAS  Google Scholar 

  74. Dalm MC, Cuijten SM, Van Grunsven WM, Tramper J, Martens DE (2004) Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor. Part I. Cell density, viability, and cell-cycle distribution. Biotechnol Bioeng 88(5):547–557

    CAS  Google Scholar 

  75. Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM (2005) Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng 90(6):746–753

    CAS  Google Scholar 

  76. Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80(4):438–444

    CAS  Google Scholar 

  77. Pui PW, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG, Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11(2):146–152

    CAS  Google Scholar 

  78. Dalm MC, Jansen M, Keijzer TM, van Grunsven WM, Oudshoorn A, Tramper J, Martens DE (2005) Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Biotechnol Bioeng 91(7):894–900

    CAS  Google Scholar 

  79. Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449

    CAS  Google Scholar 

  80. Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450

    CAS  Google Scholar 

  81. Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Nat Biotechnol 12(3):281–284

    CAS  Google Scholar 

  82. Medronho R, Schuetze J, Deckwer W (2005) Numerical simulation of hydrocyclones for cell separation. Lat Am Appl Res 35:1–8

    Google Scholar 

  83. Elsayed EA, Wadaan MA (2013) The potential of hydrocyclone application for mammalian cell separation in perfusion cultivation bioreactors. Int J Biotechnol Wellness Industries 2(4):153

    CAS  Google Scholar 

  84. Jockwer A, Medronho RA, Wagner R, Anspach F, Deckwer W-D (2001) The use of hydrocyclones for mammalian cell retention in perfusion bioreactors. In: Animal Cell Technology: From Target to Market. Springer, pp 301–306

    Google Scholar 

  85. Elsayed EA, Medronho R, Wagner R, Deckwer WD (2006) Use of hydrocyclones for mammalian cell retention: separation efficiency and cell viability (Part 1). Eng Life Sci 6(4):347–354

    Google Scholar 

  86. Pinto RC, Medronho RA, Castilho LR (2008) Separation of CHO cells using hydrocyclones. Cytotechnology 56(1):57–67

    Google Scholar 

  87. Castilho LR, Medronho RA (2008) Animal cell separation. In: Castilho LR, Moraes AM, Augusto EF, Butler M (eds) Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis, New York, pp. 273–294

    Google Scholar 

  88. Elsayed EA, Wagner R (2011) Application of hydrocyclones for continuous cultivation of SP-2/0 cells in perfusion bioreactors: effect of hydrocyclone operating pressure. In: BMC proceedings, 2011. vol Suppl 8. BioMed Central Ltd, p P65

    Google Scholar 

  89. Himmelfarb P, Thayer P, Martin H (1969) Spin filter culture: the propagation of mammalian cells in suspension. Science 164(3879):555–557

    CAS  Google Scholar 

  90. Reuveny S, Velez D, Miller L, Macmillan J (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J Immunol Methods 86(1):61–69

    CAS  Google Scholar 

  91. Tolbert WR, Peder J, Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17(10):885–890

    CAS  Google Scholar 

  92. Esclade LR, Carrel S, Péringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38(2):159–168

    CAS  Google Scholar 

  93. Emery A, Jan D-H, Al-Rueai M (1995) Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol 43(6):1028–1033

    CAS  Google Scholar 

  94. Deo YM, Mahadevan MD, Fuchs R (1996) Practical considerations in operation and scale-up of spin-filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12(1):57–64

    CAS  Google Scholar 

  95. Figueredo-Cardero A, Chico E, Castilho LR, Medronho RA (2009) CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh. Cytotechnology 61(1-2):55–64

    PubMed Central  Google Scholar 

  96. Yabannavar V, Singh V, Connelly N (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40(8):925–933

    CAS  Google Scholar 

  97. Avgerinos GC, Drapeau D, Socolow JS, Mao J-i, Hsiao K, Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Nat Biotechnol 8(1):54–58

    CAS  Google Scholar 

  98. Castilho LR, Anspach FB, Deckwer WD (2002) An integrated process for mammalian cell perfusion cultivation and product purification using a dynamic filter. Biotechnol Prog 18(4):776–781

    CAS  Google Scholar 

  99. Vallez-Chetreanu F, Ferreira LF, Rabe R, von Stockar U, Marison I (2007) An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol 130(3):265–273

    CAS  Google Scholar 

  100. Yabannavar V, Singh V, Connelly N (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43(2):159–164

    CAS  Google Scholar 

  101. Kyung Y-S, Peshwa MV, Gryte DM, Hu W-S (1994) High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements. Cytotechnology 14(3):183–190

    CAS  Google Scholar 

  102. Seamans TC, Hu W-S (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70(4):241–245

    CAS  Google Scholar 

  103. Brennan AJ, Shevitz J, Macmillan JD (1987) A perfusion system for antibody production by shear-sensitive hybridoma cells in a stirred reactor. Biotechnol Tech 1(3):169–174

    CAS  Google Scholar 

  104. de la Broise D, Noiseux M, Lemieux R, Massie B (1991) Long-term perfusion culture of hybridoma: a “grow or die” cell cycle system. Biotechnol Bioeng 38(7):781–787

    Google Scholar 

  105. Velez D, Miller L, Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33(7):938–940

    CAS  Google Scholar 

  106. Hiller G, Clark D, Blanch H (1993) Cell retention–chemostat studies of hybridoma cells—analysis of hybridoma growth and metabolism in continuous suspension culture in serum-free medium. Biotechnol Bioeng 42(2):185–195

    CAS  Google Scholar 

  107. Greenfield P, Guillaume J-M, Randerson D, Smith C (1991) Experience in scale-up of homogeneous perfusion culture for hybridomas. Bioprocess Eng 6(5):213–219

    Google Scholar 

  108. Kawahara H, Mitsuda S, Kumazawa E, Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential-flow filtration device. Cytotechnology 14(1):61–66

    CAS  Google Scholar 

  109. Karst DJ, Serra E, Villiger TK, Soos M, Morbidelli M (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26

    CAS  Google Scholar 

  110. Martin CS, Padilla-Zamudio J, Rank D, McInnis P, Kozlov M, Reynolds S, Parella J, Madrid L (2015) Novel small scale TFF cell retention device for perfusion cell culture systems. In: Gòdia F (ed) 24th European Society for Animal Cell Technology (ESACT) Meeting, Barcelona, Spain, 31 May–3 Jun 2015. vol 9, p 1

    Google Scholar 

  111. Clincke MF, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I Effect of the cell density on the process. Biotechnol Prog 29(3):754–767

    CAS  PubMed Central  Google Scholar 

  112. Kelly W, Scully J, Zhang D, Feng G, Lavengood M, Condon J, Knighton J, Bhatia R (2014) Understanding and modeling alternating tangential flow filtration for perfusion cell culture. Biotechnol Prog 30(6):1291–1300

    CAS  Google Scholar 

  113. Xu S, Chen H (2016) High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 231:149–159

    CAS  Google Scholar 

  114. Padawer I, Ling WLW, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29(3):829–832

    CAS  Google Scholar 

  115. Wright B, Bruninghaus M, Vrabel M, Walther J, Shah N, Bae S, Johnson T, Yin J, Zhou W, Konstantinov K (2015) A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bioprocess Int 13

    Google Scholar 

  116. Yang WC, Lu J, Kwiatkowski C, Yuan H, Kshirsagar R, Ryll T, Huang YM (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog 30(3):616–625

    CAS  Google Scholar 

  117. Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829

    CAS  Google Scholar 

  118. Adams T, Noack U, Frick T, Greller G, Fenge C (2011) Increasing efficiency in protein and cell production by combining single-use bioreactor technology and perfusion. BioPharm Int 24:s4–s11

    Google Scholar 

  119. Tang YJ, Ohashi R, Hamel JFP (2007) Perfusion culture of hybridoma cells for hyperproduction of IgG2a monoclonal antibody in a wave bioreactor-perfusion culture system. Biotechnol Prog 23(1):255–264

    CAS  Google Scholar 

  120. Roth G, Smith CE, Schoofs GM, Montgomery TJ, Ayala JL, Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. Pharm Technol 21(10)

    Google Scholar 

  121. Konstantinov KB, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. In: Scheper T, Hu W-S (eds) Advances in biochemical engineering/biotechnology: cell culture engineering. Springer, Berlin, pp. 75–98

    Google Scholar 

  122. Goudar CT, Matanguihan R, Long E, Cruz C, Zhang C, Piret JM, Konstantinov KB (2007) Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures. Biotechnol Bioeng 96(6):1107–1117

    CAS  Google Scholar 

  123. Ducommun P, Bolzonella I, Rhiel M, Pugeaud P, Von Stockar U, Marison I (2001) On-line determination of animal cell concentration. Biotechnol Bioeng 72(5):515–522

    CAS  Google Scholar 

  124. Konstantinov KB, Ys T, Moles D, Matanguihan R (1996) Control of long-term perfusion chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 12(1):100–109

    CAS  Google Scholar 

  125. Meuwly F, Papp F, Ruffieux P-A, Bernard A, Kadouri A, Von Stockar U (2006) Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 122(1):122–129

    CAS  Google Scholar 

  126. Ozturk S, Thrift J, Blackie J, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53(4):372–378

    CAS  Google Scholar 

  127. Carvell JP, Dowd JE (2006) On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology 50(1-3):35–48

    CAS  PubMed Central  Google Scholar 

  128. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63(3):187–198

    CAS  Google Scholar 

  129. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108(5):1215–1221

    CAS  Google Scholar 

  130. Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28(5):1355–1362

    CAS  Google Scholar 

  131. Kim BJ, Oh DJ, Chang HN (2008) Limited use of Centritech Lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog 24(1):166–174

    CAS  Google Scholar 

  132. Knaack C, André G, Chavarie C (1994) Conical bioreactor with internal lamella settler for perfusion culture of suspension cells. In: Spier R, Griffiths J, Berthold W (eds) Animal cell technology: products of today. Prospects for tomorrow. Butterworth-Heinemann, Oxford, pp. 230–233

    Google Scholar 

  133. Mercille S, Johnson M, Lemieux R, Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein-free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnol Bioeng 43(9):833–846

    CAS  Google Scholar 

  134. Mette K, Lassen K, Emborg C (1994) Perfusion systems for hybridoma cells based on sedimentation in chambers and erlenmeyer flasks. FEMS Microbiol Rev 14(1):89–91

    Google Scholar 

  135. Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503

    CAS  Google Scholar 

  136. Vogel JH, Nguyen H, Pritschet M, Van Wegen R, Konstantinov K (2002) Continuous annular chromatography: general characterization and application for the isolation of recombinant protein drugs. Biotechnol Bioeng 80(5):559–568

    CAS  Google Scholar 

  137. Bridges S, Barker P (1992) Continuous cross-current chromatographic refiners. In: Ganetsos G, Barker P (eds) Preparative and production scale chromatography, vol 61. Marcel Dekker, Inc., New York, NY, pp. 113–126

    Google Scholar 

  138. Martin AJP (1949) Summarizing paper. Discuss Faraday Soc 7:332–336

    Google Scholar 

  139. Giddings J (1962) Theory of minimum time operation in gas chromatography. Anal Chem 34(3):314–319

    CAS  Google Scholar 

  140. Fox J (1969) Continuous chromatography apparatus: II. Operation. J Chromatogr A 43:55–60

    CAS  Google Scholar 

  141. Fox J, Calhoun R, Eglinton W (1969) Continuous chromatography apparatus: I. Construction. J Chromatogr A 43:48–54

    CAS  Google Scholar 

  142. Nicholas R, Fox J (1969) Continuous chromatography apparatus: III. Application. J Chromatogr A 43:61–65

    CAS  Google Scholar 

  143. Bloomingburg GF, Carta G (1994) Separation of protein mixtures by continuous annular chromatography with step elution. Chem Eng J 55(1-2):B19–B27

    Google Scholar 

  144. Giovannini R, Freitag R (2001) Isolation of a recombinant antibody from cell culture supernatant: continuous annular versus batch and expanded-bed chromatography. Biotechnol Bioeng 73(6):522–529

    CAS  Google Scholar 

  145. Takahashi Y, Goto S (1991) Continuous separations of amino acids by using an annular chromatograph with rotating inlet and outlet. Sep Sci Technol 26(1):1–13

    CAS  Google Scholar 

  146. Hilbrig F, Freitag R (2003) Continuous annular chromatography. J Chromatogr B 790(1):1–15

    CAS  Google Scholar 

  147. Bloomingburg GF, Bauer JS, Carta G, Byers CH (1991) Continuous separation of proteins by annular chromatography. Ind Eng Chem Res 30(5):1061–1067

    CAS  Google Scholar 

  148. Byers CH, Sisson WG, Decarli JP, Carta G (1990) Sugar separations on a pilot scale by continuous annular chromatography. Biotechnol Prog 6(1):13–20

    CAS  Google Scholar 

  149. Scott CD, Spence RD, Sisson WG (1976) Pressurized, annular chromatograph for continuous separations. J Chromatogr A 126:381–400

    CAS  Google Scholar 

  150. De Carli JP, Carta G, Byers CH (1990) Displacement separations by continuous annular chromatography. AICHE J 36(8):1220–1228

    CAS  Google Scholar 

  151. Buchacher A, Iberer G, Jungbauer A, Schwinn H, Josic D (2001) Continuous removal of protein aggregates by annular chromatography. Biotechnol Prog 17(1):140–149

    CAS  Google Scholar 

  152. Iberer G, Schwinn H, Josić D, Jungbauer A, Buchacher A (2001) Improved performance of protein separation by continuous annular chromatography in the size-exclusion mode. J Chromatogr A 921(1):15–24

    CAS  Google Scholar 

  153. Sisson W, Begovich J, Byers C, Scott C (1987) Application of continuous annular chromatography to size-exclusion separations. Paper presented at the American Chemical Society national meeting, New Orleans, 30 August 1987

    Google Scholar 

  154. Uretschlaeger A, Jungbauer A (2002) Two separation modes combined in one column: sequential ion-exchange separation and size-exclusion chromatography of green fluorescent protein. Sep Sci Technol 37(7):1683–1697

    CAS  Google Scholar 

  155. Besselink T, van der Padt A, Janssen AE, Boom RM (2013) Are axial and radial flow chromatography different? J Chromatogr A 1271(1):105–114

    CAS  Google Scholar 

  156. Gu T (2009) Chromatography, radial flow. Encyclopedia of Bioprocess Technology, In

    Google Scholar 

  157. Cabanne C, Raedts M, Zavadzky E, Santarelli X (2007) Evaluation of radial chromatography versus axial chromatography, practical approach. J Chromatogr B 845(2):191–199

    CAS  Google Scholar 

  158. Kinna A, Tolner B, Rota EM, Titchener-Hooker N, Nesbeth D, Chester K (2016) IMAC capture of recombinant protein from unclarified mammalian cell feed streams. Biotechnol Bioeng 113(1):130–140

    CAS  Google Scholar 

  159. Sun T, Chen G, Liu Y, Bu F, Wen M (2000) Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column. Biomed Chromatogr 14(7):478–482

    CAS  Google Scholar 

  160. Weaver K, Chen D, Walton L, Elwell L, Ray P (1990) Uridine phosphorylase purified from total crude extracts of E. coli using Q Sepharose and radial-flow chromatography. BioPharm 3(7):25–28

    CAS  Google Scholar 

  161. Gu T, Tsai G-J, Tsao GT (1991) A theoretical study of multicomponent radial flow chromatography. Chem Eng Sci 46(5):1279–1288

    CAS  Google Scholar 

  162. Huang SH, Lee W-C, Tsao GT (1988) Mathematical models of radial chromatography. Chem Eng J 38(3):179–186

    CAS  Google Scholar 

  163. Tharakan J, Belizaire M (1995) Ligand efficiency in axial and radial flow immunoaffinity chromatography of factor IX. J Chromatogr A 702(1):191–196

    CAS  Google Scholar 

  164. Lay M, Fee C, Swan J (2006) Continuous radial flow chromatography of proteins. Food Bioprod Process 84(1):78–83

    CAS  Google Scholar 

  165. Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent 2,985,589

    Google Scholar 

  166. Juza M, Mazzotti M, Morbidelli M (2000) Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol 18(3):108–118

    CAS  Google Scholar 

  167. Rodrigues AE, Pereira C, Minceva M, Pais L, Ribeiro AM, Ribeiro A, Silva M, Graça N, Santos JC (2015) Simulated moving bed technology: principles, design and process applications. Elsevier, Oxford

    Google Scholar 

  168. Xie Y, Mun S, Kim J, Wang NHL (2002) Standing wave design and experimental validation of a tandem simulated moving bed process for insulin purification. Biotechnol Prog 18(6):1332–1344

    CAS  Google Scholar 

  169. Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B 848(1):48–63

    CAS  Google Scholar 

  170. Imamoglu S (2002) Simulated moving bed chromatography (SMB) for application in bioseparation. Modern Advances in Chromatography. Springer, In, pp. 211–231

    Google Scholar 

  171. Mun S, Xie Y, Kim J-H, Wang N-HL (2003) Optimal design of a size-exclusion tandem simulated moving bed for insulin purification. Ind Eng Chem Res 42(9):1977–1993

    CAS  Google Scholar 

  172. Rajendran A, Paredes G, Mazzotti M (2009) Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A 1216(4):709–738

    CAS  Google Scholar 

  173. Xie Y, Koo Y-M, Wang N-HL (2001) Preparative chromatographic separation: simulated moving bed and modified chromatography methods. Biotechnol Bioprocess Eng 6(6):363–375

    CAS  Google Scholar 

  174. Gottschlich N, Kasche V (1997) Purification of monoclonal antibodies by simulated moving-bed chromatography. J Chromatogr A 765(2):201–206

    CAS  Google Scholar 

  175. Keβler LC, Gueorguieva L, Rinas U, Seidel-Morgenstern A (2007) Step gradients in 3-zone simulated moving bed chromatography: application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A 1176(1):69–78

    Google Scholar 

  176. Kröber T, Wolff MW, Hundt B, Seidel-Morgenstern A, Reichl U (2013) Continuous purification of influenza virus using simulated moving bed chromatography. J Chromatogr A 1307:99–110

    Google Scholar 

  177. Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification: separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1):88–95

    CAS  Google Scholar 

  178. Aniceto JP, Silva CM (2015) Simulated moving bed strategies and designs: from established systems to the latest developments. Sep Purif Rev 44(1):41–73

    CAS  Google Scholar 

  179. Mahajan E, George A, Wolk B (2012) Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A 1227:154–162

    CAS  Google Scholar 

  180. Godawat R, Brower K, Jain S, Konstantinov K, Riske F, Warikoo V (2012) Periodic counter-current chromatography–design and operational considerations for integrated and continuous purification of proteins. Biotechnol J 7(12):1496–1508

    CAS  Google Scholar 

  181. Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M (2015) Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A 1389:85–95

    CAS  Google Scholar 

  182. Baur D, Angarita M, Müller-Späth T, Steinebach F, Morbidelli M (2016) Comparison of batch and continuous multi-column protein A capture processes by optimal design. Biotechnol J 11:920–931

    CAS  Google Scholar 

  183. Girard V, Hilbold N-J, Ng CK, Pegon L, Chahim W, Rousset F, Monchois V (2015) Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up. J Biotechnol 213:65–73

    CAS  Google Scholar 

  184. Bisschops M (2014) BioSMB technology as an enabler for a fully continuous disposable biomanufacturing platform. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH, Weinheim, pp. 35–52

    Google Scholar 

  185. Grabski A, Mierendorf R (2009) Simulated moving bed chromatography. Genet Eng Biotechnol News 29(18):54–55

    Google Scholar 

  186. Shinkazh O (2011) Countercurrent tangential chromatography methods, systems, and apparatus. US Patent 7,988,859

    Google Scholar 

  187. Dutta AK, Tan J, Napadensky B, Zydney AL, Shinkazh O (2016) Performance optimization of continuous countercurrent tangential chromatography for antibody capture. Biotechnol Prog 32:430–439

    CAS  Google Scholar 

  188. Shinkazh O, Kanani D, Barth M, Long M, Hussain D, Zydney AL (2011) Countercurrent tangential chromatography for large-scale protein purification. Biotechnol Bioeng 108(3):582–591

    CAS  Google Scholar 

  189. Napadensky B, Shinkazh O, Teella A, Zydney AL (2013) Continuous countercurrent tangential chromatography for monoclonal antibody purification. Sep Sci Technol 48(9):1289–1297

    CAS  Google Scholar 

  190. Dutta AK, Tran T, Napadensky B, Teella A, Brookhart G, Ropp PA, Zhang AW, Tustian AD, Zydney AL, Shinkazh O (2015) Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography. J Biotechnol 213:54–64

    CAS  PubMed Central  Google Scholar 

  191. Aumann L, Morbidelli M (2007) A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 98(5):1043–1055

    CAS  Google Scholar 

  192. Müller-Späth T, Aumann L, Melter L, Ströhlein G, Morbidelli M (2008) Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 100(6):1166–1177

    Google Scholar 

  193. Aumann L, Morbidelli M (2008) A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 99(3):728–733

    CAS  Google Scholar 

  194. Müller-Späth T, Krättli M, Aumann L, Ströhlein G, Morbidelli M (2010) Increasing the activity of monoclonal antibody therapeutics by continuous chromatography (MCSGP). Biotechnol Bioeng 107(4):652–662

    Google Scholar 

  195. Müller-Späth T, Aumann L, Ströhlein G, Kornmann H, Valax P, Delegrange L, Charbaut E, Baer G, Lamproye A, Jöhnck M (2010) Two step capture and purification of IgG2 using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnol Bioeng 107(6):974–984

    Google Scholar 

  196. Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. mAbs 2(5):480–499

    Google Scholar 

  197. Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part I. Clearance of minute virus of mice. Biotechnol Bioeng 110(2):491–499

    CAS  Google Scholar 

  198. Boi C (2007) Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B 848(1):19–27

    CAS  Google Scholar 

  199. Zhou JX, Tressel T, Yang X, Seewoester T (2008) Implementation of advanced technologies in commercial monoclonal antibody production. Biotechnol J 3(9-10):1185–1200

    CAS  Google Scholar 

  200. Etzel MR, Riordan WT (2009) Viral clearance using monoliths. J Chromatogr A 1216(13):2621–2624

    CAS  Google Scholar 

  201. Rajamanickam V, Herwig C, Spadiut O (2015) Monoliths in bioprocess technology. Chromatography 2(2):195–212

    CAS  Google Scholar 

  202. Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211

    CAS  Google Scholar 

  203. Anspach FB, Curbelo D, Hartmann R, Garke G, Deckwer W-D (1999) Expanded-bed chromatography in primary protein purification. J Chromatogr A 865(1):129–144

    CAS  Google Scholar 

  204. Chase HA (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol 12(8):296–303

    CAS  Google Scholar 

  205. Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70

    CAS  Google Scholar 

  206. Thömmes J (1997) Fluidized bed adsorption as a primary recovery step in protein purification. In: Scheper T (ed) New enzymes for organic synthesis. Springer, Berlin, pp. 185–230

    Google Scholar 

  207. Chhatre S, Francis R, O’Donovan K, Titchener-Hooker N, Newcombe A, Keshavarz-Moore E (2007) A decision-support model for evaluating changes in biopharmaceutical manufacturing processes. Bioprocess Biosyst Eng 30(1):1–11

    CAS  Google Scholar 

  208. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848(1):8–18

    CAS  Google Scholar 

  209. Lin D-Q, Tong H-F, van de Sandt EJ, den Boer P, Golubović M, Yao S-J (2013) Evaluation and characterization of axial distribution in expanded bed. I. Bead size, bead density and local bed voidage. J Chromatogr A 1304:78–84

    CAS  Google Scholar 

  210. Zhao J, Yao S, Lin D (2009) Adsorbents for expanded bed adsorption: preparation and functionalization. Chin J Chem Eng 17(4):678–687

    CAS  Google Scholar 

  211. Feuser J, Halfar M, Lütkemeyer D, Ameskamp N, Kula M-R, Thömmes J (1999) Interaction of mammalian cell culture broth with adsorbents in expanded bed adsorption of monoclonal antibodies. Process Biochem 34(2):159–165

    CAS  Google Scholar 

  212. Özyurt S, Kirdar B, Ülgen KÖ (2002) Recovery of antithrombin III from milk by expanded bed chromatography. J Chromatogr A 944(1):203–210

    Google Scholar 

  213. Smith M, Bulmer M, Hjorth R, Titchener-Hooker N (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J Chromatogr A 968(1):121–128

    CAS  Google Scholar 

  214. Owen RO, Chase HA (1997) Direct purification of lysozyme using continuous counter-current expanded bed adsorption. J Chromatogr A 757(1):41–49

    CAS  Google Scholar 

  215. Owen RO, Chase HA (1999) Modeling of the continuous counter-current expanded bed adsorber for the purification of proteins. Chem Eng Sci 54(17):3765–3781

    CAS  Google Scholar 

  216. McNerney T, Thomas A, Senczuk A, Petty K, Zhao X, Piper R, Carvalho J, Hammond M, Sawant S, Bussiere J (2015) PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. mAbs 7(2):413–427

    Google Scholar 

  217. Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495

    CAS  Google Scholar 

  218. Brodsky Y, Zhang C, Yigzaw Y, Vedantham G (2012) Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification. Biotechnol Bioeng 109(10):2589–2598

    CAS  Google Scholar 

  219. Ito Y, Qi L (2010) Centrifugal precipitation chromatography. J Chromatogr B 878(2):154–164

    CAS  Google Scholar 

  220. Lydersen BK, Brehm-Gibson T, Murel A (1994) Acid precipitation of mammalian cell fermentation broth. Ann N Y Acad Sci 745(1):222–231

    CAS  Google Scholar 

  221. Sommer R, Satzer P, Tscheliessnig A, Schulz H, Helk B, Jungbauer A (2014) Combined polyethylene glycol and CaCl2 precipitation for the capture and purification of recombinant antibodies. Process Biochem 49(11):2001–2009

    CAS  Google Scholar 

  222. Tscheliessnig A, Satzer P, Hammerschmidt N, Schulz H, Helk B, Jungbauer A (2014) Ethanol precipitation for purification of recombinant antibodies. J Biotechnol 188:17–28

    CAS  Google Scholar 

  223. Kang YK, Hamzik J, Felo M, Qi B, Lee J, Ng S, Liebisch G, Shanehsaz B, Singh N, Persaud K (2013) Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng 110(11):2928–2937

    CAS  Google Scholar 

  224. Riske F, Schroeder J, Belliveau J, Kang X, Kutzko J, Menon MK (2007) The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery. J Biotechnol 128(4):813–823

    CAS  Google Scholar 

  225. Singh N, Arunkumar A, Chollangi S, Tan ZG, Borys M, Li ZJ (2015) Clarification technologies for monoclonal antibody manufacturing processes: current state and future perspectives. Biotechnol Bioeng 113(4):698–716

    Google Scholar 

  226. Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma–aspects of yield and virus safety. Biotechnol J 1(2):148–163

    CAS  Google Scholar 

  227. Bell D, Hoare M, Dunnill P (1983) The formation of protein precipitates and their centrifugal recovery. In: Downstream processing. Springer, pp 1–72

    Google Scholar 

  228. Watt J (1970) Automatically controlled continuous recovery of plasma protein fractions for clinical use: a preliminary report. Vox Sang 18(1):42–61

    CAS  Google Scholar 

  229. Chang CE (1988) Continuous fractionation of human plasma proteins by precipitation from the suspension of the recycling stream. Biotechnol Bioeng 31(8):841–846

    CAS  Google Scholar 

  230. Hammerschmidt N, Hintersteiner B, Lingg N, Jungbauer A (2015) Continuous precipitation of IgG from CHO cell culture supernatant in a tubular reactor. Biotechnol J 10(8):1196–1205

    CAS  Google Scholar 

  231. Hammerschmidt N, Hobiger S, Jungbauer A (2016) Continuous polyethylene glycol precipitation of recombinant antibodies: sequential precipitation and resolubilization. Process Biochem 51(2):325–332

    CAS  Google Scholar 

  232. Warikoo V, Godawat R (2015) A new use for existing technology–continuous precipitation for purification of recombination proteins. Biotechnol J 10(8):1101–1102

    CAS  Google Scholar 

  233. Azevedo AM, Gomes AG, Rosa PA, Ferreira IF, Pisco AM, Aires-Barros MR (2009) Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep Purif Technol 65(1):14–21

    CAS  Google Scholar 

  234. Gomes GA, Azevedo AM, Aires-Barros MR, Prazeres DMF (2009) Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Sep Purif Technol 65(1):22–30

    CAS  Google Scholar 

  235. Haraguchi L, Mohamed R, Loh W, Pessôa Filho P (2004) Phase equilibrium and insulin partitioning in aqueous two-phase systems containing block copolymers and potassium phosphate. Fluid Phase Equilibria 215(1):1–15

    CAS  Google Scholar 

  236. Kumar A, Kamihira M, Galaev IY, Mattiasson B, Iijima S (2001) Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers. Biotechnol Bioeng 75(5):570–580

    CAS  Google Scholar 

  237. Mashayekhi F, Meyer AS, Shiigi SA, Nguyen V, Kamei DT (2009) Concentration of mammalian genomic DNA using two-phase aqueous micellar systems. Biotechnol Bioeng 102(6):1613–1623

    CAS  Google Scholar 

  238. Rosa PA, Ferreira I, Azevedo A, Aires-Barros M (2010) Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 1217(16):2296–2305

    CAS  Google Scholar 

  239. Hart RA, Lester PM, Reifsnyder DH, Ogez JR, Builder SE (1994) Large scale, in situ isolation of periplasmic IGF–I from E. coli. Nat Biotechnol 12(11):1113–1117

    CAS  Google Scholar 

  240. Azevedo AM, Rosa PA, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247

    CAS  Google Scholar 

  241. Ruiz-Ruiz F, Benavides J, Aguilar O, Rito-Palomares M (2012) Aqueous two-phase affinity partitioning systems: current applications and trends. J Chromatogr A 1244:1–13

    CAS  Google Scholar 

  242. Kula MR, Selber K (2002) Protein purification, aqueous liquid extraction. Encyclopedia of Bioprocess Technology

    Google Scholar 

  243. Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2015) Continuous enzyme aqueous two-phase extraction using a novel tubular mixer-settler in multi-step counter-current arrangement. Sep Purif Technol 141:263–268

    Google Scholar 

  244. Espitia-Saloma E, Vázquez-Villegas P, Aguilar O, Rito-Palomares M (2014) Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod Process 92(2):101–112

    CAS  Google Scholar 

  245. Muendges J, Zalesko A, Górak A, Zeiner T (2015) Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol Prog 31(4):925–936

    CAS  Google Scholar 

  246. Rosa PA, Azevedo A, Sommerfeld S, Bäcker W, Aires-Barros M (2012) Continuous aqueous two-phase extraction of human antibodies using a packed column. J Chromatogr B 880:148–156

    CAS  Google Scholar 

  247. Espitia-Saloma E, Vâzquez-Villegas P, Rito-Palomares M, Aguilar O (2016) An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: from the microdevice to a multistage bench-scale mixer-settler device. Biotechnol J 11(5):708–716

    CAS  Google Scholar 

  248. Rosa PA, Azevedo A, Sommerfeld S, Mutter M, Aires-Barros M, Bäcker W (2009) Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J Biotechnol 139(4):306–313

    CAS  Google Scholar 

  249. Eggersgluess JK, Richter M, Dieterle M, Strube J (2014) Multi-stage aqueous two-phase extraction for the purification of monoclonal antibodies. Chem Eng Technol 37(4):675–682

    CAS  Google Scholar 

  250. Rosa PA, Azevedo AM, Sommerfeld S, Mutter M, Bäcker W, Aires-Barros MR (2013) Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems: from concept to process. Biotechnol J 8(3):352–362

    CAS  Google Scholar 

  251. de los Reyes G, Mir L (2008) Method and apparatus for the filtration of biological solutions. US Patent 7,384,549

    Google Scholar 

  252. Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Membr Sci 384(1):82–88

    CAS  Google Scholar 

  253. Dizon-Maspat J, Bourret J, D'Agostini A, Li F (2012) Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol Bioeng 109(4):962–970

    CAS  Google Scholar 

  254. Teske CA, Lebreton B, van Reis R (2010) Inline ultrafiltration. Biotechnol Prog 26(4):1068–1072

    CAS  Google Scholar 

  255. Peeva L, da Silva BJ, Valtcheva I, Livingston AG (2014) Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem Eng Sci 116:183–194

    CAS  Google Scholar 

  256. Lightfoot EN (2005) Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Sep Sci Technol 40(4):739–756

    CAS  Google Scholar 

  257. Mayani M, Filipe CD, Ghosh R (2010) Cascade ultrafiltration systems—integrated processes for purification and concentration of lysozyme. J Membr Sci 347(1):150–158

    CAS  Google Scholar 

  258. Mohanty K, Ghosh R (2008) Novel tangential-flow countercurrent cascade ultrafiltration configuration for continuous purification of humanized monoclonal antibody. J Membr Sci 307(1):117–125

    CAS  Google Scholar 

  259. Lightfoot EN, Root TW, O’Dell JL (2008) Emergence of ideal membrane cascades for downstream processing. Biotechnol Prog 24(3):599–605

    CAS  Google Scholar 

  260. Siew WE, Livingston AG, Ates C, Merschaert A (2013) Molecular separation with an organic solvent nanofiltration cascade–augmenting membrane selectivity with process engineering. Chem Eng Sci 90:299–310

    CAS  Google Scholar 

  261. Kurnik RT, Yu AW, Blank GS, Burton AR, Smith D, Athalye AM, van Reis R (1995) Buffer exchange using size exclusion chromatography, countercurrent dialysis, and tangential flow filtration: models, development, and industrial application. Biotechnol Bioeng 45(2):149–157

    CAS  Google Scholar 

  262. Schwan P, Lenz L-P, Baumarth K, Lobedann M (2015) Ultrafiltration unit for continuous buffer or media exchange from a protein solution. WIPO Patent WO2015121403

    Google Scholar 

  263. De Meyer L, Van Bockstal P-J, Corver J, Vervaet C, Remon J, De Beer T (2015) Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses. Int J Pharm 496(1):75–85

    CAS  Google Scholar 

  264. Weisselberg E (2013) Apparatus and method for continuous lyophilization. US Patent 8,528,225

    Google Scholar 

  265. Rey L (2010) Glimpses into the realm of freeze-drying: classical issues and new ventures. In: Rey L, May JC (eds) Freeze drying/lyophilization of pharmaceutical and biological products. Informa Healthcare, London, pp. 1–28

    Google Scholar 

  266. Peters J, Minuth T, Schröder W (2005) Implementation of a crystallization step into the purification process of a recombinant protein. Protein Expr Purif 39(1):43–53

    CAS  Google Scholar 

  267. Schmidt S, Havekost D, Kaiser K, Kauling J, Henzler HJ (2005) Crystallization for the downstream processing of proteins. Eng Life Sci 5(3):273–276

    CAS  Google Scholar 

  268. Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioprocess Biosyst Eng 38(7):1209–1231

    CAS  Google Scholar 

  269. Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57(6):666–675

    CAS  Google Scholar 

  270. Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48(4):316–323

    CAS  Google Scholar 

  271. Zang Y, Kammerer B, Eisenkolb M, Lohr K, Kiefer H (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One 6(9):e25282

    CAS  PubMed Central  Google Scholar 

  272. Baker JC, Roberts BM (1997) Preparation of stable insulin analog crystals. US Patent US5597893 A

    Google Scholar 

  273. Yang MX, Shenoy B, Disttler M, Patel R, McGrath M, Pechenov S, Margolin AL (2003) Crystalline monoclonal antibodies for subcutaneous delivery. Proc Natl Acad Sci U S A 100(12):6934–6939

    CAS  PubMed Central  Google Scholar 

  274. Basu SK, Govardhan CP, Jung CW, Margolin AL (2004) Protein crystals for the delivery of biopharmaceuticals. Expert Opin Biol Ther 4(3):301–317

    CAS  Google Scholar 

  275. Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B (2015) Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci 133:125–139

    CAS  Google Scholar 

  276. Su Q, Nagy ZK, Rielly CD (2015) Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control. Chem Eng Process 89:41–53

    CAS  Google Scholar 

  277. Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni X-W (2009) Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 13(6):1357–1363

    CAS  Google Scholar 

  278. Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12(11):5701–5707

    CAS  Google Scholar 

  279. Li J, Trout BL, Myerson AS (2015) Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev 20(2):510–516

    Google Scholar 

  280. Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans J, Jamison TF (2013) End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 52(47):12359–12363

    CAS  Google Scholar 

  281. Poechlauer P, Manley J, Broxterman R, Br G, Ridemark M (2012) Continuous processing in the manufacture of active pharmaceutical ingredients and finished dosage forms: an industry perspective. Org Process Res Dev 16(10):1586–1590

    CAS  Google Scholar 

  282. Neugebauer P, Khinast JG (2015) Continuous crystallization of proteins in a tubular plug-flow crystallizer. Cryst Growth Des 15(3):1089–1095

    CAS  PubMed Central  Google Scholar 

  283. Burnouf T, Radosevich M (2003) Nanofiltration of plasma-derived biopharmaceutical products. Haemophilia 9(1):24–37

    CAS  Google Scholar 

  284. Lute S, Riordan W, Pease LF, Tsai D-H, Levy R, Haque M, Martin J, Moroe I, Sato T, Morgan M (2008) A consensus rating method for small virus-retentive filters. I Method development. PDA J Pharm Sci Technol 62(5):318–333

    CAS  Google Scholar 

  285. Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process 102:88–101

    CAS  Google Scholar 

  286. Brorson K, Krejci S, Lee K, Hamilton E, Stein K, Xu Y (2003) Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnol Bioeng 82(3):321–329

    CAS  Google Scholar 

  287. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research (1998) Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin, Rockville

    Google Scholar 

  288. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B 848(1):28–39

    CAS  Google Scholar 

  289. Klutz S, Kurt SK, Lobedann M, Kockmann N (2015) Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem Eng Res Des 95:22–33

    CAS  Google Scholar 

  290. Caillet-Fauquet P, Di Giambattista M, Draps M-L, Sandras F, Branckaert T, De Launoit Y, Laub R (2004) Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. J Virol Methods 118(2):131–139

    CAS  Google Scholar 

  291. Lorenz CM, Wolk BM, Quan CP, Alcala EW, Eng M, McDonald DJ, Matthews TC (2009) The effect of low intensity ultraviolet-C light on monoclonal antibodies. Biotechnol Prog 25(2):476–482

    CAS  Google Scholar 

  292. Gunn A, Cameron ID, Pepper DS, MacDonald SL, Li Q (2003) Device for treatment of biological fluids. U.S. Patent 6,586,172

    Google Scholar 

  293. Kaiser K, Henzler H-J, Kauling J, Treckmann R, Remington K, Galloway C (2002) Method of inactivating microorganisms in a fluid using ultraviolet radiation. US Patent 7,695,675

    Google Scholar 

  294. Bae JE, Jeong EK, Lee JI, Lee J-I, Kim IS, Kum J (2009) Evaluation of viral inactivation efficacy of a continuous flow ultraviolet-C reactor (UVivatec). Kor J Microbiol Biotechnol 4:377–382

    Google Scholar 

  295. Li Q, MacDonald S, Bienek C, Foster PR, MacLeod AJ (2005) Design of a UV-C irradiation process for the inactivation of viruses in protein solutions. Biologicals 33(2):101–110

    CAS  Google Scholar 

  296. Wang J, Mauser A, Chao SF, Remington K, Treckmann R, Kaiser K, Pifat D, Hotta J (2004) Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang 86(4):230–238

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Patil, R., Walther, J. (2017). Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. In: Kiss, B., Gottschalk, U., Pohlscheidt, M. (eds) New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins. Advances in Biochemical Engineering/Biotechnology, vol 165. Springer, Cham. https://doi.org/10.1007/10_2016_58

Download citation

Publish with us

Policies and ethics