Skip to main content

Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment

  • Chapter
  • First Online:
In vitro Environmental Toxicology - Concepts, Application and Assessment

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 157))

Abstract

The combination of polymer-based passive sampling to collect complex environmental mixtures of pollutants, the transfer of these mixtures into bioassays, and their related toxicological characterization is still in its infancy. However, this approach has considerable potential to improve environmental hazard and risk assessment for two reasons. First, the passive sampler collects a broad range of chemicals representing the fraction of compounds available for diffusion and (bio)uptake, excluding a large part of the matrix; thus, extensive sample cleanup which could discriminate certain compounds can be avoided. Second, the toxicological characterization of samples using bioassays is complementary to chemical (target) analysis within environmental monitoring because it captures all chemicals exerting the same mode of toxic action and acting jointly in mixtures, thus providing a comprehensive picture of their overall combined effects. The scientific literature describes a range of examples from the water phase where passive sampling is usually carried out in the kinetic uptake regime for most chemicals although some may already have reached equilibrium. The composition of the chemical mixture changes from the water phase to the passive sampling material because of kinetic effects and polymer/water partition coefficients which depend on the chemicals’ hydrophobicity. In contrast, only a few applications in sediment and biota have been described, but amongst these some pioneering studies have demonstrated the feasibility and potential of this combined approach. This chapter gives an overview of what has been carried out in this research area, focusing on opportunities and challenges, and points out desirable future developments with a focus on the importance of choosing a suitable combination of sampling and dosing to transfer (or re-establish) the environmental mixture into the bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    POCIS “pharmaceuticals”: OASIS HLB as sorbent; POCIS “pesticides”: triphasic adsorbent mixture of hydroxylated polystyrene-divinylbenzene resin and a carbonaceous sorbent dispersed on S-X3 biobeads

References

  1. Escher B, Leusch F (2012) Bioanalytical tools in water quality assessment. IWA, London

    Google Scholar 

  2. Jahnke A, Mayer P, Schäfer S, Witt G, Haase N, Escher BI (2016) Strategies for transferring mixtures of organic contaminants from aquatic environments into bioassays. Environ Sci Technol. doi:10.1021/acs.est.5b04687

    Google Scholar 

  3. Mayer P, Tolls J, Hermens JLM, Mackay D (2003) Equilibrium sampling devices: an emerging strategy for monitoring exposure to hydrophobic organic chemicals. Environ Sci Technol 37:184A–191A

    Article  Google Scholar 

  4. Claessens M, Monteyne E, Wille K, Vanhaecke L, Roose P, Janssen CR (2015) Passive sampling reversed: coupling passive field sampling with passive lab dosing to assess the ecotoxicity of mixtures present in the marine environment. Mar Pollut Bull 93:9–19

    Article  CAS  Google Scholar 

  5. Jahnke A, Witt G, Schäfer S, Haase N, Escher BI (2015) Combining passive sampling with toxicological characterization of complex mixtures of pollutants from the aquatic environment. Adv Biochem Eng Biotechnol. doi:10.1007/10_2015_5014

    Google Scholar 

  6. Mills GA, Fones GR, Booij K, Greenwood R (2011) Passive sampling technologies. In: Quevauviller P, Roose P, Varreet G (eds) Chemical marine monitoring: policy framework and analytical trends. Wiley, Hoboken

    Google Scholar 

  7. ter Laak TL, ter Bekke MA, Hermens JLM (2009) Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environ Sci Technol 43:7212–7217

    Article  CAS  Google Scholar 

  8. Jahnke A, Mayer P, McLachlan MS, Wickstrom H, Gilbert D, MacLeod M (2014) Silicone passive equilibrium samplers as “chemometers” in eels and sediments of a Swedish lake. Environ Sci Process Impacts 16:464–472

    Article  CAS  Google Scholar 

  9. Leslie HA, Oosthoek AJP, Busser FJM, Kraak MHS, Hermens JLM (2002) Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environ Toxicol Chem 21:229–234

    Article  CAS  Google Scholar 

  10. Escher BI, Lawrence M, Macova M, Mueller JF, Poussade Y, Robillot C, Roux A, Gernjak W (2011) Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools. Environ Sci Technol 45:5387–5394

    Article  CAS  Google Scholar 

  11. Armitage JM, Wania F, Arnot JA (2014) Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol 48:9770–9779

    Article  CAS  Google Scholar 

  12. Heringa MB, Schreurs R, Busser F, Van Der Saag PT, Van Der Burg B, Hermens JLM (2004) Toward more useful in vitro toxicity data with measured free concentrations. Environ Sci Technol 38:6263–6270

    Article  CAS  Google Scholar 

  13. Wagner M, Vermeirssen ELM, Buchinger S, Behr M, Magdeburg A, Oehlmann J (2013) Deriving bio-equivalents from in vitro bioassays: assessment of existing uncertainties and strategies to improve accuracy and reporting. Environ Toxicol Chem 32:1906–1917

    Article  CAS  Google Scholar 

  14. Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843

    Article  CAS  Google Scholar 

  15. Sabaliunas D, Lazutka J, Sabaliuniene I, Sodergren A (1998) Use of semipermeable membrane devices for studying effects of organic pollutants: comparison of pesticide uptake by semipermeable membrane devices and mussels. Environ Toxicol Chem 17:1815–1824

    Article  CAS  Google Scholar 

  16. Sabaliunas D, Ellington J, Sabaliuniene I (1999) Screening bioavailable hydrophobic toxicants in surface waters with semipermeable membrane devices: role of inherent oleic acid in toxicity evaluations. Ecotoxicol Environ Saf 44:160–167

    Article  CAS  Google Scholar 

  17. Rastall AC, Getting D, Goddard J, Roberts DR, Erdinger L (2006) A biomimetic approach to the detection and identification of estrogen receptor agonists in surface waters using semipermeable membrane devices (SPMDs) and bioassay-directed chemical analysis. Environ Sci Pollut Res Int 13:256–267

    Article  CAS  Google Scholar 

  18. Petty JD, Huckins JN, Alvarez DA, Brumbaugh WG, Cranor WL, Gale RW, Rastall AC, Jones-Lepp TL, Leiker TJ, Rostad CE, Furlong ET (2004) A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants. Chemosphere 54:695–705

    Article  CAS  Google Scholar 

  19. Vermeirssen ELM, Hollender J, Bramaz N, van der Voet J, Escher BI (2010) Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environ Toxicol Chem 29:2575–2582

    Article  CAS  Google Scholar 

  20. Creusot N, Kinani S, Balaguer P, Tapie N, LeMenach K, Maillot-Marechal E, Porcher JM, Budzinski H, Ait-Aissa S (2010) Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples. Anal Bioanal Chem 396:569–583

    Article  CAS  Google Scholar 

  21. Tapie N, Devier MH, Soulier C, Creusot N, Le Menach K, Ait-Aissa S, Vrana B, Budzinski H (2011) Passive samplers for chemical substance monitoring and associated toxicity assessment in water. Water Sci Technol 63:2418–2426

    Article  CAS  Google Scholar 

  22. Creusot N, Ait-Aissa S, Tapie N, Pardon P, Brion F, Sanchez W, Thybaud E, Porcher J-M, Budzinski H (2014) Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling. Environ Sci Technol 48:3649–3657

    Article  CAS  Google Scholar 

  23. Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ Pollut 159:735–741

    Article  CAS  Google Scholar 

  24. Alvarez DA, Shappell NW, Billey LO, Bermudez DS, Wilson VS, Kolpin DW, Perkins SD, Evans N, Foreman WT, Gray JL, Shipitalo MJ, Meyer MT (2013) Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations. Water Res 47:3347–3363

    Article  CAS  Google Scholar 

  25. Vermeirssen ELM, Suter MJF, Burkhardt-Holm P (2006) Estrogenicity patterns in the Swiss midland river Lutzelmurg in relation to treated domestic sewage effluent discharges and hydrology. Environ Toxicol Chem 25:2413–2422

    Article  CAS  Google Scholar 

  26. Burki R, Vermeirssen ELM, Korner O, Joris C, Burkhardt-Holm P, Segner H (2006) Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environ Toxicol Chem 25:2077–2086

    Article  CAS  Google Scholar 

  27. Vermeirssen ELM, Bramaz N, Hollender J, Singer H, Escher BI (2009) Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides - evaluation of three Chemcatcher (TM) configurations. Water Res 43:903–914

    Article  CAS  Google Scholar 

  28. Balaam JL, Grover D, Johnson AC, Jurgens M, Readman J, Smith AJ, White S, Williams R, Zhou JL (2010) The use of modelling to predict levels of estrogens in a river catchment: How does modelled data compare with chemical analysis and in vitro yeast assay results? Sci Total Environ 408:4826–4832

    Article  CAS  Google Scholar 

  29. Vermeirssen ELM, Körner O, Schönenberger R, Suter MJF, Burkhardt-Holm P (2005) Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. Environ Sci Technol 39:8191–8198

    Article  CAS  Google Scholar 

  30. Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM (2009) Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses. Environ Pollut 157:2716–2721

    Article  CAS  Google Scholar 

  31. Jarosova B, Blaha L, Vrana B, Randak T, Grabic R, Giesy JP, Hilscherova K (2012) Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environ Int 45:22–31

    Article  CAS  Google Scholar 

  32. Alvarez DA, Cranor WL, Perkins SD, Clark RC, Smith SB (2008) Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers. J Environ Qual 37:1024–1033

    Article  CAS  Google Scholar 

  33. Harman C, Farmen E, Tollefsen KE (2010) Monitoring North Sea oil production discharges using passive sampling devices coupled with in vitro bioassay techniques. J Environ Monit 12:1699–1708

    Article  CAS  Google Scholar 

  34. Zounkova R, Jalova V, Janisova M, Ocelka T, Jurcikova J, Halirova J, Giesy JP, Hilscherova K (2014) In situ effects of urban river pollution on the mudsnail Potamopyrgus antipodarum as part of an integrated assessment. Aquat Toxicol 150:83–92

    Article  CAS  Google Scholar 

  35. Creusot N, Tapie N, Piccini B, Balaguer P, Porcher JM, Budzinski H, Ait-Aissa S (2013) Distribution of steroid- and dioxin-like activities between sediments, POCIS and SPMD in a French river subject to mixed pressures. Environ Sci Pollut Res Int 20:2784–2794

    Article  CAS  Google Scholar 

  36. Jálová V, Jarosova B, Blaha L, Giesy JP, Ocelka T, Grabic R, Jurcikova J, Vrana B, Hilscherova K (2013) Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environ Int 59:372–383

    Article  CAS  Google Scholar 

  37. Booij P, Sjollema SB, Leonards PEG, de Voogt P, Stroomberg GJ, Vethaak AD, Lamoree MH (2013) Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers. Chemosphere 93:107–114

    Article  CAS  Google Scholar 

  38. Liscio C, Abdul-Sada A, Al-Salhi R, Ramsey MH, Hill EM (2014) Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses. Water Res 57:258–269

    Article  CAS  Google Scholar 

  39. Tan BLL, Hawker DW, Muller JF, Leusch FDL, Tremblay LA, Chapman HF (2007) Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ Int 33:654–669

    Article  CAS  Google Scholar 

  40. Vermeirssen ELM, Asmin J, Escher BI, Kwon JH, Steimen I, Hollender J (2008) The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Empore (TM) SDB-RPS disks. J Environ Monit 10:119–128

    Article  CAS  Google Scholar 

  41. Muller R, Schreiber U, Escher BI, Quayle P, Nash SMB, Mueller JF (2008) Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci Total Environ 401:51–59

    Article  CAS  Google Scholar 

  42. Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF (2006) Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (maxi-imaging-PAM). J Environ Monit 8:456–464

    Article  CAS  Google Scholar 

  43. Shaw M, Negri A, Fabricius K, Mueller JF (2009) Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef. Aquat Toxicol 95:108–116

    Article  CAS  Google Scholar 

  44. Muller R, Tang JYM, Thierb R, Mueller JF (2007) Combining passive sampling and toxicity testing for evaluation of mixtures of polar organic chemicals in sewage treatment plant effluent. J Environ Monit 9:104–109

    CAS  Google Scholar 

  45. Emelogu ES, Pollard P, Dymond P, Robinson CD, Webster L, McKenzie C, Dobson J, Bresnan E, Moffat CF (2013) Occurrence and potential combined toxicity of dissolved organic contaminants in the Forth estuary and Firth of Forth Scotland assessed using passive samplers and an algal toxicity test. Sci Total Environ 461:230–239

    Article  CAS  Google Scholar 

  46. Emelogu ES, Pollard P, Robinson CD, Smedes F, Webster L, Oliver IW, McKenzie C, Seiler TB, Hollert H, Moffat CF (2013) Investigating the significance of dissolved organic contaminants in aquatic environments: coupling passive sampling with in vitro bioassays. Chemosphere 90:210–219

    Article  CAS  Google Scholar 

  47. Emelogu ES, Seiler T-B, Pollard P, Robinson CD, Webster L, McKenzie C, Heger S, Hollert H, Bresnan E, Best J, Moffat CF (2014) Evaluations of combined zebrafish (Danio rerio) embryo and marine phytoplankton (Diacronema lutheri) toxicity of dissolved organic contaminants in the Ythan catchment, Scotland, UK. Environ Sci Pollut Res Int 21:5537–5546

    Article  CAS  Google Scholar 

  48. Bi HP, Rissik D, Macova M, Hearn L, Mueller JF, Escher B (2011) Recovery of a freshwater wetland from chemical contamination after an oil spill. J Environ Monit 13:713–720

    Article  CAS  Google Scholar 

  49. Allan SE, Smith BW, Tanguay RL, Anderson KA (2012) Bridging environmental mixtures and toxic effects. Environ Toxicol Chem 31:2877–2887

    Article  CAS  Google Scholar 

  50. Bopp SK, McLachlan MS, Schirmer K (2007) Passive sampler for combined chemical and toxicological long-term monitoring of groundwater: the ceramic toximeter. Environ Sci Technol 41:6868–6876

    Article  CAS  Google Scholar 

  51. Addeck A, Croes K, Van Langenhove K, Denison MS, Elhamalawy A, Elskens M, Baeyens W (2014) Time-integrated monitoring of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in urban and industrial wastewaters using a ceramic toximeter and the CALUX bioassay. Chemosphere 94:27–35

    Article  CAS  Google Scholar 

  52. Vrana B, Mills GA, Allan IJ, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. Trends Analyt Chem 24:845–868

    Article  CAS  Google Scholar 

  53. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler – a critical review. Environ Toxicol Chem 31:2724–2738

    Article  CAS  Google Scholar 

  54. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648

    Article  CAS  Google Scholar 

  55. Emelogu ES, Pollard P, Robinson CD, Webster L, McKenzie C, Napier F, Steven L, Moffat CF (2013) Identification of selected organic contaminants in streams associated with agricultural activities and comparison between autosampling and silicone rubber passive sampling. Sci Total Environ 445:261–272

    Article  CAS  Google Scholar 

  56. Booij K, Smedes F (2010) An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ Sci Technol 44:6789–6794

    Article  CAS  Google Scholar 

  57. Smedes F, van Vliet LA, Booij K (2013) Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ Sci Technol 47:510–517

    Article  CAS  Google Scholar 

  58. Booij K, Smedes F, van Weerlee EM, Honkoop PJC (2006) Environmental monitoring of hydrophobic organic contaminants: the case of mussels versus semipermeable membrane devices. Environ Sci Technol 40:3893–3900

    Article  CAS  Google Scholar 

  59. Bopp SK, Bols NC, Schirmer K (2006) Development of a solvent-free, solid-phase in vitro bioassay using vertebrate cells. Environ Toxicol Chem 25:1390–1398

    Article  CAS  Google Scholar 

  60. Schirmer K, Bopp S, Gehrhardt J (2007) Use of passive sampling devices in toxicity assessment of groundwater. In: Greenwood R, Mills G, Vrana B (eds) Passive sampling techniques in environmental monitoring. Wilson & Wilson’s, Amsterdam, pp 393–405

    Chapter  Google Scholar 

  61. Mayer P, Parkerton TF, Adams RG, Cargill JG, Gan J, Gouin T, Gschwend PM, Hawthorne SB, Helm P, Witt G, You J, Escher BI (2014) Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr Environ Assess Manag 10:197–209

    Article  CAS  Google Scholar 

  62. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  63. Lydy MJ, Landrum PF, Oen AMP, Allinson M, Smedes F, Harwood AD, Li H, Maruya KA, Liu J (2014) Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr Environ Assess Manag 10:167–178

    Article  CAS  Google Scholar 

  64. Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2009) Development and evaluation of reverse polyethylene samplers for marine phase II whole-sediment toxicity identification evaluations. Environ Toxicol Chem 28:749–758

    Article  CAS  Google Scholar 

  65. Bandow N, Altenburger R, Streck G, Brack W (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349

    Article  CAS  Google Scholar 

  66. Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2011) Limitations of reverse polyethylene samplers (RePES) for evaluating toxicity of field contaminated sediments. Chemosphere 83:247–254

    Article  CAS  Google Scholar 

  67. Zielke H, Seiler TB, Niebergall S, Leist E, Brinkmann M, Spira D, Streck G, Brack W, Feiler U, Braunbeck T, Hollert H (2011) The impact of extraction methodologies on the toxicity of sediments in the zebrafish (Danio rerio) embryo test. J Soil Sediment 11:352–363

    Article  CAS  Google Scholar 

  68. Burton GA Jr, Rosen G, Chadwick DB, Greenberg MS, Taulbee WK, Lotufo GR, Reible DD (2012) A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: system description and proof of concept. Environ Pollut 162:449–456

    Article  CAS  Google Scholar 

  69. Li J-Y, Tang JYM, Jin L, Escher BI (2013) Understanding bioavailability and toxicity of sediment-associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment. Environ Toxicol Chem 32:2888–2896

    Article  CAS  Google Scholar 

  70. Witt G, Niehus NC, Konopka KF, Mayer P, Floeter C (2015) Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum. SETAC Europe 25th annual meeting, Barcelona, Spain

    Google Scholar 

  71. Lorks J (2010) Passive dosing of extracts using PDMS layers in the fish embryo test as an alternative to direct contact exposure with marine Baltic Sea sediments. Diploma thesis, RWTH Aachen

    Google Scholar 

  72. Kupryianchyk D, Reichman EP, Rakowska MI, Peeters ETHM, Grotenhuis JTC, Koelmans AA (2011) Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments. Environ Sci Technol 45:8567–8574

    Article  CAS  Google Scholar 

  73. Xu Y, Spurlock F, Wang Z, Gan J (2007) Comparison of five methods for measuring sediment toxicity of hydrophobic cantaminants. Environ Sci Technol 41:8394–8399

    Article  CAS  Google Scholar 

  74. Harwood AD, Landrum PF, Lydy MJ (2013) Bioavailability-based toxicity endpoints of bifenthrin for Hyalella azteca and Chironomus dilutus. Chemosphere 90:1117–1122

    Article  CAS  Google Scholar 

  75. Harwood AD, Landrum PF, Weston DP, Lydy MJ (2013) Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments. Environ Pollut 173:47–51

    Article  CAS  Google Scholar 

  76. Neale PA, Antony A, Bartkow ME, Farre MJ, Heitz A, Kristiana I, Tang JYM, Escher BI (2012) Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant. Environ Sci Technol 46:10317–10325

    CAS  Google Scholar 

  77. Ding Y, Landrum PF, You J, Lydy MJ (2013) Assessing bioavailability and toxicity of permethrin and DDT in sediment using matrix solid phase microextraction. Ecotoxicology 22:109–117

    Article  CAS  Google Scholar 

  78. Hawthorne SB, Azzolina NA, Neuhauser EF, Kreitinger JP (2007) Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to Hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and pore water concentrations. Environ Sci Technol 41:6297–6304

    Article  CAS  Google Scholar 

  79. Bowen AT, Conder JM, La Point TW (2006) Solid phase microextraction of aminodinitrotoluenes in tissue. Chemosphere 63:58–63

    Article  CAS  Google Scholar 

  80. Conder JM, La Point TW, Steevens JA, Lotufo GR (2004) Recommendations for the assessment of TNT toxicity in sediment. Environ Toxicol Chem 23:141–149

    Article  CAS  Google Scholar 

  81. Kreitinger JP, Neuhauser EF, Doherty FG, Hawthorne SB (2007) Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. Environ Toxicol Chem 26:1146–1157

    Article  CAS  Google Scholar 

  82. Paumen ML, Stol P, Ter Laak TL, Kraak MHS, van Gestel CAM, Admiraal W (2008) Chronic exposure of the oligochaete Lumbriculus variegatus to polycyclic aromatic compounds (PACs): bioavailability and effects on reproduction. Environ Sci Technol 42:3434–3440

    Article  CAS  Google Scholar 

  83. Pang J, Sun B, Li H, Mehler WT, You J (2012) Influence of bioturbation on bioavailability and toxicity of PAHs in sediment from an electronic waste recycling site in South China. Ecotoxicol Environ Saf 84:227–233

    Article  CAS  Google Scholar 

  84. Arp HPH, Azzolina NA, Cornelissen G, Hawthorne SB (2011) Predicting pore water APA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content. Environ Sci Technol 45:5139–5146

    Article  CAS  Google Scholar 

  85. Oen AMP, Janssen EML, Cornelissen G, Breedveld GD, Eek E, Luthy RG (2011) In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ Sci Technol 45:4053–4059

    Article  CAS  Google Scholar 

  86. Cornelissen G, Wiberg K, Broman D, Arp HPH, Persson Y, Sundqvist K, Jonsson P (2008) Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ Sci Technol 42:8733–8739

    Article  CAS  Google Scholar 

  87. Jahnke A, Mayer P, McLachlan MS (2012) Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ Sci Technol 46:10114–10122

    Article  CAS  Google Scholar 

  88. Mäenpää K, Leppänen MT, Reichenberg F, Figueiredo K, Mayer P (2011) Equilibrium sampling of persistent and bioaccumulative compounds in soil and sediment: comparison of two approaches to determine equilibrium partitioning concentrations in lipids. Environ Sci Technol 45:1041–1047

    Article  CAS  Google Scholar 

  89. Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183

    Article  CAS  Google Scholar 

  90. Schäfer S, Antoni C, Möhlenkamp C, Claus E, Reifferscheid G, Heininger P, Mayer P (2015) Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments – linking bioaccumulation in fish to sediment contamination. Chemosphere 138:856–862

    Article  CAS  Google Scholar 

  91. Witt G, Liehr GA, Borck D, Mayer P (2009) Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere 74:522–529

    Article  CAS  Google Scholar 

  92. Maruya KA, Zeng EY, Tsukada D, Bay SM (2009) A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Environ Toxicol Chem 28:733–740

    Article  CAS  Google Scholar 

  93. Witt G, Lang SC, Ullmann D, Schaffrath G, Schulz-Bull D, Mayer P (2013) Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ Sci Technol 47:7830–7839

    Article  CAS  Google Scholar 

  94. Bao LJ, Zeng EY (2011) Passive sampling techniques for sensing freely dissolved hydrophobic organic chemicals in sediment porewater. Trends Analyt Chem 30:1422–1428

    Article  CAS  Google Scholar 

  95. Difilippo EL, Eganhouse RP (2010) Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44:6917–6925

    Article  CAS  Google Scholar 

  96. Schenker U, MacLeod M, Scheringer M, Hungerbuhler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol 39:8434–8441

    Article  CAS  Google Scholar 

  97. Schwarzenbach RPG, Philip M, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  98. Maruya KA, Landrum PF, Burgess RM, Shine JP (2012) Incorporating contaminant bioavailability into sediment quality assessment frameworks. Integr Environ Assess Manag 8:659–673

    Article  CAS  Google Scholar 

  99. Rosen G, Chadwick DB, Burton GA, Taulbee WK, Greenberg MS, Lotufo GR, Reible DD (2012) A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: integrated application to a shallow estuary. Environ Pollut 162:457–465

    Article  CAS  Google Scholar 

  100. Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to toxicity-part I. Environ Toxicol Chem 31:2159–2167

    Article  CAS  Google Scholar 

  101. Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to body residues-part II. Environ Toxicol Chem 31:2168–2174

    Article  CAS  Google Scholar 

  102. Jin L, Gaus C, van Mourik L, Escher BI (2013) Applicability of passive sampling to bioanalytical screening of bioaccumulative chemicals in marine wildlife. Environ Sci Technol 47:7982–7988

    Article  CAS  Google Scholar 

  103. Jin L, Gaus C, Escher BI (2015) Adaptive stress response pathways induced by environmental mixtures of bioaccumulative chemicals in dugongs. Environ Sci Technol 49:6963–6973

    Article  CAS  Google Scholar 

  104. Jin L, Escher BI, Limpus CJ, Gaus C (2015) Coupling passive sampling with in vitro bioassays and chemical analysis to understand combined effects of bioaccumulative chemicals in blood of marine turtles. Chemosphere 138:292–299

    Article  CAS  Google Scholar 

  105. Ossiander L, Reichenberg F, McLachlan MS, Mayer P (2008) Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere 71:1502–1510

    Article  CAS  Google Scholar 

  106. Jahnke A, Mayer P, Broman D, McLachlan MS (2009) Possibilities and limitations of equilibrium sampling using polydimethylsiloxane in fish tissue. Chemosphere 77:764–770

    Article  CAS  Google Scholar 

  107. Mäenpää K, Leppänen MT, Figueiredo K, Tigistu-Sahle F, Käkelä R (2015) Sorptive capacity of membrane lipids, storage lipids, and proteins: a preliminary study of partitioning of organochlorines in lean fish from a PCB-contaminated freshwater lake. Arch Environ Contam Toxicol 68:193–203

    Article  CAS  Google Scholar 

  108. Zhou SN, Oakes KD, Servos MR, Pawliszyn J (2008) Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Environ Sci Technol 42:6073–6079

    Article  CAS  Google Scholar 

  109. Adolfsson-Erici M, Akerman G, McLachlan MS (2012) In-vivo passive sampling to measure elimination kinetics in bioaccumulation tests. Chemosphere 88:62–68

    Article  CAS  Google Scholar 

  110. Allan IJ, Baek K, Haugen TO, Hawley KL, Hogfeldt AS, Lillicrap AD (2013) In vivo passive sampling of nonpolar contaminants in brown trout (Salmo trutta). Environ Sci Technol 47:11660–11667

    Article  CAS  Google Scholar 

  111. Mayer P, Toraeng L, Glaesner N, Joensson JA (2009) Silicone membrane equilibrator: measuring chemical activity of nonpolar chemicals with poly(dimethylsiloxane) microtubes immersed directly in tissue and lipids. Anal Chem 81:1536–1542

    Article  CAS  Google Scholar 

  112. Vrana B, Smedes F, Rusina TP, Okonski K, Allan IJ, Grung M, Hilscherova K, Novák J, Tarábek P, Slobodník J (2015) Passive sampling: chemical analysis and toxicological profiling. ICPDR report: Joint Danube Survey 3. A comprehensive analysis of Danube Water Quality

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Jahnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jahnke, A., Witt, G., Schäfer, S., Haase, N., Escher, B.I. (2016). Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment. In: Reifferscheid, G., Buchinger, S. (eds) In vitro Environmental Toxicology - Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, vol 157. Springer, Cham. https://doi.org/10.1007/10_2015_5014

Download citation

Publish with us

Policies and ethics