Skip to main content

Enabling Aequorin for Biotechnology Applications Through Genetic Engineering

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 154))

Abstract

In recent years, luminescent proteins have been studied for their potential application in a variety of detection systems. Bioluminescent proteins, which do not require an external excitation source, are especially well-suited as reporters in analytical detection. The photoprotein aequorin is a bioluminescent protein that can be engineered for use as a molecular reporter under a wide range of conditions while maintaining its sensitivity. Herein, the characteristics of aequorin as well as the engineering and production of aequorin variants and their impact on signal detection in biological systems are presented. The structural features and activity of aequorin, its benefits as a label for sensing and applications in highly sensitive detection, as well as in gaining insight into biological processes are discussed. Among those, focus has been placed on the highly sensitive calcium detection in vivo, in vitro DNA and small molecule sensing, and development of in vivo imaging technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eglen RM, Reisine T (2008) Photoproteins: important new tools in drug discovery. Assay Drug Dev Technol 6(5):659–671. doi:10.1089/adt.2008.160

    Article  CAS  Google Scholar 

  2. Rowe L, Dikici E, Daunert S (2009) Engineering bioluminescent proteins: expanding their analytical potential. Anal Chem 81(21):8662–8668. doi:10.1021/Ac9007286

    Article  CAS  Google Scholar 

  3. The Royal Swedish Academy of Sciences (2008) The Nobel Prize in Chemistry 2008-Press Release

    Google Scholar 

  4. Scott D, Dikici E, Ensor M, Daunert S (2011) Bioluminescence and its impact on bioanalysis. Annu Rev Anal Chem (Palo Alto Calif) 4:297–319. doi:10.1146/annurev-anchem-061010-113855

    Article  CAS  Google Scholar 

  5. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Compar Physiol 59:223–239

    Article  CAS  Google Scholar 

  6. Lewis JC, Daunert S (2000) Photoproteins as luminescent labels in binding assays. Fresen J Anal Chem 366(6–7):760–768

    Article  CAS  Google Scholar 

  7. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22(6):295–303. doi:10.1016/j.tibtech.2004.03.011

    Article  CAS  Google Scholar 

  8. Prendergast FG (2000) Bioluminescence illuminated. Nature 405(6784):291–293. doi:10.1038/35012734

    Article  CAS  Google Scholar 

  9. Shimomura O, Johnson FH (1975) Chemical nature of bioluminescence systems in coelenterates. Proc Natl Acad Sci USA 72(4):1546–1549

    Article  CAS  Google Scholar 

  10. Shimomura O, Inoue S, Johnson FH, Haneda Y (1980) Widespread occurrence of coelenterazine in marine bioluminescence. Comp Biochem Phys B 65(2):435–437. doi:10.1016/0305-0491(80)90044-9

    Google Scholar 

  11. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440(7082):372–376. doi:10.1038/nature04542

    Article  CAS  Google Scholar 

  12. Marques SM, da Silva JCGE (2009) Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life 61(1):6–17. doi:10.1002/Iub.134

    Article  CAS  Google Scholar 

  13. Widder EA (2010) Bioluminescence in the Ocean: Science 328(5979):704–708. doi:10.1126/science.1174269

    Article  CAS  Google Scholar 

  14. Haddock SH, Moline MA, Case JF (2010) Bioluminescence in the sea. Ann Rev Mar Sci 2:443–493. doi:10.1146/annurev-marine-120308-081028

    Article  Google Scholar 

  15. Chen SF, Ferre N, Liu YJ (2013) QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms. Chemistry 19(26):8466–8472. doi:10.1002/chem.201300678

    Article  CAS  Google Scholar 

  16. Brini M (2008) Calcium-sensitive photoproteins. Methods 46(3):160–166. doi:10.1016/j.ymeth.2008.09.011

    Article  CAS  Google Scholar 

  17. van Oort B, Eremeeva EV, Koehorst RBM, Laptenok SP, van Amerongen H, van Berkel WJH, Malikova NP, Markova SV, Vysotski ES, Visser AJWG, Lee J (2009) Picosecond fluorescence relaxation spectroscopy of the calcium-discharged photoproteins aequorin and obelin. Biochem Us 48(44):10486–10491. doi:10.1021/Bi901436m

    Article  CAS  Google Scholar 

  18. Inouye S, Sato J, Sahara-Miura Y (2011) Recombinant Gaussia luciferase with a reactive cysteine residue for chemical conjugation: expression, purification and its application for bioluminescent immunoassays. Biochem Biophys Res Commun 410(4):792–797. doi:10.1016/j.bbrc.2011.06.063

    Article  CAS  Google Scholar 

  19. Malikova NP, Burakova LP, Markova SV, Vysotski ES (2014) Characterization of hydromedusan Ca(2+)-regulated photoproteins as a tool for measurement of Ca(2+)concentration. Anal Bioanal Chem 406(23):5715–5726. doi:10.1007/s00216-014-7986-2

    Article  CAS  Google Scholar 

  20. Lewis JC, Cullen LC, Daunert S (2000) Site-specifically labeled photoprotein-thyroxine conjugates using aequorin mutants containing unique cysteine residues: applications for binding assays (Part II). Bioconjug Chem 11(2):140–145

    Article  CAS  Google Scholar 

  21. Deo SK, Daunert S (2001) An immunoassay for Leu-enkephalin based on a C-terminal aequorin-peptide fusion. Anal Chem 73(8):1903–1908

    Article  CAS  Google Scholar 

  22. Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R (2001) Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J 355(Pt 1):1–12

    Article  CAS  Google Scholar 

  23. Mirasoli M, Deo SK, Lewis JC, Roda A, Daunert S (2002) Bioluminescence immunoassay for cortisol using recombinant aequorin as a label. Anal Biochem 306(2):204–211

    Article  CAS  Google Scholar 

  24. Dupriez VJ, Maes K, Le Poul E, Burgeon E, Detheux M (2002) Aequorin-based functional assays for G-protein-coupled receptors, ion channels, and tyrosine kinase receptors. Receptors Channels 8(5–6):319–330

    Article  CAS  Google Scholar 

  25. Eisenstein M (2009) GPCRs: insane in the membrane. Nat Methods 6(12):929–933. doi:10.1038/nmeth1209-929

    Article  CAS  Google Scholar 

  26. Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, Rizzuto R, Pinton P (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8(11):2105–2118. doi:10.1038/nprot.2013.127

    Article  CAS  Google Scholar 

  27. Kawasaki H, Nakayama S, Kretsinger RH (1998) Classification and evolution of EF-hand proteins. Biometals 11(4):277–295. doi:10.1023/A:1009282307967

    Article  CAS  Google Scholar 

  28. Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10(6):637–643

    Article  CAS  Google Scholar 

  29. Eremeeva EV, Markova SV, Westphal AH, Visser AJWG, van Berkel WJH, Vysotski ES (2009) The intrinsic fluorescence of apo-obelin and apo-aequorin and use of its quenching to characterize coelenterazine binding. FEBS Lett 583(12):1939–1944. doi:10.1016/j.febslet.2009.04.043

    Article  CAS  Google Scholar 

  30. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci USA 75(6):2611–2615

    Article  CAS  Google Scholar 

  31. Head JF, Inouye S, Teranishi K, Shimomura O (2000) The crystal structure of the photoprotein aequorin at 2.3 A resolution. Nature 405(6784):372–376. doi:10.1038/35012659

    Article  CAS  Google Scholar 

  32. Shimomura O, Johnson FH (1973) Chemical nature of the light emitt er in bioluminescence of aequorin. Tetrahedron Lett 31:2963–2966

    Article  Google Scholar 

  33. Miller AL, Karplus, E., Jaffe, LF (1994) Imaging [Ca2+] with aequorin using a photon imaging detector. In: Nuccitelli R (ed) Methods in cell biology, vol 40. Academic Press, San Diego

    Google Scholar 

  34. Webb SE, Karplus E, Miller AL (2013) Retrospective on the development of aequorin and aequorin-based imaging to visualize changes in intracellular free [Ca]. Mol Reprod Dev. doi:10.1002/mrd.22298

    Google Scholar 

  35. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. doi:10.1038/35036035

    Article  CAS  Google Scholar 

  36. Webb SE, Fluck RA, Miller AL (2011) Calcium signaling during the early development of medaka and zebrafish. Biochimie 93(12):2112–2125. doi:10.1016/j.biochi.2011.06.011

    Article  CAS  Google Scholar 

  37. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52(1):36–43. doi:10.1016/j.ceca.2012.02.008

    Article  CAS  Google Scholar 

  38. Brini M, Ottolini D, Cali T, Carafoli E (2013) Calcium in health and disease. Metal Ions Life Sci 13:81–137. doi:10.1007/978-94-007-7500-8_4

    Article  Google Scholar 

  39. Filmore D (2004) It’s a GCPR world. Mod Drug Discov (ACS) 7(11):24–28

    CAS  Google Scholar 

  40. Miller KJ, Murphy BJ, Pelleymounter MA (2004) Central G-Protein Coupled Receptors (GPCR)s as molecular targets for the treatment of obesity: assets, liabilities and development status. Curr Drug Targets CNS Neurol Disord 3(5):357–377

    Article  CAS  Google Scholar 

  41. Shimomura O, Johnson FH, Saiga Y (1963) Microdetermination of calcium by Aequorin luminescence. Science 140(3573):1339–1340. doi:10.1126/science.140.3573.1339

    Article  CAS  Google Scholar 

  42. Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M (2002) Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen 7(1):57–65. doi:10.1089/108705702753520341

    Article  Google Scholar 

  43. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem: A Eur J Chem Biol 3(10):928–944. doi:10.1002/1439-7633(20021004)3:10<928:AID-CBIC928>3.0.CO;2-5

    Article  CAS  Google Scholar 

  44. Haq N, Grose D, Ward E, Chiu O, Tigue N, Dowell SJ, Powell AJ, Chen MX (2013) A high-throughput assay for connexin 43 (Cx43, GJA1) gap junctions using codon-optimized aequorin. Assay Drug Dev Technol 11(2):93–100. doi:10.1089/adt.2012.469

    Article  CAS  Google Scholar 

  45. Pozzan T, Rudolf R (2009) Measurements of mitochondrial calcium in vivo. Biochim Biophys Acta 1787(11):1317–1323. doi:10.1016/j.bbabio.2008.11.012

    Article  CAS  Google Scholar 

  46. Davies SA, Terhzaz S (2009) Organellar calcium signalling mechanisms in Drosophila epithelial function. J Experiment Biol 212(Pt 3):387–400. doi:10.1242/jeb.024513

    Article  CAS  Google Scholar 

  47. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529. doi:10.1038/nrm1155

    Article  CAS  Google Scholar 

  48. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408. doi:10.1152/physrev.00004.2005

    Article  CAS  Google Scholar 

  49. Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR (2008) Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev 88(2):421–449. doi:10.1152/physrev.00041.2005

    Article  CAS  Google Scholar 

  50. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. doi:10.1016/j.neuron.2012.02.011

    Article  CAS  Google Scholar 

  51. Bootman MD (2012) Calcium signaling. Cold Spring Harb Perspect Biol 4(7):a011171. doi:10.1101/cshperspect.a011171

    Article  CAS  Google Scholar 

  52. Ohashi W, Inouye S, Yamazaki T, Hirota H (2005) NMR analysis of the Mg2+-binding properties of aequorin, a Ca2+-binding photoprotein. J Biochem 138(5):613–620. doi:10.1093/jb/mvi164

    Article  CAS  Google Scholar 

  53. Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359(3):509–525. doi:10.1016/j.jmb.2006.03.066

    Article  CAS  Google Scholar 

  54. Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103(3):773–788. doi:10.1021/cr020467n

    Article  CAS  Google Scholar 

  55. Ohashi W, Inouye S, Yamazaki T, Doi-Katayama Y, Yokoyama S, Hirota H (2005) Backbone 1H, 13C and 15N resonance assignments for the Mg2+-bound form of the Ca2+-binding photoprotein aequorin. J Biomol NMR 31(4):375–376. doi:10.1007/s10858-005-1609-3

    Article  CAS  Google Scholar 

  56. Biagioli M, Pinton P, Scudiero R, Ragghianti M, Bucci S, Rizzuto R (2005) Aequorin chimeras as valuable tool in the measurement of Ca2+ concentration during cadmium injury. Toxicology 208(3):389–398. doi:10.1016/j.tox.2004.11.038

    Article  CAS  Google Scholar 

  57. Strynadka NC, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–998. doi:10.1146/annurev.bi.58.070189.004511

    Article  CAS  Google Scholar 

  58. Tricoire L, Tsuzuki K, Courjean O et al (2006) Calcium dependence of aequorin bioluminescnece dissected by random mutagenesis. cPNAS 103(25):5

    Google Scholar 

  59. de la Fuente S, Fonteriz RI, de la Cruz PJ, Montero M, Alvarez J (2012) Mitochondrial free [Ca(2+)] dynamics measured with a novel low-Ca(2+) affinity aequorin probe. Biochem J 445(3):371–376. doi:10.1042/BJ20120423

    Article  CAS  Google Scholar 

  60. Tricoire L, Tsuzuki K, Courjean O, Gibelin N, Bourout G, Rossier J, Lambolez B (2006) Calcium dependence of aequorin bioluminescence dissected by random mutagenesis. Proc Natl Acad Sci USA 103(25):9500–9505. doi:10.1073/pnas.0603176103

    Article  CAS  Google Scholar 

  61. Villalobos C, Alonso MT, Garcia-Sancho J (2009) Bioluminescence imaging of calcium oscillations inside intreacellular organelles In: Rich PB, Doulliet C (ed) Bioluminescence. Methods in molecular biology, vol 574. Humana Press, New York, pp 203–214

    Google Scholar 

  62. Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R (1995) Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14(22):5467–5475

    CAS  Google Scholar 

  63. de la Fuente S, Matesanz-Isabel J, Fonteriz RI, Montero M, Alvarez J (2014) Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells. Biochem J 458(1):33–40. doi:10.1042/BJ20131025

    Article  CAS  Google Scholar 

  64. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi:10.1038/nrm1150

    Article  CAS  Google Scholar 

  65. Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci USA 110(26):10479–10486. doi:10.1073/pnas.1300410110

    Article  Google Scholar 

  66. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327. doi:10.1038/358325a0

    Article  CAS  Google Scholar 

  67. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61. doi:10.1038/35000001

    Article  CAS  Google Scholar 

  68. Vay L, Hernandez-SanMiguel E, Lobaton CD, Moreno A, Montero M, Alvarez J (2009) Mitochondrial free [Ca2+] levels and the permeability transition. Cell Calcium 45(3):243–250. doi:10.1016/j.ceca.2008.10.007

    Article  CAS  Google Scholar 

  69. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330(6008):1247–1251. doi:10.1126/science.1189157

    Article  CAS  Google Scholar 

  70. Pulli I, Blom T, Lof C, Magnusson M, Rimessi A, Pinton P, Tornquist K (2015) A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca microdomain in the caveolar compartment. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2015.04.005

    Google Scholar 

  71. Zhang Y, Wang Y, Wan Z, Liu S, Cao Y, Zeng Z (2014) Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS ONE 9(2):e90362. doi:10.1371/journal.pone.0090362

    Article  CAS  Google Scholar 

  72. Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4):289–301. doi:10.1038/nrc3037

    Article  CAS  Google Scholar 

  73. Napoli E, Ross-Inta C, Wong S, Hung C, Fujisawa Y, Sakaguchi D, Angelastro J, Omanska-Klusek A, Schoenfeld R, Giulivi C (2012) Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53. PLoS ONE 7(8):e42504. doi:10.1371/journal.pone.0042504

    Article  CAS  Google Scholar 

  74. Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP, Pinton P (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 20(12):1631–1643. doi:10.1038/cdd.2013.77

    Article  CAS  Google Scholar 

  75. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. doi:10.1038/nature10230

    Article  CAS  Google Scholar 

  76. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19(2):267–273. doi:10.1038/cdd.2011.92

    Article  CAS  Google Scholar 

  77. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, Pandolfi PP, Wieckowski MR, Mammano F, Del Sal G, Pinton P (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+ -dependent manner. Proc Natl Acad Sci USA 112(6):1779–1784. doi:10.1073/pnas.1410723112

    Article  CAS  Google Scholar 

  78. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472. doi:10.1038/ncb2868

    Article  CAS  Google Scholar 

  79. Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288(15):10750–10758. doi:10.1074/jbc.R112.420752

    Article  CAS  Google Scholar 

  80. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA, Wyllie DJ, Bading H, Hardingham GE (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4:2034. doi:10.1038/ncomms3034

    Google Scholar 

  81. Borghi A, Rimessi A, Minghetti S, Corazza M, Pinton P, Virgili A (2015) Efficacy of magnesium chloride in the treatment of Hailey-Hailey disease: from serendipity to evidence of its effect on intracellular Ca(2+) homeostasis. Int J Dermatol 54(5):543–548. doi:10.1111/ijd.12410

    Article  CAS  Google Scholar 

  82. Brini M, De Giorgi F, Murgia M, Marsault R, Massimino ML, Cantini M, Rizzuto R, Pozzan T (1997) Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol Biol Cell 8(1):129–143

    Article  CAS  Google Scholar 

  83. Brini M, Manni S, Pierobon N, Du GG, Sharma P, MacLennan DH, Carafoli E (2005) Ca2+ signaling in HEK-293 and skeletal muscle cells expressing recombinant ryanodine receptors harboring malignant hyperthermia and central core disease mutations. J Biol Chem 280(15):15380–15389. doi:10.1074/jbc.M410421200

    Article  CAS  Google Scholar 

  84. Giorgi C, Romagnoli A, Agnoletto C, Bergamelli L, Sorrentino G, Brini M, Pozzan T, Meldolesi J, Pinton P, Rizzuto R (2011) Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biol 12:27. doi:10.1186/1471-2121-12-27

    Article  CAS  Google Scholar 

  85. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Nanobioanalytical luminescence: Forster-type energy transfer methods. Anal Bioanal Chem 393(1):109–123. doi:10.1007/s00216-008-2435-8

    Article  CAS  Google Scholar 

  86. Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brulet P (2005) Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 21(3):597–610. doi:10.1111/j.1460-9568.2005.03871.x

    Article  Google Scholar 

  87. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/nmeth819

    Article  CAS  Google Scholar 

  88. Drobac E, Tricoire L, Chaffotte AF, Guiot E, Lambolez B (2010) Calcium imaging in single neurons from brain slices using bioluminescent reporters. J Neurosci Res 88(4):695–711. doi:10.1002/jnr.22249

    CAS  Google Scholar 

  89. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13(4):513–520. doi:10.1038/nn.2518

    Article  CAS  Google Scholar 

  90. Rodriguez-Garcia A, Rojo-Ruiz J, Navas-Navarro P, Aulestia FJ, Gallego-Sandin S, Garcia-Sancho J, Alonso MT (2014) GAP, an aequorin-based fluorescent indicator for imaging Ca2+ in organelles. Proc Natl Acad Sci USA 111(7):2584–2589. doi:10.1073/pnas.1316539111

    Article  CAS  Google Scholar 

  91. Manjarres IM, Chamero P, Domingo B, Molina F, Llopis J, Alonso MT, Garcia-Sancho J (2008) Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Arch 455(5):961–970. doi:10.1007/s00424-007-0349-5

    Article  CAS  Google Scholar 

  92. Bakayan A, Vaquero CF, Picazo F, Llopis J (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS ONE 6(5):e19520. doi:10.1371/journal.pone.0019520

    Article  CAS  Google Scholar 

  93. Bakayan A, Domingo B, Miyawaki A, Llopis J (2014) Imaging Ca2+ activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Pflugers Arch—Eur J Physiol 1–12. doi:10.1007/s00424-014-1639-3

    Google Scholar 

  94. Cheung CY, Webb SE, Love DR, Miller AL (2011) Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos. Int J Develop Biol 55(2):153–174. doi:10.1387/ijdb.103160cc

    Article  CAS  Google Scholar 

  95. Martin JR (2012) In vivo functional brain imaging using a genetically encoded Ca2+-sensitive bioluminescence reporter, GFP-Aequorin. In: Martin JR (ed) Genetically Encoded Functional Indicators, vol 72. Neuromethods. Humana Press, New York, pp 1–26

    Chapter  Google Scholar 

  96. Martin JR, Rogers KL, Chagneau C, Brulet P (2007) In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS ONE 2(3):e275. doi:10.1371/journal.pone.0000275

    Article  CAS  Google Scholar 

  97. Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brulet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS ONE 2(10):e974. doi:10.1371/journal.pone.0000974

    Article  CAS  Google Scholar 

  98. Dikici E, Rowe L, Moschou EA, Rothert A, Deo SK, Daunert S (2006) Luminescent proteins: applications in microfluidics and miniaturized analytical systems. In: Photoproteins in bioanalysis. Wiley-VCH Verlag GmbH & Co. KGaA, pp 179–198. doi:10.1002/3527609148.ch10

    Google Scholar 

  99. Menon V, Ranganathn A, Jorgensen VH, Sabio M, Christoffersen CT, Uberti MA, Jones KA, Babu PS (2008) Development of an aequorin luminescence calcium assay for high-throughput screening using a plate reader, the LumiLux. Assay Drug Dev Technol 6(6):787–793. doi:10.1089/adt.2008.0157

    Article  CAS  Google Scholar 

  100. Tsuji FI, Inouye S, Goto T, Sakaki Y (1986) Site-specific mutagenesis of the calcium-binding photoprotein aequorin. Proc Natl Acad Sci USA 83(21):8107–8111

    Article  CAS  Google Scholar 

  101. Kurose K, Inouye S, Sakaki Y, Tsuji FI (1989) Bioluminescence of the Ca2+-binding photoprotein aequorin after cysteine modification. Proc Natl Acad Sci USA 86(1):80–84

    Article  CAS  Google Scholar 

  102. Nomura M, Inouye S, Ohmiya Y, Tsuji FI (1991) A C-terminal proline is required for bioluminescence of the Ca(2+)-binding photoprotein, aequorin. FEBS Lett 295(1–3):63–66

    Article  CAS  Google Scholar 

  103. Ohmiya Y, Ohashi M, Tsuji FI (1992) Two excited states in aequorin bioluminescence induced by tryptophan modification. FEBS Lett 301(2):197–201

    Article  CAS  Google Scholar 

  104. Ohmiya Y, Tsuji FI (1993) Bioluminescence of the Ca(2+)-binding photoprotein, aequorin, after histidine modification. FEBS Lett 320(3):267–270

    Article  CAS  Google Scholar 

  105. Vysotski ES, Lee J (2004) Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism. Acc Chem Res 37(6):405–415. doi:10.1021/ar0400037

    Article  CAS  Google Scholar 

  106. Ohmiya Y, Hirano T (1996) Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chem Biol 3(5):337–347

    Article  CAS  Google Scholar 

  107. Dikici E, Qu X, Rowe L, Millner L, Logue C, Deo SK, Ensor M, Daunert S (2009) Aequorin variants with improved bioluminescence properties. Protein Eng Des Select (PEDS) 22(4):243–248. doi:10.1093/protein/gzn083

    Article  CAS  Google Scholar 

  108. Stepanyuk GA, Golz S, Markova SV, Frank LA, Lee J, Vysotski ES (2005) Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein. FEBS Lett 579(5):1008–1014. doi:10.1016/j.febslet.2005.01.004

    Article  CAS  Google Scholar 

  109. Rowe L, Rothert A, Logue C, Ensor CM, Deo SK, Daunert S (2008) Spectral tuning of photoproteins by partnering site-directed mutagenesis strategies with the incorporation of chromophore analogs. Protein Eng Des Select (PEDS) 21(2):73–81. doi:10.1093/protein/gzm073

    Article  CAS  Google Scholar 

  110. Tsuzuki K, Tricoire L, Courjean O, Gibelin N, Rossier J, Lambolez B (2005) Thermostable mutants of the photoprotein aequorin obtained by in vitro evolution. J Biol Chem 280(40):34324–34331. doi:10.1074/jbc.M505303200

    Article  CAS  Google Scholar 

  111. Qu X, Rowe L, Dikici E, Ensor M, Daunert S (2014) Aequorin mutants with increased thermostability. Anal Bioanal Chem 406(23):5639–5643. doi:10.1007/s00216-014-8039-6

    Article  CAS  Google Scholar 

  112. Rowe L, Ensor M, Mehl R, Daunert S (2010) Modulating the Bioluminescence emission of photoproteins by in vivo site-directed incorporation of non-natural amino acids. ACS Chem Biol 5(5):455–460. doi:10.1021/Cb9002909

    Article  CAS  Google Scholar 

  113. England PM (2004) Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry-Us 43(37):11623–11629. doi:10.1021/bi048862q

    Article  CAS  Google Scholar 

  114. Ryu Y, Schultz PG (2006) Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 3:263–265. doi:10.1038/nmeth864

    Article  CAS  Google Scholar 

  115. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500. doi:10.1126/science.1060077

    Article  CAS  Google Scholar 

  116. Farrell IS, Toroney R, Hazen JL, Mehl RA, Chin JW (2005) Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat Methods 2(5):377–384. doi:10.1038/nmeth0505-377

    Article  CAS  Google Scholar 

  117. Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395(2):361–374. doi:10.1016/j.jmb.2009.10.030

    Article  CAS  Google Scholar 

  118. Shrestha S, Paeng IR, Deo SK, Daunert S (2002) Cysteine-free mutant of aequorin as a photolabel in immunoassay development. Bioconjug Chem 13(2):269–275

    Article  CAS  Google Scholar 

  119. Photoproteins in Bioanalysis (2006) Wiley-VCH, Weinheim

    Google Scholar 

  120. Teasley Hamorsky K, Ensor CM, Wei Y, Daunert S (2008) A bioluminescent molecular switch for glucose. Angew Chem Int Ed Engl 47(20):3718–3721. doi:10.1002/anie.200704440

    Article  CAS  Google Scholar 

  121. Ostermeier M, Nixon AE, Shim JH, Benkovic SJ (1999) Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci USA 96(7):3562–3567

    Article  CAS  Google Scholar 

  122. Kanwar M, Wright RC, Date A, Tullman J, Ostermeier M (2013) Protein switch engineering by domain insertion. Methods Enzymol 523:369–388. doi:10.1016/B978-0-12-394292-0.00017-5

    Article  Google Scholar 

  123. Stein V, Alexandrov K (2015) Synthetic protein switches: design principles and applications. Trends Biotechnol 33(2):101–110. doi:10.1016/j.tibtech.2014.11.010

    Article  CAS  Google Scholar 

  124. Scott D, Hamorsky KT, Ensor CM, Anderson KW, Daunert S (2011) Cyclic AMP receptor protein-aequorin molecular switch for cyclic AMP. Bioconjug Chem 22(3):475–481. doi:10.1021/bc100486b

    Article  CAS  Google Scholar 

  125. Hamorsky KT, Ensor CM, Pasini P, Daunert S (2012) A protein switch sensing system for the quantification of sulfate. Anal Biochem 421(1):172–180. doi:10.1016/j.ab.2011.10.023

    Article  CAS  Google Scholar 

  126. Gorokhovatsky AY, Rudenko NV, Marchenkov VV, Skosyrev VS, Arzhanov MA, Burkhardt N, Zakharov MV, Semisotnov GV, Vinokurov LM, Alakhov YB (2003) Homogeneous assay for biotin based on Aequorea victoria bioluminescence resonance energy transfer system. Anal Biochem 313(1):68–75

    Article  CAS  Google Scholar 

  127. Rowe L, Deo S, Shofner J, Ensor M, Daunert S (2007) Aequorin-based homogeneous cortisol immunoassay for analysis of saliva samples. Bioconjug Chem 18(6):1772–1777. doi:10.1021/bc070039u

    Article  CAS  Google Scholar 

  128. Teasley Hamorsky K, Ensor CM, Dikici E, Pasini P, Bachas L, Daunert S (2012) Bioluminescence inhibition assay for the detection of hydroxylated polychlorinated biphenyls. Anal Chem 84(18):7648–7655. doi:10.1021/ac301872u

    Article  CAS  Google Scholar 

  129. Galvan B, Christopoulos TK (1996) Bioluminescence hybridization assays using recombinant aequorin. Application to the detection of prostate-specific antigen mRNA. Anal Chem 68(20):3545–3550

    Article  CAS  Google Scholar 

  130. Guenthner PC, Hart CE (1998) Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system. Biotechniques 24(5):810–816

    CAS  Google Scholar 

  131. Song X, Coombes BK, Mahony JB (2000) Quantitation of Chlamydia trachomatis 16S rRNA using NASBA amplification and a bioluminescent microtiter plate assay. Comb Chem High Throughput Screening 3(4):303–313

    Article  CAS  Google Scholar 

  132. Coombes BK, Mahony JB (2000) Nucleic acid sequence based amplification (NASBA) of Chlamydia pneumoniae major outer membrane protein (ompA) mRNA with bioluminescent detection. Comb Chem High Throughput Screening 3(4):315–327

    Article  CAS  Google Scholar 

  133. White SR, Christopoulos TK (1999) Signal amplification system for DNA hybridization assays based on in vitro expression of a DNA label encoding apoaequorin. Nucleic Acids Res 27(19):e25

    Article  CAS  Google Scholar 

  134. Doleman L, Davies L, Rowe L, Moschou EA, Deo S, Daunert S (2007) Bioluminescence DNA hybridization assay for Plasmodium falciparum based on the photoprotein aequorin. Anal Chem 79(11):4149–4153. doi:10.1021/ac0702847

    Article  CAS  Google Scholar 

  135. Khot PD, Ko DL, Hackman RC, Fredricks DN (2008) Development and optimization of quantitative PCR for the diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. BMC Infect Dis 8:73. doi:10.1186/1471-2334-8-73

    Article  CAS  Google Scholar 

  136. Russom A, Ahmadian A, Andersson H, Nilsson P, Stemme G (2003) Single-nucleotide polymorphism analysis by allele-specific extension of fluorescently labeled nucleotides in a microfluidic flow-through device. Electrophoresis 24(1–2):158–161. doi:10.1002/elps.200390008

    Article  CAS  Google Scholar 

  137. Zerefos PG, Ioannou PC, Traeger-Synodinos J, Dimissianos G, Kanavakis E, Christopoulos TK (2006) Photoprotein aequorin as a novel reporter for SNP genotyping by primer extension-application to the variants of mannose-binding lectin gene. Hum Mutat 27(3):279–285. doi:10.1002/humu.20300

    Article  CAS  Google Scholar 

  138. Konstantou J, Ioannou PC, Christopoulos TK (2007) Genotyping of single nucleotide polymorphisms by primer extension reaction and a dual-analyte bio/chemiluminometric assay. Anal Bioanal Chem 388(8):1747–1754. doi:10.1007/s00216-007-1383-z

    Article  CAS  Google Scholar 

  139. Iliadi AC, Ioannou PC, Traeger-Synodinos J, Kanavakis E, Christopoulos TK (2008) High-throughput microtiter well-based bioluminometric genotyping of two single-nucleotide polymorphisms in the toll-like receptor-4 gene. Anal Biochem 376(2):235–241. doi:10.1016/j.ab.2008.02.012

    Article  CAS  Google Scholar 

  140. Casadei J, Powell MJ, Kenten JH (1990) Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector. Proc Natl Acad Sci USA 87(6):2047–2051

    Article  CAS  Google Scholar 

  141. Zenno S, Inouye S (1990) Bioluminescent immunoassay using a fusion protein of protein A and the photoprotein aequorin. Biochem Biophys Res Commun 171(1):169–174

    Article  CAS  Google Scholar 

  142. Erikaku T, Zenno S, Inouye S (1991) Bioluminescent immunoassay using a monomeric Fab’-photoprotein aequorin conjugate. Biochem Biophys Res Commun 174(3):1331–1336

    Article  CAS  Google Scholar 

  143. Mirasoli M, Michelini, E, DeoS., DikiciE, RodaA, DaunetS(2004) Aequorin fusion proteins as bioluminescent tracers for competitive immunoassays. In: Genetically engineered and optical probes for biomedical applications II, vol 5329. In: Proceedings of SPOE 5329, p 137. doi:10.1117/12.529194

  144. Inouye S, Sato J (2008) Comparison of luminescent immunoassays using biotinylated proteins of aequorin, alkaline phosphatase and horseradish peroxidase as reporters. Biosci Biotechnol Biochem 72(12):3310–3313. doi:10.1271/bbb.80524

    Article  CAS  Google Scholar 

  145. Frank LA (2010) Ca2+-regulated photoproteins: effective immunoassay reporters. Sensors 10(12):11287–11300. doi:10.3390/s101211287

    Article  CAS  Google Scholar 

  146. Adamczyk M, Moore JA, Shreder K (2002) Dual analyte detection using tandem flash luminescence. Bioorg Med Chem Lett 12(3):395–398

    Article  CAS  Google Scholar 

  147. Ito K, Nishimura W, Maeda M, Gomi K, Inouye S, Arakawa H (2007) Highly sensitive and rapid tandem bioluminescent immunoassay using aequorin labeled Fab fragment and biotinylated firefly luciferase. Anal Chim Acta 588(2):245–251. doi:10.1016/j.aca.2007.02.005

    Article  CAS  Google Scholar 

  148. Desai UA, Wininger JA, Lewis JC, Ramanathan S, Daunert S (2001) Using epitope-aequorin conjugate recognition in immunoassays for complex proteins. Anal Biochem 294(2):132–140. doi:10.1006/abio.2001.5145

    Article  CAS  Google Scholar 

  149. Qu X, Deo SK, Dikici E, Ensor M, Poon M, Daunert S (2007) Bioluminescence immunoassay for angiotensin II using aequorin as a label. Anal Biochem 371(2):154–161. doi:10.1016/j.ab.2007.08.038

    Article  CAS  Google Scholar 

  150. Rowe L, Combs K, Deo S, Ensor C, Daunert S, Qu X (2008) Genetically modified semisynthetic bioluminescent photoprotein variants: simultaneous dual-analyte assay in a single well employing time resolution of decay kinetics. Anal Chem 80(22):8470–8476. doi:10.1021/ac801209x

    Article  CAS  Google Scholar 

  151. Inouye S, Sato J, Sasaki S, Sahara Y (2011) Streptavidin-aequorin fusion protein for bioluminescent immunoassay. Biosci Biotechnol Biochem 75(3):568–571. doi:10.1271/bbb.100798

    Article  CAS  Google Scholar 

  152. Inouye S, Sato J (2012) Purification of histidine-tagged aequorin with a reactive cysteine residue for chemical conjugations and its application for bioluminescent sandwich immunoassays. Protein Expr Purif 83(2):205–210. doi:10.1016/j.pep.2012.04.001

    Article  CAS  Google Scholar 

  153. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    Article  CAS  Google Scholar 

  154. Feliciano J, Pasini P, Deo SK, Daunert S (2008) Photoproteins as reporters in whole-cell sensing. In: Deo SK (ed) Protein science encyclopedia. Wiley-VCH, New York, pp 131–154

    Google Scholar 

  155. Kozlova O, Zwinderman M, Christofi N (2005) A new short-term toxicity assay using Aspergillus awamori with recombinant aequorin gene. BMC Microbiol 5:40. doi:10.1186/1471-2180-5-40

    Article  CAS  Google Scholar 

  156. Zeinoddini M, Khajeh K, Behzadian F, Hosseinkhani S, Saeedinia AR, Barjesteh H (2010) Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds. Photochem Photobiol 86(5):1071–1075. doi:10.1111/j.1751-1097.2010.00775.x

    Article  CAS  Google Scholar 

  157. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215. doi:10.1126/science.1084920

    Article  CAS  Google Scholar 

  158. Araki N, Iida M, Amino N, Morita S, Ide A, Nishihara E, Ito M, Saito J, Nishikawa T, Katsuragi K, Miyauchi A (2015) Rapid bioassay for detection of thyroid-stimulating antibodies using cyclic adenosine monophosphate-gated calcium channel and aequorin. EurThyroid J 4(1):14–19. doi:10.1159/000371740

    CAS  Google Scholar 

  159. Date A, Pasini P, Daunert S (2010) Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem 398(1):349–356. doi:10.1007/s00216-010-3930-2

    Article  CAS  Google Scholar 

  160. Bjerketorp J, Hakansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17(1):43–49. doi:10.1016/j.copbio.2005.12.005

    Article  CAS  Google Scholar 

  161. Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole-cell biosensing systems. Anal Chem 79(24):9391–9397. doi:10.1021/ac701606g

    Article  CAS  Google Scholar 

  162. Date A, Pasini P, Daunert S (2010) Fluorescent and bioluminescent cell-based sensors: strategies for their preservation. Adv Biochem Eng Biotechnol 117:57–75. doi:10.1007/10_2009_22

    CAS  Google Scholar 

  163. Date A, Pasini P, Sangal A, Daunert S (2010) Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis. Anal Chem 82(14):6098–6103. doi:10.1021/ac1007865

    Article  CAS  Google Scholar 

  164. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317. doi:10.1038/86684

    Article  CAS  Google Scholar 

  165. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  Google Scholar 

  166. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. doi:10.1038/nbt994

    Article  CAS  Google Scholar 

  167. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217

    Article  CAS  Google Scholar 

  168. Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348(3):781–786. doi:10.1016/j.bbrc.2006.07.160

    Article  CAS  Google Scholar 

  169. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5):1410–1415. doi:10.1073/pnas.0707654105

    Article  Google Scholar 

  170. Bakayan A, Domingo B, Miyawaki A, Llopis J (2014) Imaging Ca activity in mammalian cells and zebrafish with a novel red-emitting aequorin variant. Eur J Physiol, Pflugers Archiv. doi:10.1007/s00424-014-1639-3

    Google Scholar 

  171. Grinstead KM (2015) Aequorin mutants with site-specifically incorporated non-natural amino acids for biomedical applications. Dissertation, University of Miami, Open Access Dissertations

    Google Scholar 

  172. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor Perspect Biol 3(6). doi:10.1101/cshperspect.a004317

    Google Scholar 

  173. Sama DM, Norris CM (2013) Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 12(4):982–995. doi:10.1016/j.arr.2013.05.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grinstead, K., Joel, S., Zingg, JM., Dikici, E., Daunert, S. (2015). Enabling Aequorin for Biotechnology Applications Through Genetic Engineering. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3. Advances in Biochemical Engineering/Biotechnology, vol 154. Springer, Cham. https://doi.org/10.1007/10_2015_336

Download citation

Publish with us

Policies and ethics