Skip to main content

Defining and Controlling Exposure During In Vitro Toxicity Testing and the Potential of Passive Dosing

  • Chapter
  • First Online:
In vitro Environmental Toxicology - Concepts, Application and Assessment

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 157))

Abstract

Toxicity testing using in vitro bioassays is assuming an increasingly important role. Nevertheless, several issues remain with regard to their proper application, which mainly relate to the proper definition and control of the test chemical(s) concentrations to which the cells or tissues are exposed. This has fundamental implications for understanding the underlying relationship between the in vitro exposure regime and response, and leads to uncertainty in the resulting bioassay data. This chapter covers the definition and control of exposure of hydrophobic organic chemicals (HOCs) in in vitro bioassays aimed at measuring their toxicity. A review of the fate of HOCs in typical in vitro set-ups is followed by a discussion of how to define the test exposure. Currently applied approaches for introducing HOCs into in vitro bioassays are then related to these different definitions of test exposure. Finally, passive dosing as one possible approach for giving defined and constant dissolved concentrations of HOCs in in vitro toxicity tests is introduced, using examples taken from the literature, and how this might be better integrated into high throughput in vitro toxicity testing is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU (2006) Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

    Google Scholar 

  2. Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081

    Article  CAS  Google Scholar 

  3. Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals – a report by the transatlantic think tank for toxicology (t(4)). ALTEX 26:187–208

    Article  Google Scholar 

  4. Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12

    Article  CAS  Google Scholar 

  5. Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler JG, Kahl R, Kramer PJ, Schweinfurth H, Wollin KM (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol 82:211–236

    Article  CAS  Google Scholar 

  6. Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, Edwards S, Fowler P, Malcomber S, Nicol B, Scott A, Scott S, Sun B, Westmoreland C, White A, Zhang Q, Carmichael PL (2015) Implementing toxicity testing in the 21st century (TT21C): making safety decisions using toxicity pathways, and progress in a prototype risk assessment. Toxicology 332:102–111

    Article  CAS  Google Scholar 

  7. National Research Council of the National Academy of Sciences (NRC) (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies, Washington

    Google Scholar 

  8. EU (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products

    Google Scholar 

  9. Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraish F, Snyder S, Su G, Tang JYM, van der Burg B, van der Linden SC, Werner I, Westerheide SD, Wong CKC, Yang M, Yeung BHY, Zhang X, Leusch FDL (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940–1956

    Article  CAS  Google Scholar 

  10. van der Burg B, van der Linden S, Man H, Winter R, Jonker L, van Vugt-Lussenburg B, Brouwer A (2013) A panel of quantitative Calux® reporter gene assays for reliable high-throughput toxicity screening of chemicals and complex mixtures. In: Steinberg P (ed) High-throughput screening methods in toxicity testing. Wiley, Hoboken

    Google Scholar 

  11. Wilk-Zasadna I, Bernasconi C, Pelkonen O, Coecke S (2015) Biotransformation in vitro: an essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology 332:8–19

    Article  CAS  Google Scholar 

  12. Escher BI, van Daele C, Dutt M, Tang JYM, Altenburger R (2013) Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values. Environ Sci Technol 47:7002–7011

    CAS  Google Scholar 

  13. Dayeh VR, Schirmer K, Bols NC (2002) Applying whole-water samples directly to fish cell cultures in order to evaluate the toxicity of industrial effluent. Water Res 36:3727–3738

    Article  CAS  Google Scholar 

  14. Johnson BT (2005) Microtox® acute toxicity test. In: Small-scale freshwater toxicity investigations, volume 1, toxicity test methods. Springer, Dordrecht, pp 69–105

    Chapter  Google Scholar 

  15. BRD (2005) Abwasserabgabengesetz in der Fassung der Bekanntmachung vom 18. Januar 2005 (BGBl. I S. 114), das zuletzt durch Artikel 2 der Verordnung vom 2. September 2014 (BGBl. I S. 1474) geändert worden ist

    Google Scholar 

  16. Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332:30–40

    Article  CAS  Google Scholar 

  17. Heringa MB, Schreurs RHMM, Busser F, van der Saag PT, van der Burg B, Hermens JLM (2004) Toward more useful in vitro toxicity data with measured free concentrations. Environ Sci Technol 38:6263–6270

    Article  CAS  Google Scholar 

  18. Kramer NI, Busser FJM, Oosterwijk MTT, Schirmer K, Escher BI, Hermens JLM (2010) Development of a partition-controlled dosing system for cell assays. Chem Res Toxicol 23:1806–1814

    Article  CAS  Google Scholar 

  19. Kramer NI, Krismartina M, Rico-Rico A, Blaauboer BJ, Hermens JLM (2012) Quantifying processes determining the free concentration of phenanthrene in basal cytotoxicity assays. Chem Res Toxicol 25:436–445

    Article  CAS  Google Scholar 

  20. Schreiber R, Altenburger R, Paschke A, Kuster E (2008) How to deal with lipophilic and volatile organic substances in microtiter plate assays. Environ Toxicol Chem 27:1676–1682

    Article  CAS  Google Scholar 

  21. Smith KEC, Oostingh GJ, Mayer P (2010) Passive dosing for producing defined and constant exposure of hydrophobic organic compounds during in vitro toxicity tests. Chem Res Toxicol 23:55–65

    Article  CAS  Google Scholar 

  22. Gülden M, Schreiner J, Seibert H (2015) In vitro toxicity testing with microplate cell cultures: impact of cell binding. Toxicology 332:41–51

    Article  Google Scholar 

  23. Stalter D, Dutt M, Escher BI (2013) Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products. Chem Res Toxicol 26:1605–1614

    Article  CAS  Google Scholar 

  24. Escher BI, Hermens JLM (2004) Internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455A–462A

    Article  CAS  Google Scholar 

  25. Endo SGK (2011) Serum albumin binding of structurally diverse neutral organic compounds: data and models. Chem Res Toxicol 24:2293–2301

    Article  CAS  Google Scholar 

  26. Ku WW, Bigger A, Brambilla G, Glatt H, Gocke E, Guzzie PJ, Hakura A, Honma M, Martus HJ, Obach RS, Roberts S (2007) Strategy for genotoxicity testing – metabolic considerations. Mutat Res Genet Toxicol Environ Mutagen 627:59–77

    Article  CAS  Google Scholar 

  27. Gülden M, Seibert H (2003) In vitro–in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. Toxicology 189:211–222

    Article  Google Scholar 

  28. Tanneberger K, Rico-Rico A, Kramer NI, Busser FJM, Hermens JLM, Schirmer K (2010) Effects of solvents and dosing procedure on chemical toxicity in cell-based in vitro assays. Environ Sci Technol 44:4775–4781

    Article  CAS  Google Scholar 

  29. Booij P, Lamoree MH, Leonards PEG, Cenijn PH, Klamer HJC, van Vliet LA, Akerman J, Legler J (2011) Development of a polydimethylsiloxane film-based passive dosing method in the in vitro DR-Calux® assay. Environ Toxicol Chem 30:898–904

    Article  CAS  Google Scholar 

  30. Smith KEC, Jeong Y, Kim J (2015) Passive dosing versus solvent spiking for controlling and maintaining hydrophobic organic compound exposure in the Microtox® assay. Chemosphere 139:174–180

    Article  CAS  Google Scholar 

  31. Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  32. Poirier A, Lave T, Portmann R, Brun ME, Senner F, Kansy M, Grimm HP, Funk C (2008) Design, data analysis, and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model. Drug Metab Dispos 36:2434–2444

    Article  CAS  Google Scholar 

  33. Brinkmann M, Preuss TG, Hollert H (2015) Advancing in vitro-in vivo extrapolations of mechanism-specific toxicity data through toxicokinetic modeling. Adv Biochem Eng Biotechnol. doi:10.1007/10_2015_5015

    Google Scholar 

  34. Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc B Biol Sci 127:387–404

    Article  CAS  Google Scholar 

  35. Mackay D, Arnot JA, Celsie A, Orazietti A, Parnis JM (2014) QSARs for aquatic toxicity: celebrating, extending and displaying the pioneering contributions of Ferguson, Konemann and Veith. SAR QSAR Environ Res 25:343–355

    Article  CAS  Google Scholar 

  36. Mackay D, Arnot JA, Petkova EP, Wallace KB, Call DJ, Brooke LT, Veith GD (2009) The physicochemical basis of QSARs for baseline toxicity. SAR QSAR Environ Res 20:393–414

    Article  CAS  Google Scholar 

  37. Mayer P, Reichenberg F (2006) Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ Toxicol Chem 25:2639–2644

    Article  CAS  Google Scholar 

  38. Schmidt SN, Smith KEC, Holmstrup M, Mayer P (2013) Uptake and toxicity of polycyclic aromatic hydrocarbons in terrestrial springtails studying bioconcentration kinetics and linking toxicity to chemical activity. Environ Toxicol Chem 32:361–369

    Article  CAS  Google Scholar 

  39. Smith KEC, Schmidt SN, Dom N, Blust R, Holmstrup M, Mayer P (2013) Baseline toxic mixtures of non-toxic chemicals: “Solubility Addition” increases exposure for solid hydrophobic chemicals. Environ Sci Technol 47:2026–2033

    Article  CAS  Google Scholar 

  40. van Wezel AP, Opperhuizen A (1995) Narcosis due to environmental pollutants in aquatic organisms – residue-based toxicity, mechanisms, and membrane burdens. Crit Rev Toxicol 25:255–279

    Article  Google Scholar 

  41. Flaten GE, Luthman K, Vaaskog T, Brandl M (2008) Drug permeability across a phospholipid vesicle-based barrier – 4. The effect of tensides, co-solvents and pH changes on barrier integrity and on drug permeability. Eur J Pharm Sci 34:173–180

    Article  CAS  Google Scholar 

  42. Kais B, Schneider KE, Keiter S, Henn K, Ackermann C, Braunbeck T (2013) DMSO modifies the permeability of the zebrafish (Danio rerio) chorion – implications for the fish embryo test (FET). Aquat Toxicol 140:229–238

    Article  Google Scholar 

  43. Lammer E, Kamp HG, Hisgen V, Koch M, Reinhard D, Salinas ER, Wendler K, Zok S, Braunbeck T (2009) Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicol In Vitro 23:1436–1442

    Article  CAS  Google Scholar 

  44. van der Valk J, Brunner D, De Smet K, Svenningsen AF, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol in Vitro 24:1053–1063

    Article  Google Scholar 

  45. Bandow N, Altenburger R, Lübcke-von Varel U, Paschke A, Streck G, Brack W (2009) Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. Environ Sci Technol 43:3891–3896

    Article  CAS  Google Scholar 

  46. Bandow N, Altenburger R, Streck G, Brack W (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349

    Article  CAS  Google Scholar 

  47. Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA, Klamer HJC (2001) Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films. Environ Sci Technol 35:4097–4102

    Article  CAS  Google Scholar 

  48. Kiparissis Y, Akhtar P, Hodson PV, Brown RS (2003) Partition-controlled delivery of toxicants: a novel in vivo approach for embryo toxicity testing. Environ Sci Technol 37:2262–2266

    Article  CAS  Google Scholar 

  49. Mayer P, Holmstrup M (2008) Passive dosing of soil invertebrates with polycyclic aromatic hydrocarbons: limited chemical activity explains toxicity cutoff. Environ Sci Technol 42:7516–7521

    Article  CAS  Google Scholar 

  50. Mayer P, Wernsing J, Tolls J, de Maagd PGJ, Sijm D (1999) Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase. Environ Sci Technol 33:2284–2290

    Article  CAS  Google Scholar 

  51. Turcotte D, Akhtar P, Bowerman M, Kiparissis Y, Brown RS, Hodson PV (2011) Measuring the toxicity of alkyl-phenanthrenes to early life stages of medaka (Oryzia latipes) using partition-controlled delivery. Environ Toxicol Chem 30:487–495

    Article  CAS  Google Scholar 

  52. Smith KEC, Dom N, Blust R, Mayer P (2010) Controlling and maintaining exposure of hydrophobic organic compounds in aquatic toxicity tests by passive dosing. Aquat Toxicol 98:15–24

    Article  CAS  Google Scholar 

  53. Smith KEC, Heringa MB, Uytewaal M, Mayer P (2013) The dosing determines mutagenicity of hydrophobic compounds in the Ames II assay with metabolic transformation: passive dosing versus solvent spiking. Mutat Res Genet Toxicol Environ Mutagen 750:12–18

    Article  CAS  Google Scholar 

  54. Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351

    Article  CAS  Google Scholar 

  55. Mayer P, Vaes WHJ, Hermens JLM (2000) Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: high partition coefficients and fluorescence microscopy images. Anal Chem 72:459–464

    Article  CAS  Google Scholar 

  56. Kwon JH, Wuethrich T, Mayer P, Escher BI (2007) Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly(dimethylsiloxane) and water. Anal Chem 79:6816–6822

    Article  CAS  Google Scholar 

  57. Difilippo ELERP (2010) Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44:6917–6925

    Article  CAS  Google Scholar 

  58. Endo S, Droge STJ, Goss KU (2011) Polyparameter linear free energy models for polyacrylate fiber-water partition coefficients to evaluate the efficiency of solid-phase microextraction. Anal Chem 83:1394–1400

    Article  CAS  Google Scholar 

  59. Smith KEC, Rein A, Trapp S, Mayer P, Karlson UG (2012) Dynamic passive dosing for studying the biotransformation of hydrophobic organic chemicals: microbial degradation as an example. Environ Sci Technol 46:4852–4860

    Article  CAS  Google Scholar 

  60. Oostingh GJ, Smith KEC, Tischler U, Radauer-Preiml I, Mayer P (2015) Differential immunomodulatory responses to nine polycyclic aromatic hydrocarbons applied by passive dosing. Toxicol In Vitro 29:345–351

    Article  CAS  Google Scholar 

  61. Reichenberg F, Smedes F, Jonsson JA, Mayer P (2008) Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials. Chem Cent J 2:10

    Article  Google Scholar 

  62. Booij K, Smedes F, van Weerlee EM (2002) Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere 46:1157–1161

    Article  CAS  Google Scholar 

  63. Seiler TB, Best N, Fernqvist MM, Hercht H, Smith KEC, Braunbeck T, Mayer P, Hollert H (2014) PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing. Chemosphere 112:77–84

    Article  CAS  Google Scholar 

  64. Breitholtz M, Ricklund N, Bengtsson BE, Persson NJ (2007) Silica gel as a particulate carrier of poorly water-soluble substances in aquatic toxicity testing. Aquat Toxicol 82:251–264

    Article  CAS  Google Scholar 

  65. Kwon HC, Roh JY, Lim D, Choi J, Kwon JH (2011) Maintaining the constant exposure condition for an acute Caenorhabditis elegans mortality test using passive dosing. Environ Health Toxicol 26:e2011015

    Article  Google Scholar 

  66. Roh JY, Lee H, Kwon JH (2014) Changes in the expression of cyp35a family genes in the soil nematode Caenorhabditis elegans under controlled exposure to chlorpyrifos using passive dosing. Environ Sci Technol 48:10475–10481

    Article  CAS  Google Scholar 

  67. Butler JD, Parkerton TF, Letinski DJ, Bragin GE, Lampi MA, Cooper KR (2013) A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish. Sci Total Environ 463:952–958

    Article  Google Scholar 

  68. Agbo SO, Keinanen M, Keski-Saari S, Lemmetyinen J, Akkanen J, Leppänen MT, Mayer P, Kukkonen JVK (2013) Changes in Lumbriculus variegatus metabolites under hypoxic exposure to benzo(a)pyrene, chlorpyrifos and pentachlorophenol: Consequences on biotransformation. Chemosphere 93:302–310

    Article  CAS  Google Scholar 

  69. Schmidt SN, Holmstrup M, Damgaard C, Mayer P (2014) Simultaneous control of phenanthrene and drought by dual exposure system: the degree of synergistic interactions in springtails was exposure dependent. Environ Sci Technol 48:9737–9744

    Article  CAS  Google Scholar 

  70. Zhang X, Xia X, Li H, Zhu B, Dong J (2015) Bioavailability of pyrene associated with suspended sediment of different grain sizes to Daphnia magna as investigated by passive dosing devices. Environ Sci Technol 49:10127–10135

    Article  CAS  Google Scholar 

  71. Gerofke A, Komp P, McLachlan MS (2004) Stir bar contamination: a method to establish and maintain constant water concentrations of poorly water-soluble chemicals in bioconcentration experiments. Water Res 38:3411–3419

    Article  CAS  Google Scholar 

  72. Heinis LJ, Highland TL, Mount DR (2004) Method for testing the aquatic toxicity of sediment extracts for use in identifying organic toxicants in sediments. Environ Sci Technol 38:6256–6262

    Article  CAS  Google Scholar 

  73. Bopp SK, Bols NC, Schirmer K (2006) Development of a solvent-free, solid-phase in vitro bioassay using vertebrate cells. Environ Toxicol Chem 25:1390–1398

    Article  CAS  Google Scholar 

  74. Bopp SK, McLachlan MS, Schirmer K (2007) Passive sampler for combined chemical and toxicological long-term monitoring of groundwater: the ceramic toximeter. Environ Sci Technol 41:6868–6876

    Article  CAS  Google Scholar 

  75. Engraff M, Solere C, Smith KEC, Mayer P, Dahllof I (2011) Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: linking toxic effects to chemical activity. Aquat Toxicol 102:142–149

    Article  CAS  Google Scholar 

  76. Liu FF, Escher BI, Were S, Duffy L, Ng JC (2014) Mixture effects of benzene, toluene, ethylbenzene, and xylenes (BTEX) on lung carcinoma cells via a hanging drop air exposure system. Chem Res Toxicol 27:952–959

    Article  CAS  Google Scholar 

  77. Rojo-Nieto E, Smith KEC, Perales JA, Mayer P (2012) Recreating the seawater mixture composition of HOCs in toxicity tests with Artemia franciscana by passive dosing. Aquat Toxicol 120:27–34

    Article  Google Scholar 

  78. Schmidt SN, Holmstrup M, Smith KEC, Mayer P (2013) Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units. Environ Sci Technol 47:7020–7027

    CAS  Google Scholar 

  79. Bougeard C, Gallampois C, Brack W (2011) Passive dosing: an approach to control mutagen exposure in the Ames fluctuation test. Chemosphere 83:409–414

    Article  CAS  Google Scholar 

  80. Lee YS, Otton SV, Campbell DA, Moore MM, Kennedy CJ, Gobas FAPC (2012) Measuring in vitro biotransformation rates of super hydrophobic chemicals in rat liver S9 fractions using thin-film sorbent-phase dosing. Environ Sci Technol 46:410–418

    Article  CAS  Google Scholar 

  81. Lombard NJ, Ghosh U, Kjellerup BV, Sowers KR (2014) Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environ Sci Technol 48:4353–4360

    Article  CAS  Google Scholar 

  82. Lee YS, Lee DHY, Delafoulhouze M, Otton SV, Moore MM, Kennedy CJ, Gobas FAPC (2014) In vitro biotransformation rates in fish liver S9: effect of dosing techniques. Environ Toxicol Chem 33:1885–1893

    Article  CAS  Google Scholar 

  83. Tejeda-Agredano MC, Mayer P, Ortega-Calvo JJ (2014) The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ Pollut 184:435–442

    Article  CAS  Google Scholar 

  84. Jahnke A, McLachlan MS, Mayer P (2008) Equilibrium sampling: partitioning of organochlorine compounds from lipids into polydimethylsiloxane. Chemosphere 73:1575–1581

    Article  CAS  Google Scholar 

  85. Jahnke A, Witt G, Schäfer S, Haase N, Escher BI (2015) Combining passive sampling with toxicological characterization of complex mixtures of pollutants from the aquatic environment. Adv Biochem Eng Biotechnol. doi:10.1007/10_2015_5014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian E. C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smith, K.E.C., Schäfer, S. (2016). Defining and Controlling Exposure During In Vitro Toxicity Testing and the Potential of Passive Dosing. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2015_5017

Download citation

Publish with us

Policies and ethics