Skip to main content

Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 152))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  2. Joshi JB, Pandit AB, Sharma MM (1982) Mechanically agitated gas-liquid reactors. Chem Eng Sci 37:813–844

    Article  CAS  Google Scholar 

  3. Hromatka O, Ebner H (1959) Vinegar by submerged oxidative fermentation. Ind Eng Chem 51:1279–1280

    Article  CAS  Google Scholar 

  4. Matsumura M, Sakuma H, Yamagata T, Kobayashi J (1982) Gas entrainment in a new gas entraining fermentor. J Fermen Technol 60:457–467

    Google Scholar 

  5. Patwardhan AW, Joshi JB (1999) Design of gas-inducing reactors. Ind Eng Chem Res 38:49–80

    Article  CAS  Google Scholar 

  6. Long WH, Castle AW (1877) Improvement in mercury-condensers. US Patent 191,805

    Google Scholar 

  7. Ruth Jr JP (1918) Aeration device. US Patent 1,268,630

    Google Scholar 

  8. Fulweiler WH, Jordan CW (1926) Process of purifying gas. US Patent 1,632,758

    Google Scholar 

  9. Enenkel A, Maurer R (1955) Apparatus for the aeration of liquids. British Patent 724,791

    Google Scholar 

  10. Ebner H, Enenkel A (1972) Device for aerating liquid. US Patent 3,813,086

    Google Scholar 

  11. Evans GM, Rielly CD, Davidson JF, Carpenter KJ (1992) Hydrodynamic characteristics of a gas-inducing impeller. Fluid Mechan Mix 10:153–161

    Article  Google Scholar 

  12. Joshi JB, Sharma MM (1977) Mass transfer and hydrodynamic characteristics of gas inducing type of agitated contactors. Can J Chem Eng 55:683–695

    Article  CAS  Google Scholar 

  13. Zlokarnik M, Judat H (1967) Tube and disk stirrers—two efficient stirrers for the gassing of liquids. Chem Ing Tech 39:1163–1168

    Article  CAS  Google Scholar 

  14. Heim A, Kraslawski A, Rzyski E, Stelmach J (1995) Aeration of bioreactors by self-aspirating impellers. Chem Eng J 58:59–63

    CAS  Google Scholar 

  15. Forrester SE, Rielly CD (1994) Modelling the increased gas capacity of self-inducing impellers. Chem Eng Sci 49:5709–5718

    Article  CAS  Google Scholar 

  16. Rielly CD, Evans GM, Davidson JF, Carpenter KJ (1992) Effect of vessel scaleup on the hydrodynamics of a self-aerating concave blade impeller. Chem Eng Sci 47:3395–3402

    Article  CAS  Google Scholar 

  17. Forrester SE, Rielly CD, Carpenter KJ (1998) Gas-inducing impeller design and performance characteristics. Chem Eng Sci 53:603–615

    Article  CAS  Google Scholar 

  18. Martin GQ (1972) Gas-inducing agitator. Ind Eng Chem Proc Des Dev 11:397–404

    Article  CAS  Google Scholar 

  19. Deshmukh NA, Path SS, Joshi JB (2006) Gas induction characteristics of hollow self-inducing impeller. Chem Eng Res Des 84(A2):124–132

    Article  CAS  Google Scholar 

  20. Zlokarnik M (1966) Gasdurchsatzes zur Flüssigkeitsbegasung Bestimmung des Gasdurchsatzes und der Wellenleistung. Chem Ing Tech 38:357–366

    Article  CAS  Google Scholar 

  21. Achouri R, Hamza SB, Dhaouadi H, Mhiri H, Bournot P (2013) Volumetric mass transfer coefficient and hydrodynamic study of a new self-inducing turbine. Energy Conv Manag 71:69–75

    Article  CAS  Google Scholar 

  22. Mohammed AK, Hussen HA, Al-Rassul SA (2008) Performance of gas induction in a dual-impeller agitated bioreactor. Al-Khwarizmi Eng J 4(4):1–8

    Google Scholar 

  23. Kasundra RB, Kulkarni AV, Joshi JB (2008) Hydrodynamic and mass transfer characteristics of single and multiple impeller hollow self-inducing reactors. Ind Eng Chem Res 47:2829–2841

    Article  CAS  Google Scholar 

  24. Ju F, Cheng ZM, Chen JH, Chu XH, Zhou ZM, Yuan PQ (2009) A novel design for a gas-inducing impeller at lowest critical speed. Chem Eng Res Des 87:1069–1074

    Article  CAS  Google Scholar 

  25. Gomadurai C, Saravanan K, Abraham E, Deepa N (2014) Hydrodynamic studies on air-inducing impeller system. Int J ChemTech Res 6:4471–4474

    CAS  Google Scholar 

  26. Mundale VD, Joshi JB (1995) Optimization of impeller design for gas inducing type mechanically agitated contactors. Can J Chem Eng 73:161–172

    Article  CAS  Google Scholar 

  27. Wu H, Li Q, Li Z, Ye Q (2012) Succinic acid production and CO2 fixation using a metabolically engineered Escherichia coli in a bioreactor equipped with a self-inducing agitator. Biores Technol 107:376–384

    Article  CAS  Google Scholar 

  28. Joshi JB (1980) Modifications in the design of gas inducing impeller. Chem Eng Comm 5:109–114

    Article  CAS  Google Scholar 

  29. Wang Z, Xu P, Li X, Wang S, Cheng Z, Ju F (2013) Impact of liquid driving flow on the performance of a gas-inducing impeller. Chem Eng Process 69:63–69

    Article  CAS  Google Scholar 

  30. Sawant SB, Joshi JB (1979) Critical impeller speed for the onset of gas-inducing types of agitated contactors. Chem Eng J 18:87–91

    Article  Google Scholar 

  31. Sawant SB, Joshi JB, Pangarkar VG, Mhaskar RD (1981) Mass transfer and hydrodynamic characteristics of the Denver type of flotation cells. Chem Eng J 21:11–19

    Article  CAS  Google Scholar 

  32. Zundelevich Y (1979) Power consumption and gas capacity of self-inducing turbo aerators. AIChE J 25:763–773

    Article  Google Scholar 

  33. Raidoo AD, Rao KSMSR, Sawant SB, Joshi JB (1987) Improvements in gas inducing impeller desigh. Chem Eng Commun 54:241–264

    Article  CAS  Google Scholar 

  34. Mundale VD, Joshi JB (1995) Optimization of impeller design for gas inducing type of agitated contactor. Can J Chem Eng 73:6–17

    Article  Google Scholar 

  35. Saravanan K, Mundale VD, Joshi JB (1994) Gas inducing type mechanically agitated contactors. Ind Eng Chem Res 33:2226–2241

    Article  CAS  Google Scholar 

  36. Saravanan K, Joshi JB (1995) Gas-inducing-type mechanically agitated contactors: hydrodynamic characteristics of multiple impellers. Ind Eng Chem Res 34:2499–2514

    Article  CAS  Google Scholar 

  37. Saravanan K, Joshi JB (1996) Fractional gas hold-up in gas inducing type of mechanically agitated contactors. Can J Chem Eng 74:16–30

    Article  CAS  Google Scholar 

  38. Saravanan K, Mundale VD, Patwardhan AW, Joshi JB (1996) Power consumption in gas-inducing-type mechanically agitated contactors. Ind Eng Chem Res 35:1583–1602

    Article  CAS  Google Scholar 

  39. Patwardhan AW, Joshi JB (1997) Hydrodynamics of a stirred vessel equipped with a gas-inducing impeller. Ind Eng Chem Res 36:3904–3914

    Article  CAS  Google Scholar 

  40. Patil SS, Joshi JB (1999) Stability of gas-inducing type impellers. Can J Chem Eng 77:793–803

    Article  CAS  Google Scholar 

  41. Poncin S, Nguyen C, Midoux N, Breysse J (2002) Hydrodynamics and volumetric gas-liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller. Chem Eng Sci 57:3299–3306

    Article  CAS  Google Scholar 

  42. Sardeing R, Poux M, Melen S, Avrillier P, Xuereb C (2005) Aeration of large size tanks by a surface agitator. Chem Eng Technol 28:587–595

    Article  CAS  Google Scholar 

  43. Sardeing R, Ferrand F, Poux M, Avrillier P, Xuereb C (2003) Hydrodynamics and gas dispersion characterization in a system equipped with a new gas-inducing impeller. Eng Life Sci 3:31–37

    Article  CAS  Google Scholar 

  44. Sardeing R, Xuereb C, Poux M (2006) Improvement of the performances of a gas-inducing system for application in wastewater treatment. Int J Chem React Eng 4:A30

    Google Scholar 

  45. Sardeing RF, Poux M, Xuereb C (2006) Development of a new gas-inducing turbine family: the partially shrouded turbine. Ind Eng Chem Res 45:4791–4804

    Article  CAS  Google Scholar 

  46. Patwardhan AW, Joshi JB (1998) Design of stirred vessels with gas entrained from free liquid surface. Can J Chem Eng 76:339–364

    Article  CAS  Google Scholar 

  47. Matsumura M, Sakuma H, Yamagata T, Kobayashi J (1980) Gas absorption characteristics of the tank-type fermentor with a mechanical gas entrainer. J Ferment Technol 58:69–77

    CAS  Google Scholar 

  48. Hsu YC, Chang H-C (1995) Onset of gas self-induction and power consumption after gas induction in an agitated tank. J Chem Tech Biotechnol 64:137–148

    Article  CAS  Google Scholar 

  49. Hsu Y-C, Huang C-J (1996) Characteristics of a new gas-induced reactor. AIChE J 42:3146–3152

    Article  CAS  Google Scholar 

  50. Hsu Y-C, Peng RY, Huang C-J (1997) Onset of gas induction, power consumption, gas hold up and mass transfer in a new gas-induced reactor. Chem Eng Sci 52:3883–3891

    Article  CAS  Google Scholar 

  51. Chen J-H, Hsu Y-C, Chen Y-F, Lin C-C (2003) Application of gas-inducing reactor to obtain high oxygen dissolution in aeration process. Water Res 37:2919–2928

    Article  CAS  Google Scholar 

  52. Scargiali F, Russo R, Grisafi F, Brucato A (2007) Mass transfer and hydrodynamic characteristics of a high aspect ratio self-ingesting reactor for gas-liquid operations. Chem Eng Sci 62:1376–1387

    Article  CAS  Google Scholar 

  53. Scargiali F, Busciglio A, Grisafi F, Brucato A (2012) Gas-liquid-solid operation of a high aspect ratio self-ingesting reactor. Int J Chem React Eng 10:A27

    Google Scholar 

  54. Kamen AA, Chavarie C, André G, Archambault J (1992) Design parameters and performance of a surface baffled helical ribbon impeller bioreactor for the culture of shear sensitive cells. Chem Eng Sci 47:2375–2380

    Article  CAS  Google Scholar 

  55. Conway K, Kyle A, Rielly CD (2002) Gas-liquid-solid operation of a vortex-ingesting stirred tank reactor. Chem Eng Res Des 80:839–845

    Article  CAS  Google Scholar 

  56. Patil SS, Joshi JB (1999) Optimum design of stator-rotor assembly in gas inducing type mechanically agitated reactors. Chem Eng Commun 174:215–231

    Article  CAS  Google Scholar 

  57. Evans GM, Rielly CD, Davidson JF, Carpenter KJ (1990) A fundamental study of gas-inducing impeller design. Fluid Mixing IV 121:137–152 (Institution of Chemical Engineers Symposium Series)

    CAS  Google Scholar 

  58. White DA, de Villiers JU (1977) Rates of induced aeration in agitated vessels. Chem Eng J 14:113–118

    Article  CAS  Google Scholar 

  59. Saravanan K, Patwardhan AW, Joshi JB (1997) Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors. Can J Chem Eng 75:664–676

    Article  CAS  Google Scholar 

  60. Patil SS, Mundale VD, Joshi JB (2005) Mechanism of gas induction in a self-inducing impeller. Ind Eng Chem Res 44:1322–1328

    Article  CAS  Google Scholar 

  61. Michel BJ, Miller SA (1962) Power requirements of gas-liquid agitated systems. AIChE J 8:262–266

    Article  Google Scholar 

  62. Sideman S, Hortacsu O, Fulton JW (1966) Mass transfer in gas-liquid contacting systems. Ind Eng Chem 58(7):32–47

    Article  CAS  Google Scholar 

  63. Cooper CM, Fernstrom GA, Miller SA (1944) Gas-liquid contactors. Ind Eng Chem 36:504–509

    Article  CAS  Google Scholar 

  64. Rushton JH, Gallagher JB, Oldshue JY (1956) Gas-liquid contacting with multiple mixing turbines. Chem Eng Prog 52:319–323

    CAS  Google Scholar 

  65. Yoshida F, Ikeda A, Imakawa S, Miura Y (1960) Oxygen absorption rates in stirred gas-liquid contactors. Ind Eng Chem 52:435–438

    Article  CAS  Google Scholar 

  66. Hyman D, Van den Bogaerde JM (1960) Gas-liquid contacting in small bench-scale stirred reactors. Ind Eng Chem 52:751–753

    Article  CAS  Google Scholar 

  67. Robinson CW, Wilke CR (1973) Oxygen absorption in stirred tanks: a correlation for ionic strength effects. Biotechnol Bioeng 15:755–782

    Article  CAS  Google Scholar 

  68. Yagi H, Yoshida F (1975) Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessels. Ind Eng Chem Proc Des Dev 14:488–493

    Article  CAS  Google Scholar 

  69. Yu H, Tan Z (2012) New correlations of volumetric liquid-phase mass transfer coefficients in gas-inducing agitated tank reactors. Int J Chem Reactor Eng 10:A50

    Article  Google Scholar 

  70. Hichri H, Accary A, Puaux JP, Andrieu J (1992) Gas-liquid mass transfer coefficients in a slurry batch reactor equipped with a self-gas-inducing agitator. Ind Eng Chem Res 31:1864–1867

    Article  CAS  Google Scholar 

  71. Patil SS, Deshmukh NA, Joshi JB (2004) Mass transfer characteristics of surface aerators and gas-inducing impellers. Ind Eng Chem Res 43:2765–2774

    Article  CAS  Google Scholar 

  72. Girgin EH, Do S, Gomez CO, Finch JA (2006) Bubble size as a function of impeller speed in a self-aerated laboratory flotation cell. Min Eng 19:201–203

    Article  CAS  Google Scholar 

  73. Zlokarnik M (1978) Sorption characteristics for gas-liquid contacting in mixing vessels. Adv Biochem Eng 8:133–151

    CAS  Google Scholar 

  74. Kara M, Sung S, Klinzing GE, Chiang SH (1983) Hydrogen mass transfer in liquid hydrocarbons at elevated temperatures and pressures. Fuel 62:1492–1498

    Article  CAS  Google Scholar 

  75. Chang M-Y, Morsi BI (1991) Mass transfer characteristics of gases in aqueous and organic liquids at elevated pressures and temperatures in agitated reactors. Chem Eng Sci 46:2639–2650

    Article  CAS  Google Scholar 

  76. Hichri H, Accary A, Andrieu A (1991) Kinetics and slurry-type reactor modeling during catalytic hydrogenation of o-cresol on Ni/SiO2. Chem Eng Proc 30:133–140

    Article  CAS  Google Scholar 

  77. Dietrich E, Mathieu C, Delmas H, Jenck J (1992) Raney-nickel catalysed hydrogenations: gas–liquid mass transfer in gas-induced stirred slurry reactors. Chem Eng Sci 47:3597–3604

    Article  CAS  Google Scholar 

  78. Koneripalli N, Tekie Z, Morsi BI, Chang M-Y (1994) Mass transfer characteristics of gases in methanol and ethanol under elevated pressure and temperature. Chem Eng J 54:63–77

    CAS  Google Scholar 

  79. Tekie Z, Li J, Morsi BI, Chang M-Y (1997) Gas–liquid mass transfer in cyclohexane oxidation process using gas-inducing and surface-aeration agitated reactors. Chem Eng Sci 52:1541–1551

    Article  CAS  Google Scholar 

  80. Zieverink MMP, Kreutzer MT, Kapteijn F, Moulijn JA (2006) Gas-liquid mass transfer in bench scale stirred tanks—fluid properties and critical impeller speed for gas induction. Ind Eng Chem Res 45:4574–4581

    Article  CAS  Google Scholar 

  81. Tekie Z, Li J, Morsi BI (1997) Mass transfer parameters of O2 and N2 in cyclohexane under elevated pressures and temperatures: a statistical approach. Ind Eng Chem Res 36:3879–3888

    Article  CAS  Google Scholar 

  82. Fillion B, Morsi BI (2000) Gas-liquid mass-transfer and hydrodynamic parameters in a soybean oil hydrogenation process under industrial conditions. Ind Eng Chem Res 39:2157–2168

    Article  CAS  Google Scholar 

  83. Reisener J, Reuter MA, Krűger J (1993) Modelling of the mass transfer in gas-sparged electrolysers with neural nets. Chem Eng Sci 48:1089–1101

    Article  CAS  Google Scholar 

  84. Yang H, Fang BS, Reuss M (1999) k L a correlation established on the basis of a neural network model. Can J Chem Eng 77:838–843

    Article  CAS  Google Scholar 

  85. Lemoine R, Fillion B, Behkish A, Smith AE, Morsi BI (2003) Prediction of the gas/liquid volumetric mass transfer coefficients in surface-aeration and gas-inducing reactors using neural networks. Chem Eng Process 42:621–643

    Article  CAS  Google Scholar 

  86. Lemoine R, Morsi BI (2005) An algorithm for predicting the hydrodynamic and mass transfer parameters in agitated reactors. Chem Eng J 114:9–31

    Article  CAS  Google Scholar 

  87. Rigby GD, Evans GM (1998) CFD simulation of gas dispersion dynamics in liquid cross-flows. Appl Math Model 22:799–810

    Article  Google Scholar 

  88. Murthy BN, Deshmukh NA, Patwardhan AW, Joshi JB (2007) Hollow self-inducing impellers: flow visulization. Chem Eng Sci 62:3839–3848

    Article  CAS  Google Scholar 

  89. Achouri R, Mokni I, Mhiri H, Bournot P (2012) A 3D CFD simulation of a self inducing pitched blade turbine dowflow. Energy Conv Manag 64:633–641

    Article  Google Scholar 

  90. Fonte CP, Pinho BS, Santos-Moreau V, Lopes JCB (2014) Prediction of the induced gas flow rate from a self-inducing impeller with CFD. Chem Eng Technol 37:571–579

    Article  CAS  Google Scholar 

  91. Murthy BN, Kasundra RB, Joshi JB (2008) Hollow self-inducing impellers for gas-liquid-solid dispersion: experimental and computational study. Chem Eng J 141:332–345

    Article  CAS  Google Scholar 

  92. Koh PTL, Schwarz MP, Zhu Y, Bourke P, Peaker R, Franzidis JP (2003) Development of CFD models of mineral flotation cells. In: Proceeding of the third international conference on CFD in the minerals and process industries, Melbourne, Australia

    Google Scholar 

  93. Koh PTL, Schwarz MP (2003) CFD modelling of bubble–particle collision rates and efficiencies in a flotation cell. Min Eng 16:1055–1059

    Article  CAS  Google Scholar 

  94. Koh PTL, Schwarz MP (2007) CFD model of a self-aerating flotation cell. Int J Min Proc 85:16–24

    Article  CAS  Google Scholar 

  95. Koh PTL, Manickam M, Schwarz MP (2000) CFD simulation of bubble-particle collisions in mineral flotation cells. Min Eng 13:1455–1463

    Article  CAS  Google Scholar 

  96. Koh PTL, Schwarz MP (2006) CFD modelling of bubble–particle attachments in flotation cells. Min Eng 19:619–626

    Article  CAS  Google Scholar 

  97. Hong H-S, Cai Z-J, Li J-Q, Shi D-S, Wan W-Q, Li L (2014) Simulation of gas-inducing reactor couples gas-liquid mass transfer and biochemical reaction. Biochem Eng J 91:1–9

    Article  CAS  Google Scholar 

  98. Vesselinov HH, Stephan B, Uwe H, Holger K, Günther H, Wilfried S (2008) A study on the two-phase flow in a stirred tank reactor agitated by a gas-inducing turbine. Chem Eng Res Des 86:75–81

    Article  CAS  Google Scholar 

  99. Boden S, Bieberle M, Hampel U (2008) Quantitative measurement of gas hold-up distribution in a stirred chemical reactor using X-ray cone-beam computed tomography. Chem Eng J 139:351–362

    Article  CAS  Google Scholar 

  100. Hampel U, Hristov HV, Bieberle A, Zippe C (2007) Application of high-resolution gamma ray tomography to the measurement of gas hold-up distributions in a stirred chemical reactor. Flow Meas Inst 18:184–190

    Article  CAS  Google Scholar 

  101. García-García I, Santos-Dueñas IM, Jiménez-Ot C, Jiménez-Hornero JE, Bonilla-Venceslada JL (2009) Vinegar engineering. In: Solien L, Giudici P (eds) Vinegars of the world. Springer, Milan

    Google Scholar 

  102. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  CAS  Google Scholar 

  103. Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  104. Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109:492–498

    Article  CAS  Google Scholar 

  105. Tsai S-P, Datta R, Basu R, Yoon S-H (2008) Syngas conversion system using asymmetric membrane and anaerobic microorganism. US Patent Application 12/036,007

    Google Scholar 

  106. Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (k L a) in different reactor configurations. Biotechnol Prog 26:1616–1621

    Article  CAS  Google Scholar 

  107. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727

    Article  CAS  Google Scholar 

  108. Kshirsagar HH, Revankar MS, Kamat MY, Lele SS (2002) Cultivation of Spirulina in gas induced photobioreactor and isolation of phycobiliproteins. Indian J Biotechnol 1:255–262

    CAS  Google Scholar 

  109. Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John GT, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioproc Biosyst Eng 28:109–119

    Article  CAS  Google Scholar 

  110. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523

    Article  CAS  Google Scholar 

  111. Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235

    Article  CAS  Google Scholar 

  112. Knorr B, Schlieker H, Hohmann H-P, Weuster-Botz D (2007) Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis. Biochem Eng J 33:263–274

    Article  CAS  Google Scholar 

  113. Puskeilsr R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235

    Article  CAS  Google Scholar 

  114. Vester A, Hans M, Hohmann H-P, Weuster-Botz D (2009) Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale. Appl Microbiol Biotechnol 84:71–76

    Article  CAS  Google Scholar 

  115. Hoefel T, Wittmann E, Reinecke L, Weuster-Botz D (2010) Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H 16. Appl Microbiol Biotechnol 88:477–484

    Article  CAS  Google Scholar 

  116. Kamen AA, Tom RL, Caron AW, Chavarie C, Massie B, Archambault J (1991) Culture of insect cells in helical ribbon impeller bioreactor. Biotechnol Bioeng 38:619–628

    Article  CAS  Google Scholar 

  117. Jolicoeur M, Chavarie C, Carreau PJ, Archambault J (1992) Development of a helical-ribbon impeller bioreactor for high-density plant cell suspension culture. Biotechnol Bioeng 39:511–521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ye, Q., Li, Z., Wu, H. (2015). Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology. In: Bao, J., Ye, Q., Zhong, JJ. (eds) Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2015_329

Download citation

Publish with us

Policies and ethics