Skip to main content

Structure and Modification of Electrode Materials for Protein Electrochemistry

  • Chapter
  • First Online:
Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 158))

Abstract

The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eddowes MJ, Hill HAO (1977) Novel method for investigation of electrochemistry of metalloproteins – cytochrome c. J Chem Soc Chem Commun 771–772

    Google Scholar 

  2. Zhang J, Chi Q, Dong S, Wang E (1996) In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electrocatalytic property. Bioelectrochem Bioenerg 39:267–274

    Article  CAS  Google Scholar 

  3. Zhang J, Chi Q, Zhang B, Dong S, Wang E (1998) Molecular characterization of beef liver catalase by scanning tunneling microscopy. Electroanalysis 10:738–746

    Article  CAS  Google Scholar 

  4. Arrigan DWM, Bartlett PN (1998) A scanning force microscopy study of poly(phenol) films containing immobilized glucose oxidase. Biosens Bioelectron 13:293–304

    Article  CAS  Google Scholar 

  5. Lukins PB, Barton CS (2003) Evidence for spatially-coherent trans-molecular electron tunnelling through two-dimensional arrays of photosystem II core complexes. Chem Commun 602–603

    Google Scholar 

  6. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  7. de Groot MT, Merkx M, Koper MTM (2005) Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction. J Am Chem Soc 127:16224–16232

    Article  CAS  Google Scholar 

  8. de Groot MT, Merkx M, Koper MTM (2007) Evidence for heme release in layer-by-layer assemblies of myoglobin and polystyrenesulfonate on pyrolitic graphite. J Biol Inorg Chem 12:761–766

    Article  CAS  Google Scholar 

  9. Krishnan S, Schenkman JB, Rusling JF (2011) Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 115:8371–8380

    Article  CAS  Google Scholar 

  10. Armstrong FA, Bond AM, Hill HAO, Oliver BN, Psalti ISM (1989) Electrochemistry of cytochrome c plastocyanin and ferredoxin at edge and basal plane graphite electrodes interpreted via a model based on electron transfer at electroactive sites of microscopic dimensions in size. J Am Chem Soc 111:9185–9189

    Article  CAS  Google Scholar 

  11. Blanford CF, Armstrong FA (2006) The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies. J Solid State Electrochem 10:826–832

    Article  CAS  Google Scholar 

  12. Barker PD, Mauk AG (1992) pH-linked conformational regulation of a metalloprotein oxidation reduction equilibrium - electrochemical analysis of the alkaline form of cytochrome c. J Am Chem Soc 114:3619–3624

    Article  CAS  Google Scholar 

  13. Avila A, Gregory BW, Niki K, Cotton TM (2000) An electrochemical approach to investigate gated electron transfer using a physiological model system: cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes. J Phys Chem B 104:2759–2766

    Article  CAS  Google Scholar 

  14. Jeuken LJC, Armstrong FA (2001) Electrochemical origin of hysteresis in the electron-transfer reactions of adsorbed proteins: contrasting behavior of the “blue” copper protein, azurin, adsorbed on pyrolytic graphite and modified gold electrodes. J Phys Chem B 105:5271–5282

    Article  CAS  Google Scholar 

  15. Harris PJF (2004) Fullerene-related structure of commercial glassy carbons. Philos Mag 84:3159–3167

    Article  CAS  Google Scholar 

  16. Hagen WR (1989) Direct electron transfer of redox proteins at the bare glassy carbon electrode. Eur J Biochem 182:523–530

    Article  CAS  Google Scholar 

  17. Heering HA, Bulsink YBM, Hagen WR, Meyer TE (1995) Influence of charge and polarity on the redox potentials of high-potential iron-sulfur proteins: evidence for the existence of two groups. Biochemistry 34:14675–14686

    Article  CAS  Google Scholar 

  18. Johnson DL, Maxwell CJ, Losic D, Shapter JG, Martin LL (2002) The influence of promoter and of electrode material on the cyclic voltammetry of Pisum sativum plastocyanin. Bioelectrochemistry 58:137–147

    Article  CAS  Google Scholar 

  19. Butt JN et al (1991) Investigation of metal-ion uptake reactivities of 3Fe-4S clusters in proteins - voltammetry of coadsorbed ferredoxin aminocyclitol films at graphite-electrodes and spectroscopic identification of transformed clusters. J Am Chem Soc 113:6663–6670

    Article  CAS  Google Scholar 

  20. Butt JN et al (1993) Voltammetric characterization of rapid and reversible binding of an exogenous thiolate ligand at a 4Fe-4S cluster in ferredoxin-III from Desulfovibrio africanus. J Am Chem Soc 115:1413–1421

    Article  CAS  Google Scholar 

  21. Rapson TD, Kappler U, Bernhardt PV (2008) Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes. Biochim Biophys Acta Bioenerg 1777:1319–1325

    Article  CAS  Google Scholar 

  22. Forzani ES, Teijelo ML, Nart F, Calvo EJ, Solis VM (2003) Effect of the polycation nature on the structure of layer-by-layer electrostatically self-assembled multilayers of polyphenol oxidase. Biomacromolecules 4:869–879

    Article  CAS  Google Scholar 

  23. Zhou Y, Hu N, Zeng Y, Rusling JF (2002) Heme protein-clay films: direct electrochemistry and electrochemical catalysis. Langmuir 18:211–219

    Article  CAS  Google Scholar 

  24. Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF (2015) Efficient photoelectrochemical energy conversion using spinach photosystem II (PSII) in lipid multilayer films. ChemistryOpen 4:111–114

    Article  CAS  Google Scholar 

  25. Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439

    Article  CAS  Google Scholar 

  26. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2005) Time-of-flight secondary ion mass spectroscopy characterization of the covalent bonding between a carbon surface and aryl groups. Langmuir 21:280–286

    Article  CAS  Google Scholar 

  27. Combellas C, Jiang DE, Kanoufi F, Pinson J, Podvorica FI (2009) Steric effects in the reaction of aryl radicals on surfaces. Langmuir 25:286–293

    Article  CAS  Google Scholar 

  28. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2008) Sterically hindered diazonium salts for the grafting of a monolayer on metals. J Am Chem Soc 130:8576–8577

    Article  CAS  Google Scholar 

  29. Clausmeyer J, Henig J, Schuhmann W, Plumere N (2014) Scanning droplet cell for chemoselective patterning through local electroactivation of protected quinone monolayers. ChemPhysChem 15:151–156

    Article  CAS  Google Scholar 

  30. Leroux YR, Fei H, Noel JM, Roux C, Hapiot P (2010) Efficient covalent modification of a carbon surface: use of a silyl protecting group to form an active monolayer. J Am Chem Soc 132:14039–14041

    Article  CAS  Google Scholar 

  31. Guo K et al (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Tech 47:7563–7570

    CAS  Google Scholar 

  32. Picot M, Lapinsonniere L, Rothballer M, Barriere F (2011) Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens Bioelectron 28:181–188

    Article  CAS  Google Scholar 

  33. Sosna M, Chretien JM, Kilburn JD, Bartlett PN (2010) Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Phys Chem Chem Phys 12:10018–10026

    Article  CAS  Google Scholar 

  34. Blanford CF, Heath RS, Armstrong FA (2007) A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 1710–1712

    Google Scholar 

  35. Davis JJ, Coles RJ, Hill HAO (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282

    CAS  Google Scholar 

  36. Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86:752–757

    Article  CAS  Google Scholar 

  37. Yan Y et al (2005) Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response. Langmuir 21:6560–6566

    Article  CAS  Google Scholar 

  38. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74:1993–1997

    Article  CAS  Google Scholar 

  39. Kim JH, Jin JH, Lee JY, Park EJ, Min NK (2012) Covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube-based devices for electrochemical biosensing. Bioconjug Chem 23:2078–2086

    Article  CAS  Google Scholar 

  40. Wu Y, Hu S (2007) Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate. Anal Chim Acta 602:181–186

    Article  CAS  Google Scholar 

  41. Walgama C, Means N, Materer NF, Krishnan S (2015) Edge-to-edge interaction between carbon nanotube-pyrene complexes and electrodes for biosensing and electrocatalytic applications. Phys Chem Chem Phys 17:4025–4028

    Article  CAS  Google Scholar 

  42. Gobel G, Lisdat F (2008) Organic interlayers for oxygen reducing electrodes based on bilirubin oxidase and MWCNT modified gold. Electrochem Commun 10:1691–1694

    Article  CAS  Google Scholar 

  43. Giroud F, Minteer SD (2013) Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase. Electrochem Commun 34:157–160

    Article  CAS  Google Scholar 

  44. van der Felt C et al (2011) Electron-transfer rates govern product distribution in electrochemically-driven P450-catalyzed dioxygen reduction. J Inorg Biochem 105:1350–1353

    Article  CAS  Google Scholar 

  45. Tasca F, Harreither W, Ludwig R, Gooding JJ, Gorton L (2011) Cellobiose dehydrogenase aryl diazoniunn modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal Chem 83:3042–3049

    Article  CAS  Google Scholar 

  46. Sekar N, Umasankar Y, Ramasamy RP (2014) Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells. Phys Chem Chem Phys 16:7862–7871

    Article  CAS  Google Scholar 

  47. Zuo X et al (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939

    Article  CAS  Google Scholar 

  48. Patolsky F, Tao G, Katz E, Willner I (1998) C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. J Electroanal Chem 454:9–13

    Article  CAS  Google Scholar 

  49. Feifel SC, Stieger KR, Lokstein H, Lux H, Lisdat F (2015) High photocurrent generation by photosystem I on artificial interfaces composed of pi-system-modified graphene. J Mater Chem A 3:12188–12196

    Article  CAS  Google Scholar 

  50. Baffert C et al (2012) Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer. Anal Chem 84:7999–8005

    Article  CAS  Google Scholar 

  51. Rudiger O, Abad JM, Hatchikian EC, Fernandez VM, De Lacey AL (2005) Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J Am Chem Soc 127:16008–16009

    Article  CAS  Google Scholar 

  52. Bourdillon C et al (1992) Immobilization of glucose-oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts. J Electroanal Chem 336:113–123

    Article  CAS  Google Scholar 

  53. Polsky R et al (2007) Diazonium-functionalized horseradish peroxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection. Langmuir 23:364–366

    Article  CAS  Google Scholar 

  54. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  55. Song S, Clark RA, Bowden EF, Tarlov MJ (1993) Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold. J Phys Chem 97:6564–6572

    Article  CAS  Google Scholar 

  56. Arnold S, Feng ZQ, Kakiuchi T, Knoll W, Niki K (1997) Investigation of the electrode reaction of cytochrome c through mixed self-assembled monolayers of alkanethiols on gold(111) surfaces. J Electroanal Chem 438:91–97

    Article  CAS  Google Scholar 

  57. Jeuken LJC, McEvoy JP, Armstrong FA (2002) Insights into gated electron-transfer kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin. J Phys Chem B 106:2304–2313

    Article  CAS  Google Scholar 

  58. Chi QC, Zhang J, Andersen JET, Ulstrup J (2001) Ordered assembly and controlled electron transfer of the blue copper protein azurin at gold(111) single-crystal substrates. J Phys Chem B 105:4669–4679

    Article  CAS  Google Scholar 

  59. Krzeminski L et al (2011) Orientational control over nitrite reductase on modified gold electrode and its effects on the interfacial electron transfer. J Phys Chem B 115:12607–12614

    Article  CAS  Google Scholar 

  60. Hwang ET et al (2015) A decaheme cytochrome as a molecular electron conduit in dye-sensitized photoanodes. Adv Funct Mater 25:2308–2315

    Article  CAS  Google Scholar 

  61. Uehara TM, de Aguiar HB, Bergamaski K, Miranda PB (2014) Adsorption of alkylthiol self-assembled monolayers on gold and the effect of substrate roughness: a comparative study using scanning tunneling microscopy, cyclic voltammetry, second-harmonic generation, and sum-frequency generation. J Phys Chem C 118:20374–20382

    Article  CAS  Google Scholar 

  62. Chi Q et al (2000) Molecular monolayers and interfacial electron transfer of Pseudomonas aeruginosa azurin on Au(111). J Am Chem Soc 122:4047–4055

    Article  CAS  Google Scholar 

  63. Heering HA, Wiertz FGM, Dekker C, de Vries S (2004) Direct immobilization of native yeast iso-1 cytochrome c on bare gold: fast electron relay to redox enzymes and zeptomole protein-film voltammetry. J Am Chem Soc 126:11103–11112

    Article  CAS  Google Scholar 

  64. Hasan MN, Kwakernaak C, Sloof WG, Hagen WR, Heering HA (2006) Pyrococcus furiosus 4Fe-ferredoxin, chemisorbed on gold, exhibits gated reduction and ionic strength dependent dimerization. J Biol Inorg Chem 11:651–662

    Article  CAS  Google Scholar 

  65. Friedrich MG, Robertson JWF, Walz D, Knoll W, Naumann RLC (2008) Electronic wiring of a multi-redox site membrane protein in a biomimetic surface architecture. Biophys J 94:3698–3705

    Article  CAS  Google Scholar 

  66. Tel-Vered R, Yildiz HB, Yan YM, Willner I (2010) Plugging into enzymes with light: photonic “wiring” of enzymes with electrodes for photobiofuel cells. Small 6:1593–1597

    Article  CAS  Google Scholar 

  67. Hess CR et al (2003) Gold electrodes wired for coupling with the deeply buried active site of Arthrobacter globiformis amine oxidase. J Am Chem Soc 125:7156–7157

    Article  CAS  Google Scholar 

  68. Terasaki N et al (2009) Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angew Chem Int Ed 48:1585–1587

    Article  CAS  Google Scholar 

  69. Fischer LM et al (2009) Gold cleaning methods for electrochemical detection applications. Microelectron Eng 86:1282–1285

    Article  CAS  Google Scholar 

  70. Li ZG et al (2014) Effect of surface pretreatment on self-assembly of thiol-modified DNA monolayers on gold electrode. J Electroanal Chem 722:131–140

    Article  CAS  Google Scholar 

  71. Stamou D et al (1997) Uniformly flat gold surfaces: imaging the domain structure of organic monolayers using scanning force microscopy. Langmuir 13:2425–2428

    Article  CAS  Google Scholar 

  72. Miyake H, Ye S, Osawa M (2002) Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem Commun 4:973–977

    Article  CAS  Google Scholar 

  73. Meyer T et al (2014) Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry. J Am Chem Soc 136:10854–10857

    Article  CAS  Google Scholar 

  74. Terasaki N et al (2006) Fabrication of novel photosystem I-gold nanoparticle hybrids and their photocurrent enhancement. Thin Solid Films 499:153–156

    Article  CAS  Google Scholar 

  75. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  76. Wirtz M, Klucik J, Rivera M (2000) Ferredoxin-mediated electrocatalytic dehalogenation of haloalkanes by cytochrome P450(cam). J Am Chem Soc 122:1047–1056

    Article  CAS  Google Scholar 

  77. El Kasmi A et al (2002) Adsorptive immobilization of cytochrome c on indium/tin oxide (ITO): electrochemical evidence for electron transfer-induced conformational changes. Electrochem Commun 4:177–181

    Article  Google Scholar 

  78. Kato M, Cardona T, Rutherford AW, Reisner E (2012) Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous, indium tin oxide electrode. J Am Chem Soc 134:8332–8335

    Article  CAS  Google Scholar 

  79. Yehezkeli O, Tel-Vered R, Michaeli D, Nechushtai R, Willner I (2013) Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 9:2970–2978

    Article  CAS  Google Scholar 

  80. Kato M, Cardona T, Rutherford AW, Reisner E (2013) Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 135:10610–10613

    Article  CAS  Google Scholar 

  81. Quinson J et al (2014) Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study. Faraday Discuss 172:473–496

    Article  CAS  Google Scholar 

  82. Sun W, Zhai ZQ, Jiao K (2008) Hemoglobin modified carbon paste electrode: direct electrochemistry and electrocatalysis. Anal Lett 41:2819–2831

    Article  CAS  Google Scholar 

  83. McKenzie KJ, Marken F (2003) Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate. Langmuir 19:4327–4331

    Article  CAS  Google Scholar 

  84. Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894–3912

    Article  CAS  Google Scholar 

  85. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140

    Article  CAS  Google Scholar 

  86. Lu L, Eychmuller A (2008) Ordered macroporous bimetallic nanostructures: design, characterization, and applications. Acc Chem Res 41:244–253

    Article  CAS  Google Scholar 

  87. Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  88. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927

    Article  CAS  Google Scholar 

  89. Mersch D et al (2015) Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J Am Chem Soc 137:8541–8549

    Article  CAS  Google Scholar 

  90. Xu X et al (2003) Ordered mesoporous niobium oxide film: a novel matrix for assembling functional proteins for bioelectrochemical applications. Adv Mater 15:1932–1936

    Article  CAS  Google Scholar 

  91. Topoglidis E et al (2005) Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes. Electroanalysis 17:1035–1041

    Article  CAS  Google Scholar 

  92. Jia NQ et al (2008) Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix. Electrochem Commun 10:774–777

    Article  CAS  Google Scholar 

  93. Marritt SJ et al (2008) Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. J Am Chem Soc 130:8588–8589

    Article  CAS  Google Scholar 

  94. Aksu Y, Frasca S, Wollenberger U, Driess M, Thomas A (2011) A molecular precursor approach to tunable porous tin-rich indium tin oxide with durable high electrical conductivity for bioelectronic devices. Chem Mater 23:1798–1804

    Article  CAS  Google Scholar 

  95. Liu JP et al (2009) Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun 11:202–205

    Article  CAS  Google Scholar 

  96. Li LP et al (2015) Controlled synthesis of tin-doped indium oxide (ITO) nanowires. J Cryst Growth 413:31–36

    Article  CAS  Google Scholar 

  97. Scouten WH (1987) A survey of enzyme coupling techniques. Methods Enzymol 135:30–65

    Article  CAS  Google Scholar 

  98. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  99. Willner I, Yan YM, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells-a review. Fuel Cells 9:7–24

    Article  CAS  Google Scholar 

  100. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  CAS  Google Scholar 

  101. Joshi PP, Merchant SA, Wang YD, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal Chem 77:3183–3188

    Article  CAS  Google Scholar 

  102. Hicks JF, Zamborini FP, Osisek A, Murray RW (2001) The dynamics of electron self-exchange between nanoparticles. J Am Chem Soc 123:7048–7053

    Article  CAS  Google Scholar 

  103. Badura A et al (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20:1043–1047

    Article  CAS  Google Scholar 

  104. Badura A et al (2011) Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy Environ Sci 4:2435–2440

    Article  CAS  Google Scholar 

  105. Baker DR, Simmerman RF, Sumner JJ, Bruce BD, Lundgren CA (2014) Photoelectrochemistry of photosystem I bound in nafion. Langmuir 30:13650–13655

    Article  CAS  Google Scholar 

  106. Hartmann V et al (2014) Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. Phys Chem Chem Phys 16:11936–11941

    Article  CAS  Google Scholar 

  107. Kothe T et al (2014) Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis. Chem Eur J 20:11029–11034

    Article  CAS  Google Scholar 

  108. Zhao FY, Sliozberg K, Rogner M, Plumere N, Schuhmann W (2014) The role of hydrophobicity of Os-complex-modified polymers for photosystem 1 based photocathodes. J Electrochem Soc 161:H3035–H3041

    Article  CAS  Google Scholar 

  109. Hamidi H et al (2015) Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes. ChemSusChem 8:990–993

    Article  CAS  Google Scholar 

  110. Hasan K et al (2014) Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys Chem Chem Phys 16:24676–24680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars J. C. Jeuken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jeuken, L.J.C. (2016). Structure and Modification of Electrode Materials for Protein Electrochemistry. In: Jeuken, L. (eds) Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics. Advances in Biochemical Engineering/Biotechnology, vol 158. Springer, Cham. https://doi.org/10.1007/10_2015_5011

Download citation

Publish with us

Policies and ethics