Skip to main content

Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNA TyrCUA and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNA PylCUA pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM (2014) Stop codon reassignments in the wild. Science 344(6186):909–913

    Article  CAS  Google Scholar 

  2. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500

    Article  CAS  Google Scholar 

  3. Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041

    Article  CAS  Google Scholar 

  4. Johnson DBF, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L (2012) Release factor one is nonessential in Escherichia coli. ACS Chem Biol 7(8):1337–1344

    Article  CAS  Google Scholar 

  5. Mukai T, Hayashi A, Iraha F, Sato A, Ohtake K, Yokoyama S, Sakamoto K (2010) Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res 38(22):8188–8195

    Article  CAS  Google Scholar 

  6. Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360

    Article  CAS  Google Scholar 

  7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  8. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600

    Google Scholar 

  9. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  Google Scholar 

  10. Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Söll D, Steitz TA (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc Natl Acad Sci U S A 104(27):11268–11273

    Article  CAS  Google Scholar 

  11. Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O (2009) Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457(7233):1163–1167

    Article  CAS  Google Scholar 

  12. James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) The amber codon in the gene encoding the monomethylamine methyltransferase isolated from Methanosarcina barkeri is translated as a sense codon. J Biol Chem 276(36):34252–34258

    Article  CAS  Google Scholar 

  13. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572):1462–1466

    Article  CAS  Google Scholar 

  14. Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462

    Article  CAS  Google Scholar 

  15. Borrel G, Gaci N, Peyret P, O’Toole PW, Gribaldo S, Brugère J-F (2014) Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014:374146

    Article  Google Scholar 

  16. Polycarpo C, Ambrogelly A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, Wood JL, Söll D (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101(34):12450–12454

    Article  CAS  Google Scholar 

  17. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197

    Article  CAS  Google Scholar 

  18. Takimoto JK, Dellas N, Noel JP, Wang L (2011) Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 6(7):733–743

    Article  CAS  Google Scholar 

  19. Kwok Y, Wong JT (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem 58(3):213–218

    Article  CAS  Google Scholar 

  20. Furter R (1998) Expansion of the genetic code: site-directed p-fluoro-phenylalanine incorporation in Escherichia coli. Protein Sci 7(2):419–426

    Article  CAS  Google Scholar 

  21. Katayama H, Nozawa K, Nureki O, Nakahara Y, Hojo H (2012) Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo. Biosci Biotechnol Biochem 76(1):205–208

    Article  CAS  Google Scholar 

  22. Ou W, Uno T, Chiu H-P, Grünewald J, Cellitti SE, Crossgrove T, Hao X, Fan Q, Quinn LL, Patterson P, Okach L, Jones DH, Lesley SA, Brock A, Geierstanger BH (2011) Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc Natl Acad Sci U S A 108(26):10437–10442

    Article  CAS  Google Scholar 

  23. Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304

    Article  CAS  Google Scholar 

  24. Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR (2011) Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. J Am Chem Soc 133(50):20581–20587

    Article  CAS  Google Scholar 

  25. Lee Y-J, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) A genetically encoded acrylamide functionality. ACS Chem Biol 8(8):1664–1670

    Article  CAS  Google Scholar 

  26. Gattner MJ, Vrabel M, Carell T (2013) Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem Commun (Camb) 49(4):379–381

    Article  CAS  Google Scholar 

  27. Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 134(25):10317–10320

    Article  CAS  Google Scholar 

  28. Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Ed Engl 50(17):3878–3881

    Google Scholar 

  29. Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW (2011) Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J Am Chem Soc 133(30):11418–11421

    Article  CAS  Google Scholar 

  30. Lee MM, Fekner T, Tang T-H, Wang L, Chan AH-Y, Hsu P-H, Au SW, Chan MK (2013) A click-and-release pyrrolysine analogue. Chembiochem 14(7):805–808

    Article  CAS  Google Scholar 

  31. Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama S (2009) Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. J Mol Biol 385(5):1352–1360

    Article  CAS  Google Scholar 

  32. Li Y-M, Yang M-Y, Huang Y-C, Li Y-T, Chen PR, Liu L (2012) Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem Biol 7(6):1015–1022

    Article  CAS  Google Scholar 

  33. Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J, Owen-Hughes T, van Noort J, Rhodes D, Chin JW (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36(1):153–163

    Article  CAS  Google Scholar 

  34. Ai H-W, Lee JW, Schultz PG (2010) A method to site-specifically introduce methyllysine into proteins in E. coli. Chem Commun (Camb) 46(30):5506–5508

    Article  CAS  Google Scholar 

  35. Virdee S, Kapadnis PB, Elliott T, Lang K, Madrzak J, Nguyen DP, Riechmann L, Chin JW (2011) Traceless and site-specific ubiquitination of recombinant proteins. J Am Chem Soc 133(28):10708–10711

    Article  CAS  Google Scholar 

  36. Umehara T, Kim J, Lee S, Guo L-T, Söll D, Park H-S (2012) N-Acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett 586(6):729–733

    Article  CAS  Google Scholar 

  37. Hancock SM, Uprety R, Deiters A, Chin JW (2010) Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J Am Chem Soc 132(42):14819–14824

    Article  CAS  Google Scholar 

  38. Ai H, Shen W, Sagi A, Chen PR, Schultz PG (2011) Probing protein-protein interactions with a genetically encoded photo-crosslinking amino acid. Chembiochem 12(12):1854–1857

    Article  CAS  Google Scholar 

  39. Schmidt MJ, Summerer D (2013) Red-light-controlled protein-RNA crosslinking with a genetically encoded furan. Angew Chem Int Ed Engl 52(17):4690–4693

    Article  CAS  Google Scholar 

  40. Wang Y-S, Wu B, Wang Z, Huang Y, Wan W, Russell WK, Pai P-J, Moe YN, Russell DH, Liu WR (2010) A genetically encoded photocaged Nepsilon-methyl-L-lysine. Mol Biosyst 6(9):1557–1560

    Article  CAS  Google Scholar 

  41. Gautier A, Nguyen DP, Lusic H, An W, Deiters A, Chin JW (2010) Genetically encoded photocontrol of protein localization in mammalian cells. J Am Chem Soc 132(12):4086–4088

    Article  CAS  Google Scholar 

  42. Nguyen DP, Mahesh M, Elsässer SJ, Hancock SM, Uttamapinant C, Chin JW (2014) Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J Am Chem Soc 136(6):2240–2243

    Article  CAS  Google Scholar 

  43. Nguyen DP, Lusic H, Neumann H, Kapadnis PB, Deiters A, Chin JW (2009) Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNA(CUA) pair and click chemistry. J Am Chem Soc 131(25):8720–8721

    Article  CAS  Google Scholar 

  44. Hao Z, Song Y, Lin S, Yang M, Liang Y, Wang J, Chen PR (2011) A readily synthesized cyclic pyrrolysine analogue for site-specific protein ‘click’ labeling. Chem Commun (Camb) 47(15):4502–4504

    Article  CAS  Google Scholar 

  45. Wang Y-S, Fang X, Wallace AL, Wu B, Liu WR (2012) A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J Am Chem Soc 134(6):2950–2953

    Article  CAS  Google Scholar 

  46. Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem Int Ed Engl 51(18):4466–4469

    Article  CAS  Google Scholar 

  47. Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl 51(42):10600–10604

    Article  CAS  Google Scholar 

  48. Li Y, Pan M, Li Y, Huang Y, Guo Q (2013) Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue. Org Biomol Chem 11(16):2624–2629

    Article  CAS  Google Scholar 

  49. Wang Y-S, Russell WK, Wang Z, Wan W, Dodd LE, Pai P-J, Russell DH, Liu WR (2011) The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Mol Biosyst 7(3):714–717

    Article  CAS  Google Scholar 

  50. Tuley A, Wang Y-S, Fang X, Kurra Y, Rezenom YH, Liu WR (2014) The genetic incorporation of thirteen novel non-canonical amino acids. Chem Commun (Camb) 50(20):2673–2675

    Article  CAS  Google Scholar 

  51. Xiao H, Peters FB, Yang P-Y, Reed S, Chittuluru JR, Schultz PG (2014) Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase. ACS Chem Biol 9(5):1092–1096

    Article  CAS  Google Scholar 

  52. Guo L, Wang Y, Nakamura A, Eiler D, Kavran JM, Wong M, Kiessling LL, Steitz TA, O’Donoghue P, Söll D (2014) Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc Natl Acad Sci U S A 111(47):16724–16729

    Article  CAS  Google Scholar 

  53. John AA, Ramil CP, Tian Y, Cheng G, Lin Q (2015) Synthesis and site-specific incorporation of red-shifted azobenzene amino acids into proteins. Org Lett 17(24):6258–6261

    Article  CAS  Google Scholar 

  54. Hoppmann C, Lacey VK, Louie GV, Wei J, Noel JP, Wang L (2014) Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. Angew Chem Int Ed Engl 53(15):3932–3936

    Article  CAS  Google Scholar 

  55. Lammers C, Hahn LE, Neumann H (2014) Optimized plasmid systems for the incorporation of multiple different unnatural amino acids by evolved orthogonal ribosomes. Chembiochem 15(12):1800–1804

    Article  CAS  Google Scholar 

  56. Fan C, Xiong H, Reynolds NM, Söll D (2015) Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. Nucleic Acids Res 43(22):e156

    Google Scholar 

  57. Wu I-L, Patterson MA, Carpenter Desai HE, Mehl RA, Giorgi G, Conticello VP (2013) Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides. Chembiochem 14(8):968–978

    Article  CAS  Google Scholar 

  58. Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth Biol 3(6):398–409

    Article  CAS  Google Scholar 

  59. Johnson DBF, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7(11):779–786

    Article  CAS  Google Scholar 

  60. Zheng Y, Lajoie MJ, Italia JS, Chin MA, Church GM, Chatterjee A (2016) Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. Mol Biosyst 12(6):1746–1749

    Article  CAS  Google Scholar 

  61. Mukai T, Hoshi H, Ohtake K, Takahashi M, Yamaguchi A, Hayashi A, Yokoyama S, Sakamoto K (2015) Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon. Sci Rep 5:9699

    Article  CAS  Google Scholar 

  62. Wang J, Kwiatkowski M, Forster AC (2016) Kinetics of tRNA(Pyl)-mediated amber suppression in Escherichia coli translation reveals unexpected limiting steps and competing reactions. Biotechnol Bioeng 113(7):1552–1559

    Article  CAS  Google Scholar 

  63. Wang N, Ju T, Niu W, Guo J (2015) Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids. ACS Synth Biol 4(3):207–212

    Google Scholar 

  64. Neumann H (2012) Rewiring translation - genetic code expansion and its applications. FEBS Lett 586(15):2057–2064

    Article  CAS  Google Scholar 

  65. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nediljko Budisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baumann, T., Exner, M., Budisa, N. (2016). Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2016_37

Download citation

Publish with us

Policies and ethics