Skip to main content

Biogas Production: Microbiology and Technology

  • Chapter
  • First Online:
Book cover Anaerobes in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 156))

Abstract

Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acetyl-CoA:

Acetyl coenzyme A

COD:

Chemical oxygen demand

CODH:

Carbon monoxide dehydrogenase

CSTR:

Continuous stirred tank reactor

DIET:

Direct electron transfer

ED:

Enter–Doudoroff

EGSB:

Expanded granular sludge blanket

EMP:

Embden–Meyerhof–Parnas

FHS:

Formyltetrahydrofolate synthetase

H4MPT:

Tetrahydromethanopterin

HS-CoM:

Coenzyme M

mcrA:

Methyl coenzyme A

MFR:

Methanofuran (MFR)

PA:

Partial Alkalinity

SAO:

Syntrophic acetate oxidation

SAOB:

Syntrophic acetate oxidising bacteria

SGBR:

Static granular sludge reactor

TA:

Total Alkalinity

TS:

Total solids

UASB:

Upflow anaerobic sludge blanket

VS:

Volatile solids

W–L pathway:

Wood–Ljungdahl pathway

References

  1. Lozanovski A, Linder JP, Bos U (2014) Environmental evaluation and comparison of selected industrial scale biomethane production facilities across Europe. Int J Life Cycle Assess 19:1823–1832

    Article  CAS  Google Scholar 

  2. Rajendran K, Aslanzadeh S, Taherzadeh MJ (2012) Household biogas digesters – a review. Energies 5:2911–2942

    Article  CAS  Google Scholar 

  3. Lan W, Chen G, Zhu X, Wang X, Xu B (2015) Progress in techniques of biomass conversion into syngas. J Energy Inst 88:151–156

    Article  CAS  Google Scholar 

  4. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  5. Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem F, de Mey M, Soetaert W, Boerjan W (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:174

    Article  Google Scholar 

  6. Börjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels – resource efficiency and environmental performance including direct land use changes. J Cleaner Prod 19:108–120

    Article  Google Scholar 

  7. Börjesson P, Prade T, Lantz M, Björnsson L (2015) Energy-crops-based biogas as vehicle fuel, the impact of crop selection on energy efficiency and greenhouse gas performance. Energies 8(6):6033–6058

    Article  CAS  Google Scholar 

  8. Alburquerque JA, de la Fuente C, Bernal MP (2012) Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric Ecosyst Environ 160:15–22

    Article  CAS  Google Scholar 

  9. Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492

    Article  Google Scholar 

  10. Batstone DJ, Virdis B (2014) The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 27:142–149

    Article  CAS  Google Scholar 

  11. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Chapter sixteen – biomethanation and its potential. In: Amy CR, Stephen WR (eds) Methods in enzymology, vol 494. Academic, New York, pp 327–351. http://www.sciencedirect.com/science/article/pii/B9780123851123000160

    Google Scholar 

  12. Lynd LR, Weimer PJ, van Zyl WH, Pretorious IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microb Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  13. Monalu F, Barakat A, Trabby E, Dumas C, Steyer JP, Carrère H (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pre-treatment. Crit Rev Environ Sci Technol 43(3):260–322

    Article  CAS  Google Scholar 

  14. Azam S, Khadem AF, van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Env Sci Technol 45:2523–2564

    Article  CAS  Google Scholar 

  15. Schwartz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56(5):634–649

    Article  Google Scholar 

  16. Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, vol. 19. Springer, Berlin, pp 149–173

    Google Scholar 

  17. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  CAS  Google Scholar 

  18. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68:257–272

    Article  CAS  Google Scholar 

  19. Drake HL, Küsel K, Matthies C (2002) Ecological consequences of the polygenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek 81:203–213

    Article  CAS  Google Scholar 

  20. Drake HL, Gössner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    Article  CAS  Google Scholar 

  21. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784(12):1873–1898

    Article  CAS  Google Scholar 

  22. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–280

    CAS  Google Scholar 

  23. Montag D, Schink S (2016) Biogas process parameters–energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl Microbiol Biotechnol 100:1019–1026

    Article  CAS  Google Scholar 

  24. Felchner-Zwirello M, Winter J, Gallert C (2013) Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 97(20):9193–9205

    Article  CAS  Google Scholar 

  25. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for common good. FEMS Microbiol Rev 37:384–406

    Article  CAS  Google Scholar 

  26. Shen L, Zhao Q, Wu X, Li X, Li Q, Wang Y (2016) Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors. Renewable Sustain Energy Rev 54:1358–1367

    Google Scholar 

  27. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589

    Google Scholar 

  28. Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75

    Article  CAS  Google Scholar 

  29. Ferry JG (2011) Fundamentals of methanogenic pathways that are key to the biomethanation of complex. Curr Opin Biotechnol 22:351–357

    Article  CAS  Google Scholar 

  30. Cabezas A, de Araujo JC, Callejas C, Galès A, Hamelin J, Marone A, Sousa DZ, Trably E, Etchebehere C (2015) How to use molecular biology tools for the study of the anaerobic digestion process? Rev Environ Sci Biotechnol. doi:10.1007/s11157-015-9380-8

    Google Scholar 

  31. Carballa LR, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus Marta. Curr Opin Biotechnol 33:103–111

    Article  CAS  Google Scholar 

  32. Koch C, Müller S, Harms H, Harnisch F (2014) Microbiomes in bioenergy production: from analysis to management. Curr Opin Biotechnol 27:65–72

    Article  CAS  Google Scholar 

  33. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  Google Scholar 

  34. Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    CAS  Google Scholar 

  35. Li C, Mörtelmaier WJ, Gallert C (2014) Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion. Bioresour Technol 168:23–32

    Article  CAS  Google Scholar 

  36. Lu X, Rao S, Shen Z, Lee PKH (2013) Substrate induced emergence of different active bacterial and archaeal assemblages during biomethane production. Bioresour Technol 148:517–524

    Article  CAS  Google Scholar 

  37. Smith A, Sharma D, Lappin-Scott H, Burton S, Huber D (2014) Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter. Appl Microbiol Biotechnol 98:2321–2334

    Article  CAS  Google Scholar 

  38. Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Abu Al-Soud W, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158:248–258

    Article  CAS  Google Scholar 

  39. Sun L, Pope PB, Eijsink VGH, Schnürer A (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. J Microbial Biotechnol 8:815–827

    Article  Google Scholar 

  40. Solli L, Håvelsrud OE, Horn SJ, Rike AG (2014) A metagenomic study of the microbial communities in four parallel biogas reactors. Biotechnol Biofuels 7(146):1–15

    Google Scholar 

  41. Epstein SS (2013) The phenomenon of microbial uncultivability. Curr Opin Microbiol 16:636–642

    Article  CAS  Google Scholar 

  42. Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261

    Article  CAS  Google Scholar 

  43. Mori K, Kamagata Y (2014) The challenges of studying the anaerobic microbial world. Microbes Environ 29(4):335–337

    Article  Google Scholar 

  44. Nakamura K, Tamaki H, Kang MS, Mochimaru H, Lee S-T, Nakamura K, Kamagata Y (2011) A six-well plate method: less laborious and effective methods for cultivation of obligate anaerobic microorganisms. Microbes Environ 26(4):301–306

    Article  Google Scholar 

  45. Dridi B, Fardaeu M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassilicoccus luminyensis gen nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    Article  CAS  Google Scholar 

  46. Narihiro T, Kamagata Y (2013) Cultivating yet-to-be cultivated microbes: the challenge continues. Microbes Environ 28(2):163–165

    Article  Google Scholar 

  47. Hori T, Haruta S, Sasaki D, HAnajima D, Ueno Y, Ogata A, Ishii M, Igarashi Y (2015) Reorganization of the bacterial and archaeal populations associated with organic loading conditions in a thermophilic anaerobic digester. J Biosci Bioeng 119(3):337–344

    Article  CAS  Google Scholar 

  48. Moestedt J, Müller B, Westerholm M, Schnürer A (2015) Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. J Microbial Biotechnol. doi:10.1111/1751-7915.12330

    Google Scholar 

  49. Westerholm M, Müller B, Isaksson I, Schnürer A (2015) Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnol Biofuels 8:154

    Article  CAS  Google Scholar 

  50. Bremges A, Maus I, Belman P, Eikmeyser F, Winkler A, Albersmeier A, Pülher A, Schlürer A, Sczyrba A (2015) Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience 4(33):1–6

    CAS  Google Scholar 

  51. Heyer R, Kohrs F, Reichl U, Benndorf D (2015) Metaproteomics of complex communities in biogas plants. J Microbial Biotechnol 8:749–763

    Article  CAS  Google Scholar 

  52. Lebuhn M, Weiß S, Munk B, Guebitz GM (2015) Microbiology and molecular biology tools for biogas process analysis, diagnosis and control. Biogas Sci Technol Ser Adv Biochem Eng Biotechnol 151:1–40

    Google Scholar 

  53. De Vrieze JD, Saunders AM, He Y, Fang J, Nilesen PH, Verstaete W, Boon N (2015) Ammonia and temperature determine the potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323

    Article  CAS  Google Scholar 

  54. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626

    Article  CAS  Google Scholar 

  55. Narihiro T, Sekiguchi Y (2011) Oligonucleotide primers, probes and molecular methods for environmental monitoring of methanogenic archaea. J Microbial Biotechnol 4:585–602

    Article  CAS  Google Scholar 

  56. Mathai PP, Zitomer DH, Maki JS (2015) Quantitative detection of syntrophic acid degrading bacterial communities in methanogenic environments. Microbiology 161:1189–1197

    Article  CAS  Google Scholar 

  57. Westerholm M, Dolfing J, Sherry A, Gray ND, Head IM, Schnürer A (2011) Quantification of syntrophic acetate oxidizing microbial communities in biogas processes. Environ Microbiol Rep 3:500–505

    Article  CAS  Google Scholar 

  58. Ziels RM, Beck DAC, Martí M, Gough HL, Stensel HD, Svensson BH (2015) Monitoring the dynamics of β-oxidising bacteria during anaerobic degradation of oleic acid by quantitative PCR. FEMS Microbiol Ecol 91(4):1–13

    Article  Google Scholar 

  59. Lebuhn M, Hanreich A, Klocke M, Schnlüter A, Bauer A, Peréz CM (2014) Towards molecular biomarkers for biogas production from ligno-cellulose-rich substrates. Anaerobe 29:10–21

    Article  CAS  Google Scholar 

  60. Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartski D, Drewniak L (2015) Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol 6(649):1–11

    Google Scholar 

  61. Wilkins D, Lu X-Y, Shen Y, Cghen J, Le PKH (2015) Pyrosequencing of mcrA and archeael 16S rRNA genes reveals diversity and substrate preference of methanogenic communities in anaerobic digesters. Appl Environ Microbiol 81(2):604–612

    Article  CAS  Google Scholar 

  62. Müller B, Sun L, Westerholm M, Schnürer A (2016) Bacterial community composition and FHS profiles of low and high ammonia biogas digesters reveal novel syntrophic acetate-oxidizing bacteria. Accepted for publication in Biotechnology for Biofuels

    Google Scholar 

  63. Pereyra LB, Hiibel SR, Prieto Riquelme MV, Reardon KF, Pruden A (2010) Detection and quantification of functional genes of cellulose degrading, fermentative and sulphate reducing bacteria and methanogenic archaea. Appl Environ Microbiol 76:2192–2202

    Article  CAS  Google Scholar 

  64. Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T, Benizri E, Delfosse P (2015) Microbial community dynamics sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels 8:122

    Article  CAS  Google Scholar 

  65. Lv Z, Leite AF, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe 29:91–99

    Article  CAS  Google Scholar 

  66. Regueiro L, Lema JM, Carballa M (2015) Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour Technol 197:208–216

    Google Scholar 

  67. Alvarado A, Montañez-Hernández LE, Palacio-Molina SL, Oropeza-Navarro R, Luévanos-Escareño MP, Balagurusamy N (2014) Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Front Microbiol 5:597

    Article  Google Scholar 

  68. Lv W, Zhang W, Yu Z (2013) Evaluation of system performance and microbial communities of a temperature-phased anaerobic digestion system treating dairy manure: thermophilic digester operated at acidic pH. Bioresour Technol 142:625–632

    Article  CAS  Google Scholar 

  69. Town JR, Links MG, Fonstad AT, Dumonceaux TJ (2015) Molecular characterization of anaerobic digester microbial communities identifies microorganisms that correlate to reactor performance. Bioresour Technol 151:249–257

    Article  CAS  Google Scholar 

  70. Rui J, Li J, Zhang S, Yan X, Wang Y, Li X (2015) The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnol Biofuels 8(158):1–15

    Google Scholar 

  71. Azman S, Khadem AF, van Lier JB, Zeeman G, Plugge C (2016) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45:2523–2564

    Article  CAS  Google Scholar 

  72. Li J, Rui J, Yao M, Zhang S, Yan X, Wang Y, Yan Z, Li X (2015) Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure. Front Microbiol 6:1337

    Google Scholar 

  73. Li J, Rui J, Pei Z, Sun X, Zhang S, Yan ZY, Wang YP, Liu XP, Zheng T, Li XZ (2014) Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure. Appl Microbiol Biotechnol 98:4771–4780

    Article  CAS  Google Scholar 

  74. Müller L, Kretzschmar J, Pröter J, Liebetrau J, Nelles M, Scholwin F (2016) Does the addition of proteases affect the biogas yield from organic material in anaerobic digestion? Bioresour Technol 203:267–271

    Article  CAS  Google Scholar 

  75. Hanrecih A, Schimpf U, Zakrzewski M, Schnluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reich U, Klocke M (2013) Metagenome and metaproteome analysis of microbial communities in mesophilic biogas-producing batch fermentation indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36(5):330–338

    Article  CAS  Google Scholar 

  76. St Pierre B, Wright ADG (2014) Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol 98(6):2709–2717

    Article  CAS  Google Scholar 

  77. Worm P, Koehorst JJ, Visser M, Sedano-Núenz VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM (2014) A genomic view on syntrophic versus non-syntrophic life style in anaerobic fatty acid degrading communities. Biochimica et Biophysica Acta 1837:2004–2016

    Article  CAS  Google Scholar 

  78. Koeck DE, Pechtl A, Zverlov VV, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183

    Article  CAS  Google Scholar 

  79. Mba Medie F, Davies GJ, Drancourt M, Nenrissat B (2012) Genome analysis highlight the different biological roles of cellulases. Nature Rev 10:227–234

    Google Scholar 

  80. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R et al (2008) ‘Candidatus Cloacamonas acidaminovorans’: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572–2579

    Article  CAS  Google Scholar 

  81. Limam RD, Chouari R, Mazéas L, Wu TD, Li T, Grossin-Debattista J et al (2014) Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. Microbiol Open 3:157–167

    Google Scholar 

  82. Ransom-Jones E, Jones DL, Alan McCarthy AJ, McDonald JE (2012) The fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    Article  CAS  Google Scholar 

  83. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W (2015) Microbial dark matter ecogenomics reveals complex synergistic network in a methanogenic bioreactor. ISME J 9(8):1710–1722

    Article  CAS  Google Scholar 

  84. Welte C, Deppenmeir U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130–1147

    Article  CAS  Google Scholar 

  85. Liu WT, Chan OC, Fang HH (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36:1767–1775

    Google Scholar 

  86. Campanaro S, Treu L, Kougias PG, De Fransici D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterisation of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9(26):2–17

    Google Scholar 

  87. De Vrieze JD, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9

    Article  CAS  Google Scholar 

  88. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniaegen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Archiv Microbiol 141:116–122

    Article  CAS  Google Scholar 

  89. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155

    Article  CAS  Google Scholar 

  90. Westerholm M, Moesetdt J, Schnürer A (2016) Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy (Accepted)

    Google Scholar 

  91. Carballa M, Regueiro L, Lem JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotech 33:103–111

    Article  CAS  Google Scholar 

  92. Pap B, Györkei Á, Boboescu IZ, Nagy IK, Bíró T, Kondorosi É, Maróti G (2015) Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation. Bioresour Technol 177:375–380

    Google Scholar 

  93. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SD, Fliegerova K, Griffith GW, Forster R, Tsang A, Mcallister T, Elsahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17

    Article  CAS  Google Scholar 

  94. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. J Biochem 236:729–739

    Article  CAS  Google Scholar 

  95. Khejornsart P, Wanapat M (2010) Diversity of rumen anaerobic fungi and methanogenic archaea in swamp buffalo influenced by various diets. J Anim Vet Adv 9:3062–3069

    Article  CAS  Google Scholar 

  96. Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110

    CAS  Google Scholar 

  97. Mountfort DO, Asher RA, Bauchop T (1982) Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri. Appl Environ Microbiol 44:128–134

    CAS  Google Scholar 

  98. Akin DE, Borneman WS (1990) Role of rumen fungi in fibre degradation. J Dairy Sci 73:3023–3032

    Article  CAS  Google Scholar 

  99. Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA (2014) Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 111:1471–1482

    Article  CAS  Google Scholar 

  100. Kazda M, Langer S, Bengelsdorf FR (2014) Fungi open new possibilities for anaerobic fermentation of organic residues. Energy Sustain Soc 4:6

    Article  Google Scholar 

  101. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals SA (2014) Critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 3:412–427

    Article  CAS  Google Scholar 

  102. Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135

    Article  CAS  Google Scholar 

  103. Moestedt J, Nordell E, Shakeri Yekta S, Lundgren J, Marti M, Sundberg C, Ejlertsson J, Svensson BH, Björn A (2016) Effects of trace elements addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag 47:11–20

    Article  CAS  Google Scholar 

  104. Moeller L, Görsch K (2015) Foam formation in full-scale biogas plants processing biogenic waste. Energy Sustain Soc 5:1

    Article  Google Scholar 

  105. Banks CJ, Heaven S (2013) Optimisation of biogas yields from anaerobic digestion by feedstock type. In: Wellinger A, Murphy J, Baxter D (eds) Woodhead publishing series in energy, Oxford, vol 52. pp 131–165

    Google Scholar 

  106. Dandikas V, Heuwinkel H, Lichti F, Drewes JE, Koch K (2014) Correlation between biogas yield and chemical composition of energy crops. Bioresour Technol 174:316–320

    Article  CAS  Google Scholar 

  107. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569

    Article  CAS  Google Scholar 

  108. McGenity TJ (eds) (2016) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks, Springer, Berlin. doi: 10.1007/8623_2016_214

    Google Scholar 

  109. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534

    Article  CAS  Google Scholar 

  110. Rajagopal R, Massé DI, Singh G (2014) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Google Scholar 

  111. Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol 11:325–341

    Article  CAS  Google Scholar 

  112. Yekta SS, Svensson BH, Björn A, Skyllberg U (2014) Thermodynamic modeling of iron and trace metal solubility and speciation under sulfidic and ferruginous conditions in full scale continuous stirred tank biogas reactors. Appl Geochem 47:61–73

    Article  CAS  Google Scholar 

  113. Rasit N, Idris A, Harun R, Ghani WAWAK (2015) Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renew Sustain Energy Rev 45:351–358

    Article  CAS  Google Scholar 

  114. Ma J, Zhao Q-B, Laurens LLM, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:141

    Article  CAS  Google Scholar 

  115. Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596

    Article  CAS  Google Scholar 

  116. Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenergy 67:297–303

    Article  CAS  Google Scholar 

  117. Cavaleiro AJ, Salvador AF, Alves JI, Alves M (2009) Continuous high rate anaerobic treatment of oleic acid based wastewater is possible after a step feeding start-up. Environ Sci Tech 43:2931–2936

    Article  CAS  Google Scholar 

  118. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    Article  CAS  Google Scholar 

  119. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    Article  CAS  Google Scholar 

  120. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106

    Article  CAS  Google Scholar 

  121. Cano R, Pérez-Elvira SJ, Fdz-Polanco F (2015) Energy feasibility study of sludge pretreatments: a review. Appl Energy 149:176–185

    Article  CAS  Google Scholar 

  122. Harris PW, McCabe BK (2015) Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl Energy 155:560–575

    Article  CAS  Google Scholar 

  123. Naegele HJ, Mönch-Tegeder M, Haag NL, Oechsner H (2014) Effect of substrate pretreatment on particle size distribution in a full-scale research biogas plant. Bioresour Technol 172:396–402

    Article  CAS  Google Scholar 

  124. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995

    Article  CAS  Google Scholar 

  125. Lindmark J, Thorin E, Fdhila RB, Dahlquist E (2014) Effects of mixing on the result of anaerobic digestion: review. Renew Sustain Energy Rev 40:1030–1047

    Article  CAS  Google Scholar 

  126. Dhaked RK, Singh P, Singh L (2010) Biomethanation under psychrophilic conditions. Waste Manag 30:2490–2496

    Article  CAS  Google Scholar 

  127. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  128. Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258

    Article  CAS  Google Scholar 

  129. Sahlström LA (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  Google Scholar 

  130. Brambilla M, Romano E, Cutini M, Pari L, Bisaglia C (2013) Rheological properties of manure/biomass mixtures and pumping strategies to improve ingestate formulation: a review. Trans ASABE 56:1905–1920

    Google Scholar 

  131. Drosg B (2013) Process monitoring in biogas plants. IEA Bioenergy Task 37, Technical Brochure

    Google Scholar 

  132. Risberg K, Sun L, Levén L, Horn SJ, Schnürer A (2013) Biogas production from wheat straw and manure – impact of pretreatment and process operating parameters. Bioresour Technol 149:232–237

    Article  CAS  Google Scholar 

  133. Ziembinska-Buczynska A, Banach A, Bacza T, Pieczykolan M (2013) Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World J Microbiol Biotechnol 30:3047–3053

    Article  CAS  Google Scholar 

  134. Mauky E, Jacobi HF, Liebetrau J, Nelles M (2015) Flexible biogas production for demand-driven energy supply – feeding strategies and types of substrates. Bioresour Technol 178:262–269

    Article  CAS  Google Scholar 

  135. De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. J Microbial Biotechnol 6:414–424

    Article  CAS  Google Scholar 

  136. Lahav O, Morgan BE (2004) Titration methodologies for monitoring of anaerobic digestion in developing countries - a review. J Chem Technol Biotechnol 79:1331–1341

    Article  CAS  Google Scholar 

  137. Marchaum U, Krause C (1993) Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresour Technol 43:195–203

    Article  Google Scholar 

  138. Björnsson L, Hörnsten EG, Mattiasson B (2001) Utilization of a palladium–metal oxide semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in anaerobic digestion. Biotechnol Bioeng 73:35–43

    Article  Google Scholar 

  139. Lebuhn M, Weiß S, Munk B, Guebitz GM (2015) Microbiology and molecular biology tools for biogas process analysis, diagnosis and control. Biogas Sci Technol Ser Adv Biochem Eng Biotechnol 151:1–40

    Google Scholar 

  140. Beale DJ, Karpe AV, McLeod JD, Gondalia SV, Muster TH, Othman MZ, Palombo EA, Joshi D (2016) An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Res 88:346–357

    Article  CAS  Google Scholar 

  141. Win TT, Ki H, Cho K, Song KG, Park J (2016) Monitoring the microbial community shift throughout the shock changes of hydraulic retention time in an anaerobic moving bed membrane bioreactor. Bioresour Technol 202:125–132

    Article  CAS  Google Scholar 

  142. Chen S, He Q (2015) Persistence of Methanosaeta populations in anaerobic digestion during process instability. J Ind Microbiol Biotechnol 42:1129–1137

    Article  CAS  Google Scholar 

  143. Leite AF, Janke L, Lv Z, Harms H, Richnow H-H, Nikolausz M (2015) Improved monitoring of semi-continuous anaerobic digestion of sugarcane waste: effects of increasing organic loading rate on methanogenic community dynamics. Int J Mol Sci 16(10):23210–23226

    Article  CAS  Google Scholar 

  144. Mulat DG, Jacobi HF, Feilberg A, Adamsen APS, Richnow H-H, Nikolausz M (2016) Changing feeding regimes to demonstrate flexible biogas production: effects on process performance, microbial community structure, and methanogenesis pathways. Appl Envion Microbiol 82(2):438–449

    Article  CAS  Google Scholar 

  145. Polag D, May T, Müller L, König H, Jacobi F, Laukenmann S, Keppler F (2015) Online monitoring of stable carbon isotopes of methane in anaerobic digestion as a new tool for early warning of process instability. Bioresour Technol 197:161–170

    Google Scholar 

  146. Romero-Güiza MS, Vila J, Mata-Alvarez M, Chimenos JM, Astal S (2016) The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev 58:1486–1499

    Article  CAS  Google Scholar 

  147. Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Biores Technol 209:369–379

    Article  CAS  Google Scholar 

  148. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35:992–998

    Article  CAS  Google Scholar 

  149. Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2015) Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 119(6):678–682

    Article  CAS  Google Scholar 

  150. Kato S (2015) Biotechnological aspects of microbial extracellular electron transfer. Microbes Environ 30(2):133–139

    Article  Google Scholar 

  151. Kougias PG, Boe K, Einarsdottir ES, Angelidaki I (2016) Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents. Water Res 79:119–127

    Google Scholar 

  152. Peng X, Börner RA, Nges IA, Liu J (2014) Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol 152:567–571

    Article  CAS  Google Scholar 

  153. Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao X (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour Technol 185:79–88

    Google Scholar 

  154. Zhang J, Go R-B, Qiu Y-L, Qiao J-T, Yuan X-Z, Shi X-S, Chuan-Shui Wang C-S (2015) Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw. Bioresour Technol 179:306–313

    Article  CAS  Google Scholar 

  155. Poszytek K, Ciezkowak M, Sklodowska A, Drewniak L (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol 7:324

    Article  Google Scholar 

  156. Fotidis IA, Wang H, Fiedel N-R, Luo G, Karakashev DB (2014) Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Tech 48:7669–7676

    Article  CAS  Google Scholar 

  157. Ács N, Bagi Z, Rákhely G, Minárovics J, Nagy K, Kovács KL (2015) Bioaugmentation of biogas production by a hydrogen-producing bacterium. Bioresour Technol 186:286–293

    Article  CAS  Google Scholar 

  158. Cirne DG, Björnsson L, Alves M, Mattiasson B (2006) Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste. J Chem Technol Biotechnol 81:1745–1752

    Article  CAS  Google Scholar 

  159. Quinones TS, Plöchl M, Budde J, Heiermann M (2011) Enhanced methane formation through application of enzymes: results from continuous digestion tests. Energy Fuels 2011(25):5378–5386

    Article  CAS  Google Scholar 

  160. Kothari R, Pandey KA, Kumar S, Tyagi VV, Tyagi SK (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195

    Article  CAS  Google Scholar 

  161. Sha FA, Mahmood Q, Rashid N, Pervez A, Raja IA (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sustain Energy Rev 42:627–642

    Article  CAS  Google Scholar 

  162. van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years of sludge bed rectors for industrial waste water treatment. Rev Environ Biotechnol 14:681–702

    Article  CAS  Google Scholar 

  163. Apples L, Baeyens J, Degrève J, Dweil R (2008) Principles and potential of the anaerobic digestion of waste – activated sludge. Progess Energy Combust Sci 34:755–718

    Article  CAS  Google Scholar 

  164. Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104

    Article  CAS  Google Scholar 

  165. Rajagopal R, Cata Saady NM, Torrijos M, Thanikal JV, Hung Y-T (2013) Sustainable agro-food industrial wastewater treatment using high rate anaerobic process. Water 5:292–311

    Google Scholar 

  166. Jensen PD, Yap SD, Boyle-Gota A, Janoschka J, Carney C, Pidou M, Batstone DJ (2015) Anaerobic membrane reactors enable high rate treatment of slaughter house wastewater. Biochem Eng J 97:132–141

    Article  CAS  Google Scholar 

  167. Bustillo-Lecompte CF, Mehrvar M (2015) Slaughterhouse waste water characteristics, treatment, and management in meat processing industry: a review on trends and advances. J Environ Manage 161:287–302

    Article  CAS  Google Scholar 

  168. Karadag D, Köroglu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50:262–271

    Article  CAS  Google Scholar 

  169. Nasir IM, Ghazi TIM, Omar R (2012) Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci 12(3):258–269

    Google Scholar 

  170. Turkdogan FI, Park J, Evans EA, Ellis TG (2013) Evaluation of pretreatment using UASB and SGBR reactors for pulp and paper plants wastewater treatment. Water Air Soil Pollut 224:1512

    Article  CAS  Google Scholar 

  171. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (ASB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734

    Google Scholar 

  172. Verstraete W, de Beer D, Pena M, Lettinga G, Lens P (1996) Anaerobic bioprocessing of organic waste. World J Microbiol Biotechnol 12:221–238

    Article  CAS  Google Scholar 

  173. Ellis TG, Evars KM (2008) A new high rate anaerobic technology, the static granular bed reactor (SGBR), for renewable energy production from medium strength waste streams. WIT Trans Ecol Environ 109:141–150

    Google Scholar 

  174. Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19(9):363–370

    Article  CAS  Google Scholar 

  175. Lim JS, Kim T-H (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202

    Article  CAS  Google Scholar 

  176. Hulstoshoff L, Lens P, Castro S, Lettinga G (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  CAS  Google Scholar 

  177. Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35(7):1723–1729

    Article  CAS  Google Scholar 

  178. McHugh S, Reilly C, Mahony E, Colleran E, Flaherty V (2003) Anaerobic granular sludge technology. Rev Environ Sci Biotechnol 2:225–245

    Article  CAS  Google Scholar 

  179. Cao X, Sheng Y, Cao H, Zhang Y (2014) Comparison of Mg2+ and Ca2+-enhancing anaerobic granulation in an expanded granular sludge-bed reactor. Sci China 57(11):1596–1601

    Article  CAS  Google Scholar 

  180. Satho H, Tsushoma I, Miura Y, Ito T, Okabe S (2012) Characterization of microbial community structures and their activities in single anaerobic granules by beta imaging, microsensors and fluorescence hybridization. Water Sci Technol 65(12):2125–2131

    Article  CAS  Google Scholar 

  181. Shrestha PM, Malvankar NS, Werner JJ, Franks AE, Elena-Rotaru A, Shrestha M, Liu F, Nevin KP, Angenent LT, Lovley DR (2014) Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Biores Technol 174:306–310

    Article  CAS  Google Scholar 

  182. Dahiya S, Joseph J (2015) High rate biomethanation technology for solid waste management and rapid biogas production: an emphasis on reactor design parameters. Bioresour Technol 188:73–78

    Article  CAS  Google Scholar 

  183. Divya D, Gopinath LR, Christy M (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sustain Energy Rev 42:690–699

    Article  CAS  Google Scholar 

  184. Munk B, Bauer A, Gronauer A, Lebuh M (2012) A metabolic quotient for methanogenic archaea. Water Sci Technol 66(11):2311–2317

    Article  CAS  Google Scholar 

  185. Stukey DC (2012) Recent developments in anaerobic membrane reactors. Bioresour Technol 122:137–148

    Article  CAS  Google Scholar 

  186. Zhu G, Zou R, Jha AK, Huang X, Liu L, Liu C (2015) Recent developments and future perspectives of anaerobic baffled bioreactor for wastewater treatment and energy recovery. Crit Rev Environ Sci Technol 45:1243–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Schnürer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schnürer, A. (2016). Biogas Production: Microbiology and Technology. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2016_5

Download citation

Publish with us

Policies and ethics