Advertisement

Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems

  • Philip A. Ash
  • Kylie A. VincentEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 158)

Abstract

A more complete understanding of bioelectrochemical interfaces is of increasing importance in both fundamental studies and biotechnological applications of proteins. Bioelectrochemical methods provide detailed information about the activity or rate of a process, but in situ spectroscopic methods are needed to gain direct structural insight into functionally relevant states. A number of methods have been reported that allow electrochemical and spectroscopic data to be collected from the same electrode, providing direct spectroscopic ‘snapshots’ of protein function, and here we focus on the application of infrared and Raman spectroscopies to the study of electrode-immobilised species. The ability to probe coordination at metal centres, protonation changes in amino acid side chains, reaction-induced changes in organic cofactors or substrates, protein orientation and subtle changes in protein secondary structure simultaneously, rapidly and at room temperature means that vibrational spectroscopic approaches are almost uniquely applicable to answering a wide range of questions in bioelectrochemistry.

Keywords

Spectroelectrochemistry In situ spectroscopy Biocatalysis Electrocatalysis Infrared Raman SERS SERRS SEIRA Membrane protein Redox enzyme 

Notes

Acknowledgements

The authors are grateful to the European Research Council (EnergyBioCatalysis-ERC-2010-StG-258600), the Biotechnology and Biological Sciences Research Council (BB/L009722/1), and the Engineering and Physical Sciences Research Council (EP/N013514/1) for funding. We wish to thank Pathinan Paengnakorn and Charlotte McKenna for recording the IR spectrum of carboxymyoglobin in Fig. 1, Rebecca Shutt for acquiring the spectra used in Fig. 4 and Ricardo Hidalgo for experimental data collection for and preparation of Figs. 7, 15 and 16.

References

  1. 1.
    Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life science. Wiley-VCH, Weinheim, ChichesterGoogle Scholar
  2. 2.
    Ash PA, Vincent KA (2012) Spectroscopic analysis of immobilised redox enzymes under direct electrochemical control. Chem Commun 48:1400–1409. doi: 10.1039/C1CC15871F CrossRefGoogle Scholar
  3. 3.
    Sezer M, Millo D, Weidinger IM et al (2012) Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies. IUBMB Life 64:455–464. doi: 10.1002/iub.1020 CrossRefGoogle Scholar
  4. 4.
    Atkins PW, Friedman RS (2010) Molecular quantum mechanics, 5th edn. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Hollas M (2004) Modern spectroscopy, 4th edn. Wiley, ChichesterGoogle Scholar
  6. 6.
    Hecht E (2016) Optics, 5th edn. Addison-Wesley, BostonGoogle Scholar
  7. 7.
    Caughey WS, Shimada H, Choc MG, Tucker MP (1981) Dynamic protein structures: infrared evidence for four discrete rapidly interconverting conformers at the carbon monoxide binding site of bovine heart myoglobin. Proc Natl Acad Sci U S A 78:2903–2907CrossRefGoogle Scholar
  8. 8.
    Peterson ES, Friedman JM, Chien EYT, Sligar SG (1998) Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Biochemistry (Mosc) 37:12301–12319. doi: 10.1021/bi980752u CrossRefGoogle Scholar
  9. 9.
    Baker MJ, Trevisan J, Bassan P et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791. doi: 10.1038/nprot.2014.110 CrossRefGoogle Scholar
  10. 10.
    Barth A, Zscherp C (2002) What vibrations tell about proteins. Q Rev Biophys 35:369–430. doi: 10.1017/S0033583502003815 CrossRefGoogle Scholar
  11. 11.
    Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004 CrossRefGoogle Scholar
  12. 12.
    Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173. doi: 10.1016/S0079-6107(00)00021-3 CrossRefGoogle Scholar
  13. 13.
    Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1,000–4,000 cm − 1range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245. doi: 10.1006/abio.1997.2136 CrossRefGoogle Scholar
  14. 14.
    George J, Thomas J (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct 28:1–27. doi: 10.1146/annurev.biophys.28.1.1 CrossRefGoogle Scholar
  15. 15.
    Shreve AP, Cherepy NJ, Mathies RA (1992) Effective rejection of fluorescence interference in raman spectroscopy using a shifted excitation difference technique. Appl Spectrosc 46:707–711CrossRefGoogle Scholar
  16. 16.
    Matousek P, Towrie M, Ma C et al (2001) Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J Raman Spectrosc 32:983–988. doi: 10.1002/jrs.784 CrossRefGoogle Scholar
  17. 17.
    Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944. doi: 10.1021/j150668a038 CrossRefGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev. doi: 10.1021/cr4005814 Google Scholar
  20. 20.
    De Lacey AL, Fernández VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330. doi: 10.1021/cr0501947 CrossRefGoogle Scholar
  21. 21.
    Moss D, Nabedryk E, Breton J, Mäntele W (1990) Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Eur J Biochem 187:565–572. doi: 10.1111/j.1432-1033.1990.tb15338.x CrossRefGoogle Scholar
  22. 22.
    McEvoy JP, Foord JS (2005) Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes. Electrochim Acta 50:2933–2941. doi: 10.1016/j.electacta.2004.11.043 CrossRefGoogle Scholar
  23. 23.
    Renault C, Harris KD, Brett MJ et al (2011) Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Chem Commun 47:1863–1865. doi: 10.1039/C0CC04154H CrossRefGoogle Scholar
  24. 24.
    Renault C, Nicole L, Sanchez C et al (2015) Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry. Phys Chem Chem Phys 17:10592–10607. doi: 10.1039/C5CP00023H CrossRefGoogle Scholar
  25. 25.
    Marritt SJ, Kemp GL, Xiaoe L et al (2008) Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. J Am Chem Soc 130:8588–8589. doi: 10.1021/ja802641a CrossRefGoogle Scholar
  26. 26.
    Kemp GL, Marritt SJ, Xiaoe L et al (2009) Opportunities for mesoporous nanocrystalline SnO2 electrodes in kinetic and catalytic analyses of redox proteins. Biochem Soc Trans 37:368–372. doi: 10.1042/BST0370368 CrossRefGoogle Scholar
  27. 27.
    Matousek P, Parker AW (2006) Bulk Raman analysis of pharmaceutical tablets. Appl Spectrosc 60:1353–1357. doi: 10.1366/000370206779321463 CrossRefGoogle Scholar
  28. 28.
    Matousek P, Stone N (2007) Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J Biomed Opt 12:024008–024008–8. doi: 10.1117/1.2718934Google Scholar
  29. 29.
    Leitch JJ, Brosseau CL, Roscoe SG et al (2013) Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. Langmuir 29:965–976. doi: 10.1021/la304939k CrossRefGoogle Scholar
  30. 30.
    Olejnik P, Palys B, Kowalczyk A, Nowicka AM (2012) Orientation of laccase on charged surfaces. Mediatorless oxygen reduction on amino- and carboxyl-ended ethylphenyl groups. J Phys Chem C 116:25911–25918. doi: 10.1021/jp3098654 CrossRefGoogle Scholar
  31. 31.
    Woods DA, Bain CD (2014) Total internal reflection spectroscopy for studying. Soft Matter 10:1071–1096. doi: 10.1039/C3SM52817K CrossRefGoogle Scholar
  32. 32.
    Harrick NJ (1967) Internal reflection spectroscopy. Wiley, New YorkGoogle Scholar
  33. 33.
    Hidalgo R, Ash PA, Healy AJ, Vincent KA (2015) Infrared spectroscopy during electrocatalytic turnover reveals the Ni–L active site state during H2 oxidation by a NiFe hydrogenase. Angew Chem Int Ed 54:7110–7113. doi: 10.1002/anie.201502338 CrossRefGoogle Scholar
  34. 34.
    Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta Biomembr 1828:2283–2293. doi: 10.1016/j.bbamem.2013.04.026 CrossRefGoogle Scholar
  35. 35.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  36. 36.
    Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795. doi: 10.1002/anie.201205748 CrossRefGoogle Scholar
  37. 37.
    Gutiérrez-Sanz O, Rüdiger O, De Lacey A (2014) FTIR spectroscopy of metalloproteins. In: Nicolet Y, Fontecilla-Camps JC (eds) Metalloproteins. Humana, New York, pp 95–106CrossRefGoogle Scholar
  38. 38.
    Królikowska A (2013) Surface-enhanced resonance Raman scattering (SERRS) as a tool for the studies of electron transfer proteins attached to biomimetic surfaces: case of cytochrome c. Electrochim Acta 111:952–995. doi: 10.1016/j.electacta.2013.08.140 CrossRefGoogle Scholar
  39. 39.
    Ataka K, Heberle J (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem 388:47–54. doi: 10.1007/s00216-006-1071-4 CrossRefGoogle Scholar
  40. 40.
    Jeuken LJC (2016) Biophotoelectrochemistry: from bioelectrochemistry to photosynthesis. Adv Biochem Eng Biotechnol. Springer, Chapter 2Google Scholar
  41. 41.
    Kriegel S, Uchida T, Osawa M et al (2014) Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy. Biochemistry (Mosc) 53:6340–6347. doi: 10.1021/bi500955a CrossRefGoogle Scholar
  42. 42.
    Kranich A, Ly HK, Hildebrandt P, Murgida DH (2008) Direct observation of the gating step in protein electron transfer: electric-field-controlled protein dynamics. J Am Chem Soc 130:9844–9848. doi: 10.1021/ja8016895 CrossRefGoogle Scholar
  43. 43.
    Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F (2009) Immobilized-metal affinity chromatography (IMAC): a review. Method Enzymol 463:439–473. doi: 10.1016/S0076-6879(09)63027-5 CrossRefGoogle Scholar
  44. 44.
    Ataka K, Giess F, Knoll W et al (2004) Oriented attachment and membrane reconstitution of His-tagged Cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc 126:16199–16206. doi: 10.1021/ja045951h CrossRefGoogle Scholar
  45. 45.
    Guo H, Kimura T, Furutani Y (2013) Distortion of the amide-I and -II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chem Phys 419:8–16. doi: 10.1016/j.chemphys.2012.11.011 CrossRefGoogle Scholar
  46. 46.
    Ataka K, Richter B, Heberle J (2006) Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode. J Phys Chem B 110:9339–9347. doi: 10.1021/jp0534131 CrossRefGoogle Scholar
  47. 47.
    Sezer M, Frielingsdorf S, Millo D et al (2011) Role of the HoxZ subunit in the electron transfer pathway of the membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha immobilized on electrodes. J Phys Chem B 115:10368–10374. doi: 10.1021/jp204665r CrossRefGoogle Scholar
  48. 48.
    Kozuch J, Weichbrodt C, Millo D et al (2014) Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Phys Chem Chem Phys 16:9546–9555. doi: 10.1039/C4CP00167B CrossRefGoogle Scholar
  49. 49.
    Yamakata A, Shimizu H, Oiki S (2015) Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field. Phys Chem Chem Phys 17:21104–21111. doi: 10.1039/C5CP02681D CrossRefGoogle Scholar
  50. 50.
    Alves A, Ly HK, Hildebrandt P et al (2015) Nature of the surface-exposed cytochrome–electrode interactions in electroactive biofilms of desulfuromonas acetoxidans. J Phys Chem B 119:7968–7974. doi: 10.1021/acs.jpcb.5b03419 CrossRefGoogle Scholar
  51. 51.
    Moe E, Sezer M, Hildebrandt P, Todorovic S (2015) Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III. Chem Commun 51:3255–3257. doi: 10.1039/C4CC09498K CrossRefGoogle Scholar
  52. 52.
    Jiang X, Zaitseva E, Schmidt M et al (2008) Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc Natl Acad Sci U S A 105:12113–12117. doi: 10.1073/pnas.0802289105 CrossRefGoogle Scholar
  53. 53.
    Greene BL, Joseph CA, Maroney MJ, Dyer RB (2012) Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 134:11108–11111. doi: 10.1021/ja3042367 CrossRefGoogle Scholar
  54. 54.
    Murphy BJ, Hidalgo R, Roessler MM et al (2015) Discovery of dark pH-dependent H+ migration in a [NiFe]-hydrogenase and its mechanistic relevance: mobilizing the hydrido ligand of the Ni–C intermediate. J Am Chem Soc 137:8484–8489. doi: 10.1021/jacs.5b03182 CrossRefGoogle Scholar
  55. 55.
    Millo D, Hildebrandt P, Pandelia ME et al (2011) SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions. Angew Chem Int Ed 50:2632–2634. doi: 10.1002/anie.201006646 CrossRefGoogle Scholar
  56. 56.
    Kielb P, Sezer M, Katz S et al (2015) Spectroscopic observation of calcium-induced reorientation of cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity. ChemPhysChem 16:1960–1968. doi: 10.1002/cphc.201500112 CrossRefGoogle Scholar
  57. 57.
    Millo D, Ly HK (2015) Towards the understanding of the effect of oxygen on the electrocatalytic activity of microbial biofilms: a spectroelectrochemical study. RSC Adv 5:92042–92044. doi: 10.1039/C5RA17429E CrossRefGoogle Scholar
  58. 58.
    Tonzetich ZJ, Wang H, Mitra D et al (2010) Identification of protein-bound dinitrosyl iron complexes by nuclear resonance vibrational spectroscopy. J Am Chem Soc 132:6914–6916. doi: 10.1021/ja101002f CrossRefGoogle Scholar
  59. 59.
    Ogata H, Krämer T, Wang H et al (2015) Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat Commun 6:7890. doi: 10.1038/ncomms8890 CrossRefGoogle Scholar
  60. 60.
    Bozzini B, De Gaudenzi GP, Busson B et al (2010) In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black, based on sum-frequency generation spectroscopy. J Power Sources 195:4119–4123. doi: 10.1016/j.jpowsour.2010.01.017 CrossRefGoogle Scholar
  61. 61.
    Guyot-Sionnest P (2005) The mature years of sum-frequency generation are ahead. Surf Sci 585:1–2. doi: 10.1016/j.susc.2005.04.021 CrossRefGoogle Scholar
  62. 62.
    Liu Y, Jasensky J, Chen Z (2012) Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir 28:2113–2121. doi: 10.1021/la203823t CrossRefGoogle Scholar
  63. 63.
    Cheng H, Nikolic-Hughes I, Wang JH et al (2002) Environmental effects on phosphoryl group bonding probed by vibrational spectroscopy: implications for understanding phosphoryl transfer and enzymatic catalysis. J Am Chem Soc 124:11295–11306. doi: 10.1021/ja026481z CrossRefGoogle Scholar
  64. 64.
    Yan ECY, Wang Z, Fu L (2015) Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem B 119:2769–2785. doi: 10.1021/jp508926e CrossRefGoogle Scholar
  65. 65.
    Amenabar I, Poly S, Nuansing W et al (2013) Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun 4:2890. doi: 10.1038/ncomms3890 CrossRefGoogle Scholar
  66. 66.
    Zeng ZC, Huang SC, Wu DY et al (2015) Electrochemical tip-enhanced Raman spectroscopy. J Am Chem Soc 137:11928–11931. doi: 10.1021/jacs.5b08143 CrossRefGoogle Scholar
  67. 67.
    Kurouski D, Mattei M, Van Duyne RP (2015) Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett 15:7956–7962. doi: 10.1021/acs.nanolett.5b04177 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations