Skip to main content

Theoretical and Computational Strategies for the Study of the Molecular Imprinting Process and Polymer Performance

  • Chapter
  • First Online:
Molecularly Imprinted Polymers in Biotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recog 19:106–180

    CAS  Google Scholar 

  2. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–27

    CAS  Google Scholar 

  3. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    CAS  Google Scholar 

  4. Batra D, Shea KJ (2003) Combinatorial methods in molecular imprinting. Curr Opin Chem Biol 7:434–442

    CAS  Google Scholar 

  5. Sellergren B (ed) (2001) Molecularly imprinted polymers : man-made mimics of antibodies and their applications in analytical chemistry, vol 23. Elsevier, Amsterdam

    Google Scholar 

  6. Komiyama M, Takeuchi T, Mukawa T, Asanuma H (2002) Molecular imprinting: from fundamentals to applications. Wiley-VCH, Weinheim

    Google Scholar 

  7. Yan M, Ramström O (eds) (2005) Molecularly imprinted materials: science and technology. Marcel Dekker, New York

    Google Scholar 

  8. Piletsky SA, Turner APF (eds) (2006) Molecular imprinting of polymers. Landes Bioscience, Georgetown

    Google Scholar 

  9. Lei Y (2013) Molecular imprinting: principles and applications of micro- and nanostructured polymers. Pan Stanford Publishing, Singapore

    Google Scholar 

  10. Nicholls IA (1995) Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers. Chem Lett 24:1035–1036

    Google Scholar 

  11. Nicholls IA, Adbo K, Andersson HS, Andersson PO, Ankarloo J, Hedin-Dahlström J, Jokela P, Karlsson JG, Olofsson L, Rosengren J et al (2001) Can we rationally design molecularly imprinted polymers? Anal Chim Acta 435:9–18

    CAS  Google Scholar 

  12. Pande VS, Grosberg AY, Tanaka T (1997) How to create polymers with protein-like capabilities: a theoretical suggestion. Phys D 107:316–321

    CAS  Google Scholar 

  13. Nicholls IA (1998) Towards the rational design of molecularly imprinted polymers. J Mol Recognit 11:79–82

    CAS  Google Scholar 

  14. Piletsky SA, Panasyuk TL, Piletskaya EV, Nicholls IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes—a review. J Membr Sci 157:263–278

    CAS  Google Scholar 

  15. Wu X, Carroll WR, Shimizu KD (2008) Stochastic lattice model simulations of molecularly imprinted polymers. Chem Mater 20:4335–4346

    CAS  Google Scholar 

  16. Veitl M, Schweiger U, Berger ML (1997) Stochastic simulation of ligand-receptor interaction. Comput Biomed Res 30:427–450

    CAS  Google Scholar 

  17. Nicholls IA, Andersson HS, Freebairn K, Henschel H, Karlsson BCG, Olsson GD, Rosengren AM, Shoravi S, Wiklander JG, Wikman S (2013) Rational molecularly imprinted polymer design: theoretical and computational strategies. In: Lei Y (ed) Molecular imprinting: principles and applications of micro- and nanostructured polymers. Pan Stanford Publishing, Singapore

    Google Scholar 

  18. Fu Q, Sanbe H, Kagawa C, Kunimoto KK, Haginaka J (2003) Uniformly sized molecularly Imprinted polymer for (S)-Nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein. Anal Chem 75:191–198

    CAS  Google Scholar 

  19. Schwarz L, Holdsworth CI, McCluskey A, Bowyer MC (2004) Synthesis and evaluation of a molecularly imprinted polymer selective to 2,4,6-trichlorophenol. Aust J Chem 57:759–764

    CAS  Google Scholar 

  20. Li P, Rong F, Xie YB, Hu V, Yuan CW (2004) Study on the binding characteristic of s-naproxen imprinted polymer and the interactions between templates and monomers. J Anal Chem 59:939–944

    CAS  Google Scholar 

  21. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolo F, Mussini PR (2009) Melamine acoustic chemosensor based on molecularly imprinted polymer film. Anal Chem 81:10061–10070

    CAS  Google Scholar 

  22. Demircelik AH, Andac M, Andac CA, Say R, Denizli A (2009) Molecular recognition-based detoxification of aluminum in human plasma. J Biomater Sci Polym Ed 20:1235–1258

    Google Scholar 

  23. Riahi S, Edris-Tabrizi F, Javanbakht M, Ganjali MR, Norouzi P (2009) A computational approach to studying monomer selectivity towards the template in an imprinted polymer. J Mol Model 15:829–836

    Google Scholar 

  24. Holdsworth CI, Bowyer MC, Lennard C, McCluskey A (2005) Formulation of cocaine-imprinted polymers utilizing molecular modelling and NMR analysis. Aust J Chem 58:315–320

    CAS  Google Scholar 

  25. Lulinski P, Maciejewska D, Bamburowicz-Klimkowska M, Szutowski M (2007) Dopamine-imprinted polymers: template-monomer interactions, analysis of template removal and application to solid phase extraction. Molecules 12:2434–2449

    CAS  Google Scholar 

  26. Baggiani C, Anfossi L, Baravalle P, Giovannoli C, Tozzi C (2005) Selectivity features of molecularly imprinted polymers recognising the carbamate group. Anal Chim Acta 531:199–207

    CAS  Google Scholar 

  27. Dong WG, Yan M, Zhang ML, Liu Z, Li YM (2005) A computational and experimental Investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal Chim Acta 542:186–192

    CAS  Google Scholar 

  28. Gholivand MB, Khodadadian M, Ahmadi F (2010) Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma. Anal Chim Acta 658:225–232

    CAS  Google Scholar 

  29. Alizadeh T (2008) Development of a molecularly imprinted polymer for pyridoxine using an ion-pair as template. Anal Chim Acta 623:101–108

    CAS  Google Scholar 

  30. Yao JH, Li X, Qin W (2008) Computational design and synthesis of molecular imprinted polymers with high selectivity for removal of aniline from contaminated water. Anal Chim Acta 610:282–288

    CAS  Google Scholar 

  31. Li Y, Li X, Dong CK, Li YQ, Jin PF, Qi JY (2009) Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosens Bioelectron 25:306–312

    Google Scholar 

  32. Kowalska A, Stobiecka A, Wysocki S (2009) A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct THEOCHEM 901:88–95

    CAS  Google Scholar 

  33. Del Sole R, Lazzoi MR, Arnone M, Della Sala F, Cannoletta D, Vasapollo G (2009) Experimental and computational studies on non-covalent imprinted microspheres as recognition system for nicotinamide molecules. Molecules 14:2632–2649

    Google Scholar 

  34. Azenha M, Kathirvel P, Nogueira P, Fernando-Silva A (2008) The requisite level of theory for the computational design of molecularly imprinted silica xerogels. Biosens Bioelectron 23:1843–1849

    CAS  Google Scholar 

  35. Ogawa T, Hoshina K, Haginaka J, Honda C, Moto TT, Uchida T (2005) Screening of bitterness-suppressing agents for quinine: the use of molecularly imprinted polymers. J Pharm Sci 94:353–362

    CAS  Google Scholar 

  36. Lai EPC, Feng SY (2003) Molecularly imprinted solid phase extraction for rapid screening of metformin. Microchem J 75:159–168

    CAS  Google Scholar 

  37. Wu LQ, Sun BW, Li YZ, Chang WB (2003) Study properties of molecular imprinting polymer using a computational approach. Analyst 128:944–949

    CAS  Google Scholar 

  38. Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2005) Computational approach to the rational design of molecularly imprinted polymers for voltammetric sensing of homovanillic acid. Anal Chem 77:6741–6746

    CAS  Google Scholar 

  39. Dineiro Y, Menendez MI, Blanco-Lopez MC, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2006) Computational predictions and experimental affinity distributions for a homovanillic acid molecularly imprinted polymer. Biosens Bioelectron 22:364–371

    CAS  Google Scholar 

  40. Dong C, Li X, Guo Z, Qi J (2009) Development of a model for the rational design of molecular imprinted polymer: computational approach for combined molecular dynamics/quantum mechanics calculations. Anal Chim Acta 647:117–124

    CAS  Google Scholar 

  41. Rathbone DL, Ali A, Antonaki P, Cheek S (2005) Towards a polymeric binding mimic for cytochrome CYP2D6. Biosens Bioelectron 20:2353–2363

    CAS  Google Scholar 

  42. Sagawa T, Togo K, Miyahara C, Ihara H, Ohkubo K (2004) Rate-enhancement of hydrolysis of long-chain amino acid ester by cross-linked polymers imprinted with a transition-State analogue: evaluation of imprinting effect in kinetic analysis. Anal Chim Acta 504:37–41

    CAS  Google Scholar 

  43. Voshell SM, Gagné MR (2005) Rigidified dendritic structures for imprinting chiral information. Organometallics 24:6338–6350

    CAS  Google Scholar 

  44. O’Mahony J, Karlsson BCG, Mizaikoff B, Nicholls IA (2007) Correlated theoretical, spectroscopic and x-ray crystallographic studies of a non-covalent molecularly Imprinted polymerisation system. Analyst 132:1161–1168

    Google Scholar 

  45. Karlsson BCG, O’Mahony J, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA (2009) Structure and dynamics of monomer—template complexation: an Explanation for molecularly imprinted polymer recognition site heterogeneity. J Am Chem Soc 131:13297–13304

    CAS  Google Scholar 

  46. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Google Scholar 

  47. Wu LQ, Zhu KC, Zhao WP, Li YZ (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal Chim Acta 549:39–44

    CAS  Google Scholar 

  48. Liu Y, Wang F, Tan TW, Lei M (2010) Rational design and study on recognition property of paracetamol-imprinted polymer. Appl Biochem Biotechnol 160:328–342

    CAS  Google Scholar 

  49. Dong WG, Yan M, Liu Z, Wu GS, Li YM (2007) Effects of solvents on the adsorption selectivity of molecularly imprinted polymers: molecular simulation and experimental validation. Sep Purif Technol 53:183–188

    CAS  Google Scholar 

  50. Wang JC, Guo RB, Chen JP, Zhang Q, Liang XM (2005) Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-(4-isopropylphenyl)-N′-butyleneurea as dummy template. Anal Chim Acta 540:307–315

    CAS  Google Scholar 

  51. Jacob R, Tate M, Banti Y, Rix C, Mainwaring DE (2008) Synthesis, characterization, and ab Initio theoretical study of a molecularly imprinted polymer selective for biosensor materials. J Phys Chem A 112:322–331

    CAS  Google Scholar 

  52. Wu LQ, Li YZ (2003) Picolinamide-Cu(Ac)(2)-Imprinted polymer with high potential for recognition of picolinamide-copper acetate complex. Anal Chim Acta 482:175–181

    CAS  Google Scholar 

  53. Wu LQ, Li YZ (2004) Metal Ion-mediated molecular-imprinting polymer for indirect recognition of formate, acetate and propionate. Anal Chim Acta 517:145–151

    CAS  Google Scholar 

  54. Christoforidis KC, Louloudi M, Rutherford AW, Deligiannakis Y (2008) Semiquinone in molecularly imprinted hybrid amino acid-SiO2 biomimetic materials. An experimental and theoretical study. J Phys Chem C 112:12841–12852

    CAS  Google Scholar 

  55. Che AF, Wan LS, Ling J, Liu ZM, Xu ZK (2009) Recognition mechanism of theophylline-imprinted polymers: two-dimensional infrared analysis and density functional theory study. J Phys Chem B 113:7053–7058

    CAS  Google Scholar 

  56. Shiigi H, Kijima D, Ikenaga Y, Hori K, Fukazawa S, Nagaoka T (2005) Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film. J Electrochem Soc 152:H129–H134

    CAS  Google Scholar 

  57. Mukawa T, Goto T, Nariai H, Aoki Y, Imamura A, Takeuchi T (2003) Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates. J Pharm Biomed Anal 30:1943–1947

    CAS  Google Scholar 

  58. Meng ZH, Yamazaki T, Sode K (2004) A Molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process. Biosens Bioelectron 20:1068–1075

    CAS  Google Scholar 

  59. Wu LQ, Li YZ (2004) Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches. J Mol Recognit 17:567–574

    CAS  Google Scholar 

  60. Tada M, Sasaki T, Iwasawa Y (2004) Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for alpha-methylstyrene hydrogenation. J Phys Chem B 108:2918–2930

    CAS  Google Scholar 

  61. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35:7499–7504

    CAS  Google Scholar 

  62. Piletsky SA, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2004) Polymer cookery. 2. Influence of polymerization pressure and polymer swelling on the performance of molecularly imprinted polymers. Macromolecules 37:5018–5022

    CAS  Google Scholar 

  63. Piletsky SA, Mijangos I, Guerreiro A, Piletska EV, Chianella I, Karim K, Turner APF (2005) Polymer cookery: influence of polymerization time and different initiation conditions on performance of molecularly imprinted polymers. Macromolecules 38:1410–1414

    CAS  Google Scholar 

  64. Leach AR (2001) Molecular dynamics simulation methods. In: Molecular modelling: principles and applications. Prentice Hall, Harlow, pp 353–409

    Google Scholar 

  65. Alder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27:1208–1209

    CAS  Google Scholar 

  66. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and Biological molecules? J Comput Chem 21:1049–1074

    CAS  Google Scholar 

  67. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  Google Scholar 

  68. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  69. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS All-Atom Force Field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    CAS  Google Scholar 

  70. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91:43–56

    CAS  Google Scholar 

  71. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  72. Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740

    CAS  Google Scholar 

  73. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 Relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    CAS  Google Scholar 

  74. Cheatham TE (III), Kollman PA (1996) Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol 259:434–444

    Google Scholar 

  75. Cheatham TE (III), Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh ewald method leads to Stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    Google Scholar 

  76. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    CAS  Google Scholar 

  77. Van der Ploeg P, Berendsen HJC (1982) Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276

    Google Scholar 

  78. De Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Google Scholar 

  79. Van Buuren AR, Marrink SJ, Berendsen HJC (1993) A molecular dynamics study of the Decane/water interface. J Phys Chem 97:9206–9212

    Google Scholar 

  80. Hsu QC, Wu CD, Fang TH (2005) Studies on nanoimprint process parameters of copper by molecular dynamics analysis. Comput Mat Sci 34:314–322

    CAS  Google Scholar 

  81. Garrison BJ, Delcorte A, Krantzman KD (2000) Molecule liftoff from surfaces. Acc Chem Res 33:69–77

    CAS  Google Scholar 

  82. Masukawa KM, Kollman PA, Kuntz ID (2003) Investigation of neuraminidase-substrate recognition using molecular dynamics and free energy calculations. J Med Chem 46:5628–5637

    CAS  Google Scholar 

  83. Yang H, Elcock AH (2003) Association lifetimes of hydrophobic amino acid pairs measured directly from molecular dynamics simulations. J Am Chem Soc 125:13968–13969

    CAS  Google Scholar 

  84. Li X, Eriksson L (2005) Molecular dynamics study of lignin constituents in water. Holzforschung 59:253–262

    CAS  Google Scholar 

  85. Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Del Rev 57:1742–1778

    CAS  Google Scholar 

  86. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) How to find effective functional monomers for effective molecularly imprinted polymers? Adv Drug Del Rev 57:1795–1808

    CAS  Google Scholar 

  87. Wei S, Jakusch M, Mizaikoff B (2006) Capturing molecules with templated materials—analysis and rational design of molecularly imprinted polymers. Anal Chim Acta 578:50–58

    CAS  Google Scholar 

  88. Piletsky SA, Karim K, Piletska EV, Day CJ, Freebairn KW, Legge CH (2001) Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst 126:1826–1830

    CAS  Google Scholar 

  89. Piletska EV, Turner NW, Turner APF, Piletsky SA (2005) Controlled release of the herbicide Simazine from computationally designed molecularly imprinted polymers. J Controlled Release 108:132–139

    CAS  Google Scholar 

  90. Piletska EV, Romero-Guerra M, Guerreiro AR, Karim K, Turner APF, Piletsky SA (2005) Adaptation of the molecular imprinted polymers towards polar environment. Anal Chim Acta 542:47–51

    CAS  Google Scholar 

  91. Piletska EV, Romero-Guerra M, Chianella I, Karim K, Turner AR, Piletsky SA (2005) Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers. Anal Chim Acta 542:111–117

    CAS  Google Scholar 

  92. Subrahmanyam S, Piletsky SA, Piletska EV, Chen B, Karim K, Turner APF (2001) “Bite-and-Switch” approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16:631–637

    CAS  Google Scholar 

  93. Piletska EV, Piletsky SA, Karim K, Terpetschnig E, Turner APF (2004) Biotin-specific synthetic receptors prepared using molecular imprinting. Anal Chim Acta 504:179–183

    CAS  Google Scholar 

  94. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Rational design of a polymer specific for Microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    CAS  Google Scholar 

  95. Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of Microcystin-LR. Biosens Bioelectron 18:119–127

    CAS  Google Scholar 

  96. Wei S, Jakusch M, Mizaikoff B (2007) Investigating the mechanisms of 17β-estradiol imprinting by computational prediction and spectroscopic analysis. Anal Bioanal Chem 389:423–431

    CAS  Google Scholar 

  97. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives—Part I. Polymer 46:7528–7542

    CAS  Google Scholar 

  98. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular Imprinting of theophylline—Part II. Polymer 46:7543–7556

    CAS  Google Scholar 

  99. Pavel D, Lagowski J, Lepage CJ (2006) Computationally designed monomers for molecular imprinting of chemical warfare agents—Part V. Polymer 47:8389–8399

    CAS  Google Scholar 

  100. Molinelli A, O’Mahony J, Nolan K, Smyth MR, Jakusch M, Mizaikoff B (2005) Analyzing the mechanisms of selectivity in biomimetic self-assemblies via IR and NMR spectroscopy of prepolymerization solutions and molecular dynamics simulations. Anal Chem 77:5196–5204

    CAS  Google Scholar 

  101. Monti S, Cappelli C, Bronco S, Giusti P, Ciardelli G (2006) Towards the design of highly selective recognition sites into molecular imprinting polymers: a computational approach. Biosens Bioelectron 22:153–163

    CAS  Google Scholar 

  102. Lv Y, Lin Z, Tan T, Feng W, Qin P, Li C (2008) Application of molecular dynamics modeling for the prediction of selective adsorption properties of dimethoate imprinting polymer. Sens Actuators, B 133:15–23

    CAS  Google Scholar 

  103. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (2000) Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloids Surf A 169:259–269

    CAS  Google Scholar 

  104. Toorisaka E, Uezu K, Goto M, Furusaki S (2003) A molecularly imprinted polymer that shows enzymatic activity. Biochem Eng J 14:85–91

    CAS  Google Scholar 

  105. Liu R, Li X, Li Y, Jin P, Qin W, Qi J (2009) Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach. Biosens Bioelectron 25:629–634

    CAS  Google Scholar 

  106. Li Y, Li X, Li Y, Dong C, Jin P, Qi J (2009) Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials 30:3205–3211

    CAS  Google Scholar 

  107. Svenson J, Karlsson JG, Nicholls IA (2004) 1H nuclear magnetic resonance study of the molecular imprinting of (-)-nicotine: template self-association, a molecular basis for cooperative ligand binding. J Chromatogr A 1024:39–44

    CAS  Google Scholar 

  108. Andersson HS, Karlsson JG, Piletsky SA, Koch-Schmidt A-C, Mosbach K, Nicholls IA (1999) Study of the nature of recognition in molecularly imprinted polymers, II: influence of monomer-template ratio and sample load on retention and selectivity. J Chromatogr A 848(1):39–49

    CAS  Google Scholar 

  109. Katz A, Davis ME (1999) Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32:4113–4121

    CAS  Google Scholar 

  110. Olsson GD, Karlsson BCG, Shoravi S, Wiklander JG, Nicholls IA (2012) Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers. J Mol Recognit 25:69–73

    CAS  Google Scholar 

  111. Ansell RJ, Kuah KL (2005) Imprinted polymers for chiral resolution of (±)-ephedrine: understanding the pre-polymerisation equilibrium and the action of different mobile phase modifiers. Analyst 130:179–187

    Google Scholar 

  112. Ansell RJ, Wang D, Kuah JKL (2008) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 2: probing pre-polymerisation equilibria in different solvents by NMR. Analyst 133:1673–1683

    CAS  Google Scholar 

  113. Ansell RJ, Wang DY (2009) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and HPLC results with alternative functional monomers. Analyst 134:564–576

    CAS  Google Scholar 

  114. O’Mahony J, Wei S, Molinelli A, Mizaikoff B (2006) Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers. Anal Chem 78:6187–6190

    Google Scholar 

  115. O’Mahony J, Moloney M, McCormack M, Nicholls IA, Mizaikoff B, Danaher M (2013) Design and implementation of an imprinted material for the exaction of the endocrine disruptor Bisphenol A from milk. J Chromatogr B 931:164–169

    Google Scholar 

  116. Golker K, Karlsson BCG, Olsson GD, Rosengren AM, Nicholls IA (2013) Influence of composition and morphology on template recognition in molecularly imprinted polymers. Macromolecules 46:1408–1414

    CAS  Google Scholar 

  117. Golker K, Karlsson BCG, Rosengren AM, Nicholls IA (2014) A functional monomer is not enough: principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology. Int J Mol Sci 15:20572–20584

    CAS  Google Scholar 

  118. Shoravi S, Olsson GD, Karlsson BCG, Nicholls IA (2014) On the Influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies. Int J Mol Sci 15:10622–10634

    CAS  Google Scholar 

  119. Cleland D, Olsson GD, Karlsson BCG, Nicholls IA, McCluskey A (2014) Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene. Org Biomol Chem 12:844–853

    CAS  Google Scholar 

  120. Srebnik S, Lev O, Avnir D (2001) Pore size distribution induced by microphase separation: effect of the leaving group during polycondensation. Chem Mater 13:811–816

    CAS  Google Scholar 

  121. Srebnik S, Lev O (2002) Toward establishing criteria for polymer imprinting using mean-field theory. J Chem Phys 116:10967–10972

    CAS  Google Scholar 

  122. Srebnik S (2004) Theoretical investigation of the imprinting efficiency of molecularly imprinted polymers. Chem Mater 16:883–888

    CAS  Google Scholar 

  123. Yungerman I, Srebnik S (2006) Factors contributing to binding-site imperfections in imprinted polymers. Chem Mater 18:657–663

    CAS  Google Scholar 

  124. Zhao Z-J, Wang Q, Zhang L, Wu T (2008) Structured water and water-polymer interactions in hydrogels of molecularly imprinted polymers. J Phys Chem B 112:7515–7521

    CAS  Google Scholar 

  125. Luo D, Zhao Z, Zhang L, Wang Q, Wang J (2014) On the structure of molecularly imprinted polymers by modifying charge on functional groups through molecular dynamics simulations. Mol Simul 40:431–438

    CAS  Google Scholar 

  126. Azenha M, Szefczyk B, Loureiro D, Kathirvel P, DS Cordeiro MN, Fernando-Silva A (2013) Computational and experimental study of the effect of PEG in the preparation of damascenone-imprinted xerogels. Langmuir 29:2024–2032

    Google Scholar 

  127. Esbensen KH (ed) (2002) Multivariate data analysis in practice, 5th edn. Camo Process AS, Oslo

    Google Scholar 

  128. Carlsson R (1992) Design and optimization in organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  129. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis. Principles and application. Umetrics Academy, Umeå

    Google Scholar 

  130. Navarro-Villoslada F, Vicente BS, Moreno-Bondi MC (2004) Application of multivariate Analysis to the screening of molecularly imprinted polymers for bisphenol A. Anal Chim Acta 504:149–162

    CAS  Google Scholar 

  131. Navarro-Villoslada F, Takeuchi T (2005) Multivariate Analysis and Experimental Design in the Screening of Combinatorial Libraries of Molecular Imprinted Polymers. Bull Chem Soc Jpn 78:1354–1361

    Google Scholar 

  132. Tarley CRT, Segatelli MG, Kubota LT (2006) Amperometric determination of chloroguaiacol at submicromolar levels after on-line preconcentration with molecularly imprinted polymers. Talanta 69:259–266

    CAS  Google Scholar 

  133. Santos W.de JR, Lima PR, Tarley CRT, Kubota LT (2007) A Catalytically active molecularly imprinted polymer that mimics peroxidase based on hemin: application to the determination of p-aminophenol. Anal Bioanal Chem 389:1919–1929

    Google Scholar 

  134. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2008) Molecular imprinted solid phase extraction for determination of atrazine in environmental samples. Iran. J. Environ. Health. Sci. Eng. 5:283–296

    CAS  Google Scholar 

  135. Tarley CRT, Kubota LT (2005) Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry. Anal Chim Acta 548:11–19

    CAS  Google Scholar 

  136. Davies MP, De Biasi V, Perrett D (2004) Approaches to the rational design of molecularly imprinted polymers. Anal Chim Acta 504:7–14

    CAS  Google Scholar 

  137. Kempe H, Kempe M (2004) Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromol Rapid Commun 25:315–320

    CAS  Google Scholar 

  138. Ceolin G, Navarro-Villoslada F, Moreno-Bondi MC, Horvai G, Horvath V (2009) Accelerated development procedure for molecularly imprinted polymers using membrane filterplates. J Comb Chem 11:645–652

    CAS  Google Scholar 

  139. Santos W de JR, Lima PR, Tarley CRT, Höehr NF, Kubota LT (2009) Synthesis and application of a peroxidase-like molecularly imprinted polymer based on hemin for selective determination of serotonin in blood serum. Anal Chim Acta 631:170–176

    Google Scholar 

  140. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2009) Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. J Hazard Mater 170:1247–1255

    CAS  Google Scholar 

  141. Valero-Navarro A, Damiani PC, Fernández-Sánchez JF, Segura-Carretero A, Fernández-Gutiérrez A (2009) Chemometric-assisted MIP-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters. Talanta 78:57–65

    CAS  Google Scholar 

  142. Alizadeh T, Ganjali MR, Nourozi P, Zare M (2009) Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples. Anal Chim Acta 638:154–161

    CAS  Google Scholar 

  143. Rossi C, Haupt K (2007) Application of the Doehlert experimental design to molecularly imprinted polymers: surface response optimization of specific template recognition as a function of the type and degree of cross-linking. Anal Bioanal Chem 389:455–460

    CAS  Google Scholar 

  144. Baggiani C, Anfossi L, Giovannoli C, Tozzi C (2004) Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer. J Chromatogr B 804:31–41

    CAS  Google Scholar 

  145. Rosengren AM, Karlsson JG, Andersson PO, Nicholls IA (2005) Chemometric models of template-molecularly imprinted polymer binding. Anal Chem 77:5700–5705

    CAS  Google Scholar 

  146. Nantasenamat C, Naenna T, Isarankura-Na-Ayudhya C, Prachayasittikul V (2005) Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J Comput-Aided Mol Des 19:509–524

    CAS  Google Scholar 

  147. Rosengren AM, Golker K, Karlsson JG, Nicholls IA (2009) Dielectric constants are not enough: principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding. Biosens Bioelectron 25:553–557

    CAS  Google Scholar 

  148. Mijangos I, Navarro-Villoslada F, Guerreiro AR, Piletska EV, Chianella I, Karim K, Turner APF, Piletsky SA (2006) Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosens Bioelectron 22:381–387

    CAS  Google Scholar 

  149. Koohpaei AR, Shahtaheri SJ, Ganjali MR, Forushani AR, Golbabaei F (2008) Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn. Talanta 75:978–986

    CAS  Google Scholar 

  150. Wythoff BJ (1993) Backpropagation neural networks—a tutorial. Chemom Intell Lab Syst 18:115–155

    CAS  Google Scholar 

  151. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2007) Quantitative Structure-imprinting factor relationship of molecularly imprinted polymers. Biosens Bioelectron 22:3309–3317

    CAS  Google Scholar 

  152. Breneman CM, Thompson TR, Rhem M, Dung M (1995) Electron density modeling of large systems using the transferable atom equivalent method. Comput Chem 19:161–179

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Nicholls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicholls, I.A. et al. (2015). Theoretical and Computational Strategies for the Study of the Molecular Imprinting Process and Polymer Performance. In: Mattiasson, B., Ye, L. (eds) Molecularly Imprinted Polymers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 150. Springer, Cham. https://doi.org/10.1007/10_2015_318

Download citation

Publish with us

Policies and ethics