Skip to main content

Branched-Chain Amino Acids

  • Chapter
  • First Online:
Amino Acid Fermentation

Abstract

Branched-chain amino acids (BCAAs), viz., l-isoleucine, l-leucine, and l-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concentration values are corrected by the dilution factors caused by addition of ammonia solution to maintain the pH of the reaction solutions.

References

  1. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  CAS  Google Scholar 

  2. Monirujjaman M, Ferdouse A (2014) Metabolic and physiological roles of branched-chain amino acids. Adv Mol Biol 2014:364976

    Article  Google Scholar 

  3. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506

    Article  CAS  PubMed  Google Scholar 

  4. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9(3):268–274

    Article  CAS  PubMed  Google Scholar 

  5. Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3, e201210004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eggeling L, Pfefferle W, Sahm H (2001) Amino acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 281–303

    Google Scholar 

  7. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35

    CAS  PubMed  Google Scholar 

  8. Oldiges M, Eikmanns BJ, Blombach B (2014) Application of metabolic engineering for the biotechnological production of L-valine. Appl Microbiol Biotechnol 98(13):5859–5870

    Article  CAS  PubMed  Google Scholar 

  9. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460

    Article  CAS  PubMed  Google Scholar 

  10. Vertes AA, Inui M, Yukawa H (2012) Postgenomic approaches to using corynebacteria as biocatalysts. Annu Rev Microbiol 66:521–550

    Article  CAS  PubMed  Google Scholar 

  11. Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95(1):77–89

    Article  CAS  PubMed  Google Scholar 

  12. Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to L-isoleucine. Appl Microbiol Biotechnol 25(4):346–351

    Article  CAS  Google Scholar 

  13. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards L-isoleucine. Appl Environ Microbiol 61(12):4315–4320

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Changeux JP (1963) Allosteric interactions on biosynthetic L-threonine deaminase from Escherichia coli K-12. Cold Spring Harb Symp Quant Biol 28:497–504

    Article  CAS  Google Scholar 

  15. Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC, Curtiss RI, Ingraham JL, Lin EC, Low KB Jr, Magasanik B et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 442–457

    Google Scholar 

  16. De Felice M, Squires CH, Levinthal M (1978) A comparative study of the acetohydroxy acid synthase isoenzymes of Escherichia coli K-12. Biochim Biophys Acta 541:9–17

    Article  Google Scholar 

  17. Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL et al (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579(21):4629–4634

    Article  CAS  PubMed  Google Scholar 

  18. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90(5):501–507

    Article  CAS  PubMed  Google Scholar 

  20. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68(5):2246–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104(1–3):241–252

    Article  CAS  PubMed  Google Scholar 

  22. Inoue K, Kuramitsu S, Aki K, Watanabe Y, Takagi T, Nishigai M et al (1988) Branched-chain amino acid aminotransferase of Escherichia coli: overproduction and properties. J Biochem 104(5):777–784

    Article  CAS  PubMed  Google Scholar 

  23. Pátek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60(1):133–140

    PubMed  PubMed Central  Google Scholar 

  24. Pátek M, Hochmannova J, Jelinkova M, Nesvera J, Eggeling L (1998) Analysis of the leuB gene from Corynebacterium glutamicum. Appl Microbiol Biotechnol 50(1):42–47

    Article  PubMed  Google Scholar 

  25. Gusyatiner MM, Lunts MG, Kozlov YI, Ivanovskaya LV, Voroshilova EB (2002) DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine. US Patent 6403342 B1

    Google Scholar 

  26. Groeger U, Sahm H (1987) Microbial production of L-leucine from α-ketoisocaproate by Corynebacterium glutamicum. Appl Microbiol Biotechnol 25(4):352–356

    Article  CAS  Google Scholar 

  27. Berg CM, Liu L, Vartak NB, Whalen WA, Wang BM (1990) The branched chain amino acid transaminase genes and their production in Escherichia coli. In: Chipman D, Barak Z, Schloss JV (eds) Biosynthesis of branched chain amino acids. VCH Verlagsgesellschaft, Weinheim, pp 131–162

    Google Scholar 

  28. Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen JL et al (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Holátko J, Elišáková V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210

    Article  PubMed  CAS  Google Scholar 

  30. Hou X, Chen X, Zhang Y, Qian H, Zhang W (2012) L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43(6):2301–2311

    Article  CAS  PubMed  Google Scholar 

  31. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72(11):2959–2965

    Article  CAS  PubMed  Google Scholar 

  32. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) L-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75(4):1197–1200

    Article  CAS  PubMed  Google Scholar 

  34. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79(3):471–479

    Article  CAS  PubMed  Google Scholar 

  35. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T et al (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78(3):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T et al (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79(4):1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75

    Article  PubMed  CAS  Google Scholar 

  38. Hou X, Ge X, Wu D, Qian H, Zhang W (2012) Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBN r C genes. J Ind Microbiol Biotechnol 39(1):63–72

    Article  CAS  PubMed  Google Scholar 

  39. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colón GE, Nguyen TT, Jetten MS, Sinskey AJ, Stephanopoulos G (1995) Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 43(3):482–488

    Article  PubMed  Google Scholar 

  41. Guillouet S, Rodal AA, An G-H, Gorret N, Lessard PA, Sinskey AJ (2001) Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum. Appl Microbiol Biotechnol 57(5–6):667–673

    Article  CAS  PubMed  Google Scholar 

  42. Morbach S, Sahm H, Eggeling L (1996) L-Isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62(12):4345–4351

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N et al (2013) Enhancing L-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol 171(1):20–30

    Article  CAS  PubMed  Google Scholar 

  44. Peng Z, Fang J, Li J, Liu L, Du G, Chen J et al (2010) Combined dissolved oxygen and pH control strategy to improve the fermentative production of L-isoleucine by Brevibacterium lactofermentum. Bioprocess Biosyst Eng 33(3):339–345

    Article  CAS  PubMed  Google Scholar 

  45. Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14(5):542–550

    Article  CAS  PubMed  Google Scholar 

  46. Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114(5):1369–1377

    Article  CAS  PubMed  Google Scholar 

  47. Zhao J, Hu X, Li Y, Wang X (2015) Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(11):4795–4805

    Article  CAS  PubMed  Google Scholar 

  48. Hashiguchi K, Matsui H, Kurahashi O (1999) Effects of a feedback-resistant aspartokinase III gene on L-isoleucine production in Escherichia coli K-12. Biosci Biotechnol Biochem 63(11):2023–2024

    Article  CAS  PubMed  Google Scholar 

  49. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J et al (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  50. Udaka S, Kinoshita S (1959) The fermentative production of L-valine by bacteria. J Gen Appl Microbiol 5(4):159–174

    Article  Google Scholar 

  51. Sugisaki Z (1959) Studies on L-valine fermentation. Part I. Production of L-valine by Aerobacter bacteria. J Gen Appl Microbiol 5:138–149

    Article  CAS  Google Scholar 

  52. Nakayama K, Kitada S, Kinoshita S (1961) L-Valine production using microbial auxotroph. J Gen Appl Microbiol 7:52–69

    Article  CAS  Google Scholar 

  53. Karlström O (1965) Methods for the production of mutants suitable as amino acid fermentation organisms. Biotechnol Bioeng 7:245–268

    Article  Google Scholar 

  54. Kisumi M, Komatsubara S, Chibata I (1971) Valine accumulation by α-aminobutyric acid-resistant mutants of Serratia marcescens. J Bacteriol 106(2):493–499

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsuchida T, Yoshinaga F, Kubota K, Momose H (1975) Production of L-valine by 2-thiazolealanine resistant mutants derived from glutamic acid producing bacteria. Agric Biol Chem 39(6):1319–1322

    CAS  Google Scholar 

  56. Tsuchida T, Momose H (1975) Genetic changes of regulatory mechanisms occurred in leucine and valine producing mutants derived from Brevibacterium lactofermentum 2256. Agric Biol Chem 39(11):2193–2198

    CAS  Google Scholar 

  57. Yukawa H, Terasawa M (1986) L-Isoleucine production by ethanol utilizing microorganism. Process Biochem 21:196–199

    CAS  Google Scholar 

  58. Terasawa M, Inui M, Goto M, Shikata K, Imanari M, Yukawa H (1990) Living cell reaction process for L-isoleucine and L-valine production. J Ind Microbiol 5(5):289–293

    Article  CAS  Google Scholar 

  59. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74(24):7457–7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187(17):6005–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Engels V, Wendisch VF (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189(8):2955–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaigalat L, Schluter JP, Hartmann M, Mormann S, Tauch A, Puhler A et al (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tanaka Y, Teramoto H, Inui M, Yukawa H (2008) Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78(2):309–318

    Article  CAS  PubMed  Google Scholar 

  64. Aoki R, Wada M, Takesue N, Tanaka K, Yokota A (2005) Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem 69(8):1466–1472

    Article  CAS  PubMed  Google Scholar 

  65. Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57(4):534–540

    Article  CAS  PubMed  Google Scholar 

  66. Livshits VA, Doroshenko VG, Gorshkova NV, Belaryeva AV, Ivanovskaya LV, Khourges EM, Akhverdian VZ, Gusyatiner MM, Kozlov YI (2004) Mutant ilvH gene and method for producing L-valine. US Patent US6737255 B2

    Google Scholar 

  67. Tabolina EA, Rybak KV, Khourges EM, Voroshilova EB, Gusyatiner MM (2005) Method for producing L-amino acid using bacteria belonging to the genus Escherichia. US Patent 2005/0239175 A1

    Google Scholar 

  68. Livshits VA, Debabov VG, Fedorovva AO, Pavlovva ZN, Shakulov RS, Bachina TA, Khourges EM (1997) Strains of Escherichia coli which produce isoleucine or valine and a method for their production. US Patent 5658766

    Google Scholar 

  69. Tomita F, Yokota A, Hashiguchi K, Ishigooka M, Kurahashi O (2001) Methods for producing L-valine and L-leucine. US Patent 6214591 B1

    Google Scholar 

  70. Hayashibe M, Uemura T (1961) Release from the feedback inhibition controlling the biosynthesis of isoleucine. Nature 191:1417–1418

    Article  CAS  PubMed  Google Scholar 

  71. Kisumi M (1962) Studies on the isoleucine fermentation. I. Screening of organisms and investigation of cultural conditions. J Biochem 52:390–399

    Article  CAS  PubMed  Google Scholar 

  72. Umbarger HE (1971) Metabolite analogs as genetic and biochemical probes. Adv Genet 16:119–140

    CAS  PubMed  Google Scholar 

  73. Szentirmai A, Szentirmai M, Umbarger HE (1968) Isoleucine and valine metabolism of Escherichia coli. XV. Biochemical properties of mutants resistant to thiaisoleucine. J Bacteriol 95(5):1672–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vonder Haar RA, Umbarger HE (1972) Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine. J Bacteriol 112(1):142–147

    CAS  PubMed  Google Scholar 

  75. O’Neill JP, Freundlich M (1972) Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium. J Bacteriol 111(2):510–515

    PubMed  PubMed Central  Google Scholar 

  76. Betz JL, Hereford LM, Magee PT (1971) Threonine deaminases from Saccharomyces cerevisiae mutationally altered in regulatory properties. Biochemistry 10(10):1818–1824

    Article  CAS  PubMed  Google Scholar 

  77. Kisumi M, Komatsubara S, Sugiura M, Chibata I (1971) Properties of isoleucine hydroxamate-resistant mutants of Serratia marcescens. J Gen Microbiol 69(3):291–297

    Article  CAS  PubMed  Google Scholar 

  78. Krupe H, Poralla K (1972) Properties of mutants of Bacillus subtilis which are resistant to the isoleucine antagonist ketomycin. Arch Mikrobiol 85(3):253–258

    Article  CAS  PubMed  Google Scholar 

  79. Terasawa M, Kakinuma N, Shikata K, Yukawa H (1989) New process for L-isoleucine production. Process Biochem 24:60–61

    CAS  Google Scholar 

  80. Terasawa M, Inui M, Goto M, Kurusu Y, Yukawa H (1991) Depression of by-product formation during L-isoleucine production by a living-cell reaction process. Appl Microbiol Biotechnol 35(3):348–351

    Article  CAS  Google Scholar 

  81. Park JH, Lee SY (2010) Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol J 5(6):560–577

    Article  CAS  PubMed  Google Scholar 

  82. Patte JC (1996) Biosynthesis of threonine and lysine. In: Neidhardt FC, Curtiss RI, Ingraham JL, Lin EC, Low KB Jr, Magasanik B et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 528–541

    Google Scholar 

  83. Greene RC, Smith AA (1984) Insertion mutagenesis of the metJBLF gene cluster of Escherichia coli K-12: evidence for an metBL operon. J Bacteriol 159(2):767–769

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA et al (1988) Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon. Mol Microbiol 2(1):63–72

    Article  CAS  PubMed  Google Scholar 

  85. Katinka M, Cossart P, Sibilli L, Saint-Girons I, Chalvignac MA, Le Bras G et al (1980) Nucleotide sequence of the thrA gene of Escherichia coli. Proc Natl Acad Sci U S A 77(10):5730–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morbach S, Kelle R, Winkels S, Sahm H, Eggeling L (1996) Engineering the homoserine dehydrogenase and threonine dehydrogenase control points to analyse flux towards L-isoleucine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 45(5):612–620

    Article  CAS  Google Scholar 

  87. Yin L, Hu X, Wang X (2014) Proteomic analysis of L-isoleucine production by Corynebacterium glutamicum. J Pure Appl Microbiol 8(2):899–908

    CAS  Google Scholar 

  88. Hashiguchi K, Kojima H, Sato K, Sano K (1997) Effects of an Escherichia coli ilvA mutant gene encoding feedback-resistant threonine deaminase on L-isoleucine production by Brevibacterium flavum. Biosci Biotechnol Biochem 61(1):105–108

    Article  CAS  PubMed  Google Scholar 

  89. Guillouet S, Rodal AA, An G-H, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65(7):3100–3107

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999) Construction of an L-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 63(4):672–679

    Article  CAS  PubMed  Google Scholar 

  91. Kisumi M, Komatsubara S, Chibata I (1973) Leucine accumulation by isoleucine revertants of Serratia marcescens resistant to α-aminobutyric acid lack of both feedback inhibition and repression. J Biochem 73(1):107–115

    CAS  PubMed  Google Scholar 

  92. Kisumi M, Komatsubara S, Chibata I (1977) Pathway for isoleucine formation from pyruvate by leucine biosynthetic enzymes in leucine-accumulating isoleucine revertants of Serratia marcescens. J Biochem 82(1):95–103

    Article  CAS  PubMed  Google Scholar 

  93. Tsuchida T, Yoshinaga F, Kubota K, Momose H, Okumura S (1974) Production of L-leucine by a mutant of Brevibacterium lactofermentum 2256. Agric Biol Chem 38(10):1907–1911

    CAS  Google Scholar 

  94. Akashi K, Ikeda S, Shibai H, Kobayashi K, Hirose Y (1978) Determination of redox potential levels critical for cell respiration and suitable for L-leucine production. Biotechnol Bioeng 20(1):27–41

    Article  CAS  PubMed  Google Scholar 

  95. Tsuchida T, Yoshinaga F, Kubota K, Momose H, Okumura S (1975) Cultural conditions for L-leucine production by strain No. 218, a mutant of Brevibacterium lactofermentum 2256. Agric Biol Chem 39(5):1149–1153

    CAS  Google Scholar 

  96. Tsuchida T, Momose H (1986) Improvement of an L-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to α-acetohydroxy acid synthetase. Appl Environ Microbiol 51(5):1024–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ambe-Ono Y, Sato K, Totsuka K, Yoshihara Y, Nakamori S (1996) Improved L-leucine production by an α-aminobutyric acid resistant mutant of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 60(8):1386–1387

    Article  CAS  Google Scholar 

  98. Gusyatiner MM, Voroshilova EB, Rostova YG, Ivanovskaya LV, Lunts MG, Khourges EM (2004) Method for producing L-leucine. US Patent 2004/0091980

    Google Scholar 

  99. Katashkina J, Lunts M, Doroshenko V, Fomina S, Skorokhodova A, Ivanovskaya L, Mashko S (2006) Method for producing an L-amino acid using a bacterium with an optimized level of gene expression. US Patent 2006/0063240

    Google Scholar 

  100. Azuma T, Nakanishi T, Hagino H (1987) Properties of revertants appearing in L-leucine fermentation culture broth. Agric Biol Chem 51(12):3245–3249

    Article  CAS  Google Scholar 

  101. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  PubMed  Google Scholar 

  102. Dellomonaco C, Fava F, Gonzalez R (2012) The path to next generation biofuels:successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3

    Article  CAS  Google Scholar 

  103. Blombach B, Eikmanns BJ (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2:346–350

    Article  PubMed  PubMed Central  Google Scholar 

  104. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  CAS  PubMed  Google Scholar 

  105. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352

    Article  CAS  PubMed  Google Scholar 

  106. Li S, Huang D, Li Y, Wen J, Jia X (2012) Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Fact 11:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF et al (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ida K, Ishii J, Matsuda F, Kondo T, Kondo A (2015) Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb Cell Fact 14:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H (2013) Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 110(11):2938–2948

    Article  CAS  PubMed  Google Scholar 

  111. Cann AF, Liao JC (2010) Pentanol isomer synthesis in engineered microorganisms. Appl Microbiol Biotechnol 85(4):893–899

    Article  CAS  PubMed  Google Scholar 

  112. Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74(18):5769–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86(4):1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81(1):89–98

    Article  CAS  PubMed  Google Scholar 

  115. Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H et al (2015) Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb Cell Fact 14:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  CAS  PubMed  Google Scholar 

  117. Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V et al (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71(6):3255–3268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Nishio Y, Ogishima S, Ichikawa M, Yamada Y, Usuda Y, Masuda T et al (2013) Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst Biol 7:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Trinh CT, Li J, Blanch HW, Clark DS (2011) Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 77(14):4894–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamamoto, K., Tsuchisaka, A., Yukawa, H. (2016). Branched-Chain Amino Acids. In: Yokota, A., Ikeda, M. (eds) Amino Acid Fermentation. Advances in Biochemical Engineering/Biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_28

Download citation

Publish with us

Policies and ethics