Skip to main content

Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3(3):193–205

    Article  CAS  Google Scholar 

  2. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8

    Article  CAS  Google Scholar 

  3. Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol 23(5):718–726

    Article  CAS  Google Scholar 

  4. Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 135:544–554

    Article  CAS  Google Scholar 

  5. Soliman S, Tang Y (2015) Natural and engineered production of taxadiene with taxadiene synthase. Biotechnol Bioeng 112(2):229–235

    Article  CAS  Google Scholar 

  6. Blombach B, Seibold GM (2010) Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Microbiol Biotechnol 86(5):1313–1322

    Article  CAS  Google Scholar 

  7. Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191(9):2964–2972

    Article  CAS  Google Scholar 

  8. Becker J, Kind S, Wittmann C (2012) Systems metabolic engineering of Corynebacterium glutamicum for biobased production of chemicals, materials and fuels. In: Wittmann C, Lee SY (eds) Systems metabolic engineering. Springer, Dordrecht, Heidelberg, New York, London, pp 152–191

    Google Scholar 

  9. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels – Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23(4):631–640

    Article  CAS  Google Scholar 

  10. Becker J, Wittmann C (2016) Industrial microorganisms: Corynebacterium glutamicum. In: Wittmann C, Liao JC (eds) Industrial iotechnology. Advanced biotechnology. Wiley-VCH, Weinheim, pp 183–222

    Google Scholar 

  11. Sugimoto S, Shiio I (1989) Fructose metabolism and regulation of 1-phosphofructokinase and 6-phosphofructokinase in Brevibacterium flavum. Agric Biol Chem 53:1261–1268

    CAS  Google Scholar 

  12. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350

    Article  CAS  Google Scholar 

  13. Laslo T, von Zaluskowski P, Gabris C, Lodd E, Rückert C, Dangel P, Kalinowski J, Auchter M, Seibold G, Eikmanns BJ (2012) Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR. J Bacteriol 194(5):941–955

    Article  CAS  Google Scholar 

  14. Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 6(3):318–329

    Article  CAS  Google Scholar 

  15. Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163(2):217–224

    Article  CAS  Google Scholar 

  16. Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104(1-3):99–122

    Article  CAS  Google Scholar 

  17. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66(6):1337–1344

    Article  CAS  Google Scholar 

  18. Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180(4):285–292

    Article  CAS  Google Scholar 

  19. Mori M, Shiio I (1987) Pyruvate formation and sugar metabolism in an amino acid-producing bacterium, Brevibacterium flavum. Agric Biol Chem 51(1):129–138

    CAS  Google Scholar 

  20. Parche S, Burkovski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3(3):423–428

    CAS  Google Scholar 

  21. Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Appl Microbiol Biotechnol 96(5):1191–1200

    Article  CAS  Google Scholar 

  22. Peng X, Okai N, Vertes AA, Inatomi K, Inui M, Yukawa H (2011) Characterization of the mannitol catabolic operon of Corynebacterium glutamicum. Appl Microbiol Biotechnol 91(5):1375–1387

    Article  CAS  Google Scholar 

  23. Sasaki M, Teramoto H, Inui M, Yukawa H (2011) Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Appl Microbiol Biotechnol 89(6):1905–1916

    Article  CAS  Google Scholar 

  24. Xu J, Han M, Zhang J, Guo Y, Zhang W (2014) Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids 46(9):2165–2175

    Article  CAS  Google Scholar 

  25. Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12(1-2):43–50

    Article  CAS  Google Scholar 

  26. Park S-Y, Kim H-K, Yoo S-K, Oh T-K, Lee J-K (2000) Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 188(2):209–215

    Article  CAS  Google Scholar 

  27. Cocaign-Bousquet M, Guyonvarch A, Lindley ND (1996) Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum. Appl Environ Microbiol 62(2):429–436

    CAS  Google Scholar 

  28. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(4):1443–1451

    Article  CAS  Google Scholar 

  29. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011) Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77(11):3571–3581

    Article  CAS  Google Scholar 

  30. Lindner SN, Seibold GM, Krämer R, Wendisch VF (2011) Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Bioeng Bugs 2(5):291–295

    Article  Google Scholar 

  31. Zhou Z, Wang C, Xu H, Chen Z, Cai H (2015) Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol 42(7):1073–1082

    Article  CAS  Google Scholar 

  32. Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254(1):96–102

    Article  CAS  Google Scholar 

  33. Moon M-W, Kim H-J, Oh T-K, Shin C-S, Lee J-S, Kim S-J, Lee J-K (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244(2):259–266

    Article  CAS  Google Scholar 

  34. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70(1):229–239

    Article  CAS  Google Scholar 

  35. Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70(12):7277–7287

    Article  CAS  Google Scholar 

  36. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71(12):8587–8596

    Article  CAS  Google Scholar 

  37. Chen Y, Zhou YJ, Siewers V, Nielsen J (2015) Enabling technologies to advance microbial isoprenoid production. Adv Biochem Eng Biotechnol 148:143–160

    CAS  Google Scholar 

  38. Dominguez H, Lindley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62(10):3878–3880

    CAS  Google Scholar 

  39. Higgins CF (2001) ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152(3–4):205–210

    Article  CAS  Google Scholar 

  40. Nentwich SS, Brinkrolf K, Gaigalat L, Hüser AT, Rey DA, Mohrbach T, Marin K, Pühler A, Tauch A, Kalinowski J (2009) Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology 155(Pt 1):150–164

    Article  CAS  Google Scholar 

  41. Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2009) Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 75(11):3419–3429

    Article  CAS  Google Scholar 

  42. Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77(5):1053–1062

    Article  CAS  Google Scholar 

  43. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2-3):191–198

    Article  CAS  Google Scholar 

  44. Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  Google Scholar 

  45. Eberhardt D, Jensen JV, Wendisch VF (2014) L-Citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4(1):85

    Article  CAS  Google Scholar 

  46. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6(2):131–140

    Article  CAS  Google Scholar 

  47. Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8(5):557–570

    Article  CAS  Google Scholar 

  48. Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

    Article  CAS  Google Scholar 

  49. Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67(2):305–322

    Article  CAS  Google Scholar 

  50. Yin H, Zhuang YB, Li EE, Bi HP, Zhou W, Liu T (2015) Heterologous biosynthesis of costunolide in Escherichia coli and yield improvement. Biotechnol Lett 37(6):1249–1255

    Article  CAS  Google Scholar 

  51. Yokota A, Lindley ND (2005) Central metabolism: sugar uptake and conversion. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 215–240

    Chapter  Google Scholar 

  52. Han SO, Inui M, Yukawa H (2007) Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology 153(Pt 7):2190–2202

    Article  CAS  Google Scholar 

  53. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing Corynebacteria. Appl Environ Microbiol 68(12):5843–5859

    Article  CAS  Google Scholar 

  54. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase. J Biotechnol 132(2):99–109

    Article  CAS  Google Scholar 

  55. Becker J, Zelder O, Haefner S, Schröder H, Wittmann C (2011) From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13(2):159–168

    Article  CAS  Google Scholar 

  56. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186(6):1769–1784

    Article  CAS  Google Scholar 

  57. Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56(2):168–180

    Article  CAS  Google Scholar 

  58. Wittmann C, De Graaf AA (2005) Metabolic flux analysis in Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 277–304

    Google Scholar 

  59. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104(1-3):185–197

    Article  CAS  Google Scholar 

  60. Gubler M, Jetten M, Lee SH, Sinskey AJ (1994) Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol 60(7):2494–2500

    CAS  Google Scholar 

  61. Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    Article  CAS  Google Scholar 

  62. Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10

    Article  CAS  Google Scholar 

  63. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76(21):7154–7160

    Article  CAS  Google Scholar 

  64. Tsuge Y, Yamamoto S, Kato N, Suda M, Vertes AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99(11):4679–4689

    Article  CAS  Google Scholar 

  65. Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H (2013) Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 97(15):6693–6703

    Article  CAS  Google Scholar 

  66. Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H (2012) Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 78(12):4447–4457

    Article  CAS  Google Scholar 

  67. Reddy GK, Wendisch VF (2014) Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol 14:54

    Article  Google Scholar 

  68. Moritz B, Striegel K, De Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267(12):3442–3452

    Article  CAS  Google Scholar 

  69. Teramoto H, Inui M (2013) Regulation of sugar uptake, glycolysis and the pentose phosphate pathway in Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum – biology and biotechnology, vol 23, Microbiology monographs. Springer, Berlin-Heidelberg, pp 263–279

    Chapter  Google Scholar 

  70. Becker J, Wittmann C (2013) Pathways at work: metabolic flux analysis of the industrial cell factory Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum – biology and biotechnology, vol 23, Microbiology monographs. Springer, Berlin-Heidelberg, pp 217–237

    Chapter  Google Scholar 

  71. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242(2):265–274

    Article  CAS  Google Scholar 

  72. Becker J, Buschke N, Bücker R, Wittmann C (2010) Systems level engineering of Corynebacterium glutamicum – reprogramming translational efficiency for superior production. Eng Life Sci 10:430–438

    Article  CAS  Google Scholar 

  73. Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, Zelder O, Wittmann C (2014) From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123

    Article  CAS  Google Scholar 

  74. Shi F, Li K, Huan X, Wang X (2013) Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl Biochem Biotechnol 171(2):504–521

    Article  CAS  Google Scholar 

  75. Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26(2):361–371

    CAS  Google Scholar 

  76. Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5:4618

    CAS  Google Scholar 

  77. Kim SY, Lee J, Lee SY (2015) Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnol Bioeng 112(2):416–421

    Article  CAS  Google Scholar 

  78. Zhang C, Zhang J, Kang Z, Du G, Chen J (2015) Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 42(5):787–797

    Article  CAS  Google Scholar 

  79. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65(6):2497–2502

    CAS  Google Scholar 

  80. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177(3):774–782

    Article  CAS  Google Scholar 

  81. Wendisch VF, Spies M, Reinscheid DJ, Schnicke S, Sahm H, Eikmanns BJ (1997) Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol 168(4):262–269

    Article  CAS  Google Scholar 

  82. Ozaki H, Shiio I (1968) Regulation of the TCA and glyoxylate cycles in Brevibacterium flavum. I. Inhibition of isocitrate lyase and isocitrate dehydrogenase by organic acids related to the TCA and glyoxylate cycles. J Biochem 64(3):355–363

    Article  CAS  Google Scholar 

  83. Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7(2):59–69

    Article  CAS  Google Scholar 

  84. Shiio I, Ujigawa-Takeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum. Agric Biol Chem 44(8):1897–1904

    CAS  Google Scholar 

  85. Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 86(3):911–920

    Article  CAS  Google Scholar 

  86. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73(4):1308–1319

    Article  CAS  Google Scholar 

  87. Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81(6):1097–1106

    Article  CAS  Google Scholar 

  88. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281(18):12300–12307

    Article  CAS  Google Scholar 

  89. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76(3):691–700

    Article  CAS  Google Scholar 

  90. Wang N, Ni Y, Shi F (2015) Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum. Biotechnol Lett 37(7):1473–1481

    Article  CAS  Google Scholar 

  91. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109(8):2070–2081

    Article  CAS  Google Scholar 

  92. Becker J, Klopprogge C, Schröder H, Wittmann C (2009) Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(24):7866–7869

    Article  CAS  Google Scholar 

  93. Kind S, Becker J, Wittmann C (2013) Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng 15:184–195

    Article  CAS  Google Scholar 

  94. Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165

    Google Scholar 

  95. Zahoor A, Otten A, Wendisch VF (2014) Metabolic engineering of Corynebacterium glutamicum for glycolate production. J Biotechnol. 192:366–375

    Google Scholar 

  96. Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29(4):765–794

    Article  CAS  Google Scholar 

  97. Eikmanns BJ (2005) Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 241–276

    Chapter  Google Scholar 

  98. Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275(46):35932–35941

    Article  CAS  Google Scholar 

  99. Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144(Pt 4):915–927

    Article  CAS  Google Scholar 

  100. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3(2):295–300

    CAS  Google Scholar 

  101. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084

    Article  CAS  Google Scholar 

  102. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76(3):615–623

    Article  CAS  Google Scholar 

  103. Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87(3):1045–1055

    Article  CAS  Google Scholar 

  104. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Appl Environ Microbiol 79(18):5566–5575

    Article  CAS  Google Scholar 

  105. Sawada K, Zen-in S, Wada M, Yokota A (2010) Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metab Eng 12(4):401–407

    Article  CAS  Google Scholar 

  106. Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Fact 7:8

    Article  CAS  Google Scholar 

  107. Nguyen AQ, Schneider J, Reddy GK, Wendisch VF (2015) Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Metabolites 5(2):211–231

    Article  CAS  Google Scholar 

  108. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58(2):217–223

    Article  CAS  Google Scholar 

  109. Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106(1):51–58

    Article  CAS  Google Scholar 

  110. Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196

    Article  CAS  Google Scholar 

  111. Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8(4):243–254

    Article  CAS  Google Scholar 

  112. Ikeda M (2005) L-tryptophan production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 489–509

    Chapter  Google Scholar 

  113. Sano K, Ito K, Miwa K, Nakamori S (1987) Amplification of the phosphoenol pyruvate carboxylase gene of Brevibacterium lactofermentum to improve amino acid production. Agric Biol Chem 51(2):597–599

    CAS  Google Scholar 

  114. Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80(4):1388–1393

    Article  CAS  Google Scholar 

  115. Wada M, Sawada K, Ogura K, Shimono Y, Hagiwara T, Sugimoto M, Onuki A, Yokota A (2015) Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. J Biosci Bioeng 121:172–177

    Google Scholar 

  116. Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab Eng 3(4):344–361

    Article  CAS  Google Scholar 

  117. Riedel C, Rittmann D, Dangel P, Möckel B, Petersen S, Sahm H, Eikmanns BJ (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3(4):573–583

    CAS  Google Scholar 

  118. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7(4):291–301

    Article  CAS  Google Scholar 

  119. Blombach B, Eikmanns BJ (2011) Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs 2(6):346–350

    Article  Google Scholar 

  120. Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B (1999) Analysis of the Corynebacterium glutamicum dapA promoter. J Bacteriol 181(19):6188–6191

    CAS  Google Scholar 

  121. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597

    Article  CAS  Google Scholar 

  122. Burkovski A (2013) Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol 2013:935736

    Article  CAS  Google Scholar 

  123. Yuzawa S, Eng CH, Katz L, Keasling JD (2014) Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic alpha-lipomycin. J Antibiot (Tokyo) 67(2):199–201

    Article  CAS  Google Scholar 

  124. Puech V, Chami M, Lemassu A, Lanéelle M-A, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147(5):1365–1382

    Article  CAS  Google Scholar 

  125. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6

    Article  CAS  Google Scholar 

  126. Wittmann C, Kim HM, Heinzle E (2004) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87(1):1–6

    Article  CAS  Google Scholar 

  127. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–291

    Article  CAS  Google Scholar 

  128. Pauling J, Röttger R, Tauch A, Azevedo V, Baumbach J (2012) CoryneRegNet 6.0—updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res 40(D1):D610–D614

    Article  CAS  Google Scholar 

  129. Patek M, Nesvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum – biology and biotechnology, vol 23, Microbiology monographs. Springer, Berlin-Heidelberg, pp 51–88

    Chapter  Google Scholar 

  130. Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact 10:29

    Article  CAS  Google Scholar 

  131. Howat S, Park B, Oh IS, Jin YW, Lee EK, Loake GJ (2014) Paclitaxel: biosynthesis, production and future prospects. N Biotechnol 31(3):242–245

    Article  CAS  Google Scholar 

  132. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57(1):441–466

    Article  CAS  Google Scholar 

  133. Restaino OF, Bhaskar U, Paul P, Li L, De Rosa M, Dordick JS, Linhardt RJ (2013) High cell density cultivation of a recombinant E. coli strain expressing a key enzyme in bioengineered heparin production. Appl Microbiol Biotechnol 97(9):3893–3900

    Article  CAS  Google Scholar 

  134. Larisch C, Nakunst D, Huser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4

    Article  CAS  Google Scholar 

  135. Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6:740

    Article  Google Scholar 

  136. Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189(13):4696–4707

    Article  CAS  Google Scholar 

  137. Plassmeier J, Li Y, Rueckert C, Sinskey AJ (2016) Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 33:86–97

    Article  CAS  Google Scholar 

  138. Rados D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H (2015) Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact 14(1):171

    Article  CAS  Google Scholar 

  139. Yu H, Luscombe NM, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends in Genetics 19(8):422–427

    Article  CAS  Google Scholar 

  140. Wang J, Guleria S, Koffas MA, Yan Y (2015) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104

    Article  CAS  Google Scholar 

  141. Nishimura T, Teramoto H, Inui M, Yukawa H (2011) Gene expression profiling of Corynebacterium glutamicum during anaerobic nitrate respiration: induction of the SOS response for cell survival. J Bacteriol 193(6):1327–1333

    Article  CAS  Google Scholar 

  142. Kohl TA, Tauch A (2009) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143(4):239–246

    Article  CAS  Google Scholar 

  143. Fang MY, Zhang C, Yang S, Cui JY, Jiang PX, Lou K, Wachi M, Xing XH (2015) High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb Cell Fact 14:8

    Article  CAS  Google Scholar 

  144. Walter B, Hanssler E, Kalinowski J, Burkovski A (2007) Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme. J Mol Microbiol Biotechnol 12(1-2):131–138

    Article  CAS  Google Scholar 

  145. Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A (2000) AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37(4):964–977

    Article  CAS  Google Scholar 

  146. Silberbach M, Burkovski A (2006) Application of global analysis techniques to Corynebacterium glutamicum: new insights into nitrogen regulation. J Biotechnol 126(1):101–110

    Article  CAS  Google Scholar 

  147. Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213(3):1325–1331

    Article  CAS  Google Scholar 

  148. Becker J, Schäfer R, Kohlstedt M, Harder BJ, Borchert NS, Stöveken N, Bremer E, Wittmann C (2013) Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 12:110

    Article  CAS  Google Scholar 

  149. Rey DA, Pühler A, Kalinowski J (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J Biotechnol 103(1):51–65

    Article  CAS  Google Scholar 

  150. Krömer JO, Bolten CJ, Heinzle E, Schröder H, Wittmann C (2008) Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154(Pt 12):3917–3930

    Article  CAS  Google Scholar 

  151. Krömer JO, Fritz M, Heinzle E, Wittmann C (2005) In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal Biochem 340(1):171–173

    Article  CAS  Google Scholar 

  152. Krömer JO, Heinzle E, Schröder H, Wittmann C (2006) Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J Bacteriol 188(2):609–618

    Article  CAS  Google Scholar 

  153. Krömer JO, Heinzle E, Wittmann C (2006) Quantification of S-adenosyl methionine in microbial cell extracts. Biotechnol Lett 28(2):69–71

    Article  CAS  Google Scholar 

  154. Toyoda K, Inui M (2015) Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:45–60

    Google Scholar 

  155. Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σH. Mol Microbiol 52(1):285–302

    Article  CAS  Google Scholar 

  156. Toyoda K, Teramoto H, Yukawa H, Inui M (2015) Expanding the regulatory network governed by the extracytoplasmic function sigma factor sigmaH in Corynebacterium glutamicum. J Bacteriol 197(3):483–496

    Article  CAS  Google Scholar 

  157. Busche T, Silar R, Picmanova M, Patek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445

    Article  CAS  Google Scholar 

  158. Osman A, Tzortzis G, Rastall RA, Charalampopoulos D (2013) High yield production of a soluble bifidobacterial beta-galactosidase (BbgIV) in E. coli DH5alpha with improved catalytic efficiency for the synthesis of prebiotic galactooligosaccharides. J Agric Food Chem 61(9):2213–2223

    Article  CAS  Google Scholar 

  159. Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS (2013) Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses. J Biotechnol 168(2):149–154

    Article  CAS  Google Scholar 

  160. Inui M, Suda M, Okino S, Nonaka H, Puskás LG, Vertès AA, Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153(8):2491–2504

    Article  CAS  Google Scholar 

  161. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62(1):69–75

    Article  CAS  Google Scholar 

  162. Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60(5):547–555

    Google Scholar 

  163. Kohl TA, Baumbach J, Jungwirth B, Pühler A, Tauch A (2008) The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135(4):340–350

    Article  CAS  Google Scholar 

  164. Rosenfeld N, Elowitz MB, Alon U (2002) Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323(5):785–793

    Article  CAS  Google Scholar 

  165. Schiraldi C, Alfano A, Cimini D, Rosa MD, Panariello A, Restaino OF (2012) Application of a 22L scale membrane bioreactor and cross-flow ultrafiltration to obtain purified chondroitin. Biotechnol Prog 28(4):1012–1018

    Article  CAS  Google Scholar 

  166. Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS (2005) The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem Biophys Res Commun 337(3):757–764

    Article  CAS  Google Scholar 

  167. Kim H-J, Kim T-H, Kim Y, Lee H-S (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186(11):3453–3460

    Article  CAS  Google Scholar 

  168. Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF (2007) Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis. FEMS Microbiol Lett 273(1):109–119

    Article  CAS  Google Scholar 

  169. Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J (2013) Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics 14(1):714

    Article  CAS  Google Scholar 

  170. Cimini D, De Rosa M, Carlino E, Ruggiero A, Schiraldi C (2013) Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide. Microb Cell Fact 12:46

    Article  CAS  Google Scholar 

  171. Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J (2013) Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14:888

    Article  CAS  Google Scholar 

  172. Neshat A, Mentz A, Ruckert C, Kalinowski J (2014) Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol 190:55–63

    Article  CAS  Google Scholar 

  173. Santamaria R, Gil J, Mesas J, Martin J (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246

    CAS  Google Scholar 

  174. Miwa K, Matsui H, Terabe M, Nakamori S, Sano K, Momose H (1984) Cryptic plasmids in glutamic acid producing bacteria. Agric Biol Chem 48(11):2901–2903

    CAS  Google Scholar 

  175. Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159(1):306–311

    CAS  Google Scholar 

  176. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  CAS  Google Scholar 

  177. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2-3):99–109

    Article  CAS  Google Scholar 

  178. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102(1):93–98

    Article  CAS  Google Scholar 

  179. Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the Gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174(16):5462–5465

    Article  Google Scholar 

  180. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73

    Article  Google Scholar 

  181. Liebl W, Bayerl A, Schein B, Stillner U, Schleifer KH (1989) High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65(3):299–303

    Article  CAS  Google Scholar 

  182. Bonamy C, Guyonvarch A, Reyes O, David F, Leblon G (1990) Interspecies electro-transformation in Corynebacteria. FEMS Microbiol Lett 54(1-3):263–269

    Article  CAS  Google Scholar 

  183. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

  184. Nesvera J, Patek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90(5):1641–1654

    Article  CAS  Google Scholar 

  185. Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104(1-3):287–299

    Article  CAS  Google Scholar 

  186. Vertes AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71(12):7633–7642

    Article  CAS  Google Scholar 

  187. Schäfer A, Schwarzer A, Kalinowski J, Pühler A (1994) Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli. J Bacteriol 176(23):7309–7319

    Article  Google Scholar 

  188. Vertes AA, Asai Y, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994) Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245(4):397–405

    Article  CAS  Google Scholar 

  189. Bonamy C, Labarre J, Cazaubon L, Jacob C, Le Bohec F, Reyes O, Leblon G (2003) The mobile element IS1207 of Brevibacterium lactofermentum ATCC21086: isolation and use in the construction of Tn5531, a versatile transposon for insertional mutagenesis of Corynebacterium glutamicum. J Biotechnol 104(1–3):301–309

    Article  CAS  Google Scholar 

  190. Moreau S, Blanco C, Trautwetter A (1999) Site-specific integration of corynephage phi16: construction of an integration vector. Microbiology 145(Pt 3):539–548

    Article  CAS  Google Scholar 

  191. Tan Y, Xu D, Li Y, Wang X (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67(1):44–52

    Article  CAS  Google Scholar 

  192. Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85(2):155–163

    Article  CAS  Google Scholar 

  193. Schäfer A, Kalinowski J, Pühler A (1994) Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60(2):756–759

    Google Scholar 

  194. van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545

    Article  Google Scholar 

  195. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus AH, Pühler A (1990) High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172(3):1663–1666

    Article  Google Scholar 

  196. Reyes O, Guyonvarch A, Bonamy C, Salti V, David F, Leblon G (1991) ‘Integron’-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Gene 107(1):61–68

    Article  CAS  Google Scholar 

  197. Kind S, Jeong WK, Schröder H, Wittmann C (2010) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351

    Article  CAS  Google Scholar 

  198. Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3(2):93–99

    Article  CAS  Google Scholar 

  199. Ankri S, Reyes O, Leblon G (1996) Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA. Plasmid 35(1):62–66

    Article  CAS  Google Scholar 

  200. Vertes A, Hatakeyama K, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57:2036–2038

    Google Scholar 

  201. Cao W, Ma W, Zhang B, Wang X, Chen K, Li Y, Ouyang P (2016) Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. J Ind Microbiol Biotechnol 43:557–566

    Google Scholar 

  202. Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(6):2617–2623

    Article  CAS  Google Scholar 

  203. Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110(11):2959–2969

    Article  CAS  Google Scholar 

  204. Okibe N, Suzuki N, Inui M, Yukawa H (2010) Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 50(2):173–180

    Article  CAS  Google Scholar 

  205. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628

    Article  CAS  Google Scholar 

  206. Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10(2):134–139

    Article  CAS  Google Scholar 

  207. He W, Fu L, Li G, Andrew Jones J, Linhardt RJ, Koffas M (2015) Production of chondroitin in metabolically engineered E. coli. Metab Eng 27:92–100

    Article  CAS  Google Scholar 

  208. Vecerek B, Moll I, Blasi U (2007) Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. Embo J 26(4):965–975

    Article  CAS  Google Scholar 

  209. Chang H, Replogle JM, Vather N, Tsao-Wu M, Mistry R, Liu JM (2015) A cis-regulatory antisense RNA represses translation in Vibrio cholerae through extensive complementarity and proximity to the target locus. RNA Biol 12(2):136–148

    Article  Google Scholar 

  210. Chae TU, Kim WJ, Choi S, Park SJ, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci Rep 5:13040

    Article  CAS  Google Scholar 

  211. Cho KH, Kim JH (2015) Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens. Front Genet 6:110

    Article  CAS  Google Scholar 

  212. Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7(2):140–144

    Article  CAS  Google Scholar 

  213. Brownlee G (1971) Sequence of 6S RNA of E. coli. Nature 229(5):147–149

    CAS  Google Scholar 

  214. Wassarman KM (2002) Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109(2):141–144

    Article  CAS  Google Scholar 

  215. Borujeni AE, Dong E, Salis HM (2011) Automated design of synthetic bacterial small RNAS. In: The 5th annual q-bio conference on cellular information processing, Santa Fe, USA, 10–14 August 2011

    Google Scholar 

  216. Sharma V, Yamamura A, Yokobayashi Y (2012) Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth Biol 1(1):6–13

    Article  CAS  Google Scholar 

  217. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotech 31(2):170–174

    Article  CAS  Google Scholar 

  218. Meyer S, Chappell J, Sankar S, Chew R, Lucks JB (2015) Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies. Biotechnol Bioeng 113:216–225

    Google Scholar 

  219. Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12(5):509–513

    Article  Google Scholar 

  220. Zemanová M, Kadeřábková P, Pátek M, Knoppová M, Šilar R, Nešvera J (2008) Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett 279(2):195–201

    Article  CAS  Google Scholar 

  221. Yang SM, Shim GY, Kim BG, Ahn JH (2015) Biological synthesis of coumarins in Escherichia coli. Microb Cell Fact 14:65

    Article  CAS  Google Scholar 

  222. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harbor perspectives in biology 4(2):a003566

    Article  CAS  Google Scholar 

  223. Jiang M, Stephanopoulos G, Pfeifer BA (2012) Toward biosynthetic design and implementation of Escherichia coli-derived paclitaxel and other heterologous polyisoprene compounds. Appl Environ Microbiol 78(8):2497–2504

    Article  CAS  Google Scholar 

  224. Barreteau H, Richard E, Drouillard S, Samain E, Priem B (2012) Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12. Carbohydr Res 360:19–24

    Article  CAS  Google Scholar 

  225. Zhou L-B, Zeng A-P (2015) Engineering lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol

    Google Scholar 

  226. Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H (2011) High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl Microbiol Biotechnol 91(3):677–687

    Article  CAS  Google Scholar 

  227. Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 11:147

    Article  CAS  Google Scholar 

  228. Baumgärtner F, Jurzitza L, Conrad J, Beifuss U, Sprenger GA, Albermann C (2015) Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorg Med Chem 23(21):6799–6806

    Article  CAS  Google Scholar 

  229. Schneider J, Eberhardt D, Wendisch V (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95(1):169–178

    Article  CAS  Google Scholar 

  230. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100:2107–2019

    Google Scholar 

  231. Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, Jin YS, Seo JH (2012) Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microb Cell Fact 11:48

    Article  CAS  Google Scholar 

  232. Zhang C, Zou R, Chen X, Stephanopoulos G, Too HP (2015) Experimental design-aided systematic pathway optimization of glucose uptake and deoxyxylulose phosphate pathway for improved amorphadiene production. Appl Microbiol Biotechnol 99(9):3825–3837

    Article  CAS  Google Scholar 

  233. Restaino OF, Cimini D, De Rosa M, Catapano A, Schiraldi C (2011) High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb Cell Fact 10:10

    Article  CAS  Google Scholar 

  234. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75(6):1635–1641

    Article  CAS  Google Scholar 

  235. Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88(4):859–868

    Article  CAS  Google Scholar 

  236. Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A (2015) Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Appl Microbiol Biotechnol 100:135–145

    Google Scholar 

  237. Kawaguchi H, Sasaki K, Uematsu K, Tsuge Y, Teramura H, Okai N, Nakamura-Tsuruta S, Katsuyama Y, Sugai Y, Ohnishi Y, Hirano K, Sazuka T, Ogino C, Kondo A (2015) 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum. Bioresour Technol 198:410–417

    Article  CAS  Google Scholar 

  238. Cheng F, Gong Q, Yu H, Stephanopoulos G (2015) High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J 11:574–584

    Google Scholar 

  239. Zhang S, Wang S, Zhan J (2016) Engineered biosynthesis of medicinally important plant natural products in microorganisms. Curr Top Med Chem 16(15):1740–1754

    Article  CAS  Google Scholar 

  240. Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z (2015) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293

    Google Scholar 

  241. Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 33(7):1403–1411

    Article  CAS  Google Scholar 

  242. Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57(6):1746–1752

    CAS  Google Scholar 

  243. Ikeda M (2006) Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69(6):615–626

    Article  CAS  Google Scholar 

  244. Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88(5):1065–1075

    Article  CAS  Google Scholar 

  245. Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15

    Article  CAS  Google Scholar 

  246. Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072

    Article  CAS  Google Scholar 

  247. Lee JY, Seo J, Kim ES, Lee HS, Kim P (2013) Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 35(5):709–717

    Article  CAS  Google Scholar 

  248. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 81(7):2284–2298

    Article  CAS  Google Scholar 

  249. Lessmeier L, Wendisch VF (2015) Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 15(1):216

    Article  CAS  Google Scholar 

  250. Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski O, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194

    Google Scholar 

  251. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30C:51–58

    Article  CAS  Google Scholar 

  252. Woo HM, Park JB (2014) Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J Biotechnol 180:43–51

    Article  CAS  Google Scholar 

  253. Stäbler N, Oikawa T, Bott M, Eggeling L (2011) Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J Bacteriol 193(7):1702–1709

    Article  CAS  Google Scholar 

  254. Shi F, Li Y (2011) Synthesis of gamma-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33(12):2469–2474

    Article  CAS  Google Scholar 

  255. Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51(3):171–176

    Article  CAS  Google Scholar 

  256. Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisakova V, Patek M, Kalinowski J, Brune I, Pühler A, Tauch A (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71(6):3255–3268

    Article  CAS  Google Scholar 

  257. Dickschat J, Wickel S, Bolten CJ, Nawrath T, Schulz S, Wittmann C (2010) Pyrazine biosynthesis in Corynebacterium glutamicum. Eur J Org Chem 2010(14):2687–2695

    Article  CAS  Google Scholar 

  258. Heider SA, Peters-Wendisch P, Wendisch VF (2012) Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol 12:198

    Article  CAS  Google Scholar 

  259. Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF (2014) Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(3):1223–1235

    Article  CAS  Google Scholar 

  260. Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394

    Google Scholar 

  261. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5(5):1197–1204

    Article  CAS  Google Scholar 

  262. Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22(5):815–826

    Article  CAS  Google Scholar 

  263. Jiang LY, Chen SG, Zhang YY, Liu JZ (2013) Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 13:47

    Article  CAS  Google Scholar 

  264. Kubota K, Onoda T, Kamijo H, Yoshinaga F, Okumura S (1973) Production of L-arginine by mutants of glutamic acid-producing bacteria. J Gen Appl Microbiol 19:339–352

    Article  CAS  Google Scholar 

  265. Utagawa T (2004) Production of arginine by fermentation. J Nutr 134 (10 Suppl):2854S–2857S; discussion 2895S.

    Google Scholar 

  266. Udaka S, Kinoshita S (1958) Studies on L-ornithine fermentation I. – The biosynthetic pathway of L-ornithine in Micrococcus glutamicus. J Gen Appl Microbiol 4(4):272–275

    Article  CAS  Google Scholar 

  267. Udaka S, Kinoshita S (1958) Studies on L-ornithine fermentation II. – The change of fermentation product by a feedback type mechanism. J Gen Appl Microbiol 4(4):283–288

    Article  CAS  Google Scholar 

  268. Becker J, Wittmann C (2016) Diamines for bio-based materials. In: Wittmann C, Liao JC (eds) Industrial biotechnology. Advanced biotechnology. Wiley-VCH, Weinheim, 395–413

    Google Scholar 

  269. Petri K, Walter F, Persicke M, Rückert C, Kalinowski J (2013) A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 14:713

    Article  CAS  Google Scholar 

  270. Hwang GH, Cho JY (2014) Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 41(3):573–578

    Article  CAS  Google Scholar 

  271. Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40(10):1143–1151

    Article  CAS  Google Scholar 

  272. Pastor JM, Salvador M, Argandona M, Bernal V, Reina-Bueno M, Csonka LN, Iborra JL, Vargas C, Nieto JJ, Canovas M (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28(6):782–801

    Article  CAS  Google Scholar 

  273. Kunte HJ, Lentzen G, Galinski EA (2014) Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol 3:10–25

    Article  CAS  Google Scholar 

  274. Stöveken N, Pittelkow M, Sinner T, Jensen RA, Heider J, Bremer E (2011) A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 193(17):4456–4468

    Article  CAS  Google Scholar 

  275. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    Article  CAS  Google Scholar 

  276. Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57(3):306–313

    Article  CAS  Google Scholar 

  277. Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF (2014) Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. J Biotechnol 191:205–213

    Google Scholar 

  278. Kind S, Wittmann C (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91(5):1287–1296

    Article  CAS  Google Scholar 

  279. Iles A, Martin AN (2013) Expanding bioplastics production: sustainable business innovation in the chemical industry. J Clean Prod 45:38–49

    Article  CAS  Google Scholar 

  280. Becker J, Lange A, Fabarius J, Wittmann C (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175

    Article  CAS  Google Scholar 

  281. Litsanov B, Brocker M, Oldiges M, Bott M (2014) Succinic acid. In: Bisaria VS, Kondo A (eds) Bioprocessing of renewable resources to commodity bioproducts. Wiley, Hoboken, pp 435–472

    Chapter  Google Scholar 

  282. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135

    Article  CAS  Google Scholar 

  283. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454

    Article  CAS  Google Scholar 

  284. Siebert D, Wendisch VF (2015) Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnol Biofuels 8:91

    Article  CAS  Google Scholar 

  285. Niimi S, Suzuki N, Inui M, Yukawa H (2011) Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(5):1721–1729

    Article  CAS  Google Scholar 

  286. Matsumoto K, Kitagawa K, Jo SJ, Song Y, Taguchi S (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. J Biotechnol 152(4):144–146

    Article  CAS  Google Scholar 

  287. Matsumoto K, Yamada M, Leong CR, Jo SJ, Kuzuyama T, Taguchi S (2011) A new pathway for poly(3-hydroxybutyrate) production in Escherichia coli and Corynebacterium glutamicum by functional expression of a new acetoacetyl-coenzyme A synthase. Biosci Biotechnol Biochem 75(2):364–366

    Article  CAS  Google Scholar 

  288. Matsumoto K, Tobitani K, Aoki S, Song Y, Ooi T, Taguchi S (2014) Improved production of poly(lactic acid)-like polyester based on metabolite analysis to address the rate-limiting step. AMB Express 4(1):83

    Article  CAS  Google Scholar 

  289. Tsuge Y, Hasunuma T, Kondo A (2015) Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. J Ind Microbiol Biotechnol 42(3):375–389

    Article  CAS  Google Scholar 

  290. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464

    Article  CAS  Google Scholar 

  291. Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78(9):3325–3337

    Article  CAS  Google Scholar 

  292. Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z (2015) Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Biotechnol Prog 31(1):12–19

    Article  CAS  Google Scholar 

  293. Zhu N, Xia H, Wang Z, Zhao X, Chen T (2013) Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS One 8(4), e60659

    Article  CAS  Google Scholar 

  294. Litsanov B, Kabus A, Brocker M, Bott M (2012) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5(1):116–128

    Article  CAS  Google Scholar 

  295. Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H (2014) Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. J Gen Appl Microbiol 60(3):112–118

    Article  CAS  Google Scholar 

  296. Becker J, Reinefeld J, Stellmacher R, Schäfer R, Lange A, Meyer H, Lalk M, Zelder O, von Abendroth G, Schröder H, Haefner S, Wittmann C (2013) Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 110(11):3013–3023

    Article  CAS  Google Scholar 

  297. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72(3):1939–1948

    Article  CAS  Google Scholar 

  298. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180

    Article  CAS  Google Scholar 

  299. Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13(5):617–627

    Article  CAS  Google Scholar 

  300. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310

    Article  CAS  Google Scholar 

  301. Heider SA, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10(8):1170–1184

    Article  CAS  Google Scholar 

  302. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) L-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75(4):1197–1200

    Article  CAS  Google Scholar 

  303. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79(3):471–479

    Article  CAS  Google Scholar 

  304. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H (2013) Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 110(11):2938–2948

    Article  CAS  Google Scholar 

  305. Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP (2004) Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70(5):2861–2866

    Article  CAS  Google Scholar 

  306. Brabetz W, Liebl W, Schleifer KH (1991) Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch Microbiol 155(6):607–612

    Article  CAS  Google Scholar 

  307. Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM (2014) Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 98:5633–5643

    Google Scholar 

  308. Kim EM, Um Y, Bott M, Woo HM (2015) Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. FEMS Microbiol Lett 362(19)

    Google Scholar 

  309. Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124(2):381–391

    Article  CAS  Google Scholar 

  310. Tateno T, Fukuda H, Kondo A (2007) Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77(3):533–541

    Article  CAS  Google Scholar 

  311. Tateno T, Fukuda H, Kondo A (2007) Production of L-lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl Microbiol Biotechnol 74(6):1213–1220

    Article  CAS  Google Scholar 

  312. Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A (2013) Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 3(1):72

    Article  CAS  Google Scholar 

  313. Witthoff S, Schmitz K, Niedenfuhr S, Nöh K, Noack S, Bott M, Marienhagen J (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl Environ Microbiol 81(6):2215–2225

    Article  CAS  Google Scholar 

  314. Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258

    Article  CAS  Google Scholar 

  315. Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74(20):6216–6222

    Article  CAS  Google Scholar 

  316. Rumbold K, van Buijsen HJ, Overkamp KM, van Groenestijn JW, Punt PJ, van der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8:64

    Article  CAS  Google Scholar 

  317. Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353

    Article  CAS  Google Scholar 

  318. Tsuge Y, Hori Y, Kudou M, Ishii J, Hasunuma T, Kondo A (2014) Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 98(20):8675–8683

    Article  CAS  Google Scholar 

  319. Tsuge Y, Kudou M, Kawaguchi H, Ishii J, Hasunuma T, Kondo A (2015) FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:2685–2692.

    Google Scholar 

  320. Liu YB, Chen C, Chaudhry MT, Si MR, Zhang L, Wang Y, Shen XH (2014) Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase. Biotechnol Lett 36(7):1453–1459

    Article  CAS  Google Scholar 

  321. den Haan R, van Rensburg E, Rose SH, Gorgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  CAS  Google Scholar 

  322. Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A (2013) Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol 97(16):7165–7172

    Article  CAS  Google Scholar 

  323. Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81(4):691–699

    Article  CAS  Google Scholar 

  324. Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149(Pt 6):1569–1580

    Article  CAS  Google Scholar 

  325. Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A (2011) Glutamate production from beta-glucan using endoglucanase-secreting Corynebacterium glutamicum. Appl Microbiol Biotechnol 90(3):895–901

    Article  CAS  Google Scholar 

  326. Hyeon JE, Jeon WJ, Whang SY, Han SO (2011) Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 48(4-5):371–377

    Article  CAS  Google Scholar 

  327. Kim SJ, Hyeon JE, Jeon SD, Choi GW, Han SO (2014) Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme Microb Technol 66:67–73

    Article  CAS  Google Scholar 

  328. Song Y, Matsumoto K, Tanaka T, Kondo A, Taguchi S (2013) Single-step production of polyhydroxybutyrate from starch by using alpha-amylase cell-surface displaying system of Corynebacterium glutamicum. J Biosci Bioeng 115(1):12–14

    Article  CAS  Google Scholar 

  329. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121

    Article  CAS  Google Scholar 

  330. Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440

    Article  CAS  Google Scholar 

  331. Zheng P, Liu M, Liu XD, Du QY, Ni Y, Sun ZH (2012) Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World J Microbiol Biotechnol 28(3):1035–1043

    Article  CAS  Google Scholar 

  332. Yim SS, Choi JW, Lee SH, Jeong KJ (2016) Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synth Biol 5(4):334–343

    Article  CAS  Google Scholar 

  333. Lee J, Saddler JN, Um Y, Woo HM (2016) Adaptive evolution and metabolic engineering of a cellobiose- and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb Cell Fact 15:20

    Article  CAS  Google Scholar 

  334. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  Google Scholar 

  335. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79(4):1250–1257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wittmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, J., Gießelmann, G., Hoffmann, S.L., Wittmann, C. (2016). Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2016_21

Download citation

Publish with us

Policies and ethics