Skip to main content

MIPs as Tools in Environmental Biotechnology

  • Chapter
  • First Online:
Molecularly Imprinted Polymers in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 150))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAm:

Acrylamide

E2:

Estradiol

HRT:

Hydralic retention time

MG:

Macroporous gel

MGP:

Macroporous gel particle

NIP:

Nonimprinted polymer

PVA:

Poly (vinylalcohol)

References

  1. Environmental Protection Agency: Contaminants of emerging concern. http://water.epa.gov/scitech/cec/

  2. Jiang X, Tian W, Zhao C, Zhang H, Liu M (2007) A novel sol-gel-material prepared by surface imprinting technique for the selective solid-phase extraction of Bisphenol A. Talanta 72:119–125

    Article  CAS  Google Scholar 

  3. Kawaguchi M, Hayatsu Y, Nakata H, Ishii Y, Ito R, Saito K, Nakazawa H (2005) Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography–mass spectrometry for trace analysis of bisphenol A in water sample. Anal Chim Acta 539:83

    Google Scholar 

  4. Beltran A, Caro E, Marce RM, Cormac PAG, Sherrington DC, Borrull F (2007) Synthesis and application of a carbamazepin-imprinted polymer for solid phase extraction from urine and wastewater. Anal Chim Acta 597:6–11

    Article  CAS  Google Scholar 

  5. Dai C, Geissen S-U, Zhang Y-l, Zhang Y-j, Zhou X-f (2010) Performance of evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution. J Hazard Mater 184:156–163

    Article  CAS  Google Scholar 

  6. Le Noir M, Lepeuple AS, Guieysse B, Mattiasson B (2007) Selective removal of 17β-estradiol at trace concentration using a molecularly imprinted polymer. Water Res 41:2825–2831

    Article  Google Scholar 

  7. Le Noir M, Plieva F, Hey T, Guieysse B, Mattiasson B (2007) Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. J Chromatogr A 1154:158–164

    Article  Google Scholar 

  8. Chianella I, Piletsky SA, Tothill IE, Chen B, Turner APF (2003) Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron 18:2740–2743

    Article  Google Scholar 

  9. Koeber R, Fleischer C, Lanza F, Boos K-S, Sellergren B, Barcelo D (2001) Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers. Anal Chem 73:2437–2444

    Article  CAS  Google Scholar 

  10. Zhu X, Cui Y, Chang X, Zou X, Li Z (2008) Selective solid-phase extraction of lead(II) from biological and natural water samples using surface-grafted lead(II)-imprinted polymers. Microchim Acta. doi:10.1007/s00604-008-0045-y

    Google Scholar 

  11. Lotierzo M, Henry OYF, Piletsky S, Tothill I, Cullen D, Kania M, Hock B, Turner APF (2004) Surface plasmon resonance sensor for domic acid based on grafted imprinted polymer. Biosens Bioelectron 20:145–152

    Article  CAS  Google Scholar 

  12. Ferrer I, Lanza F, Tolokan A, Horvath V, Sellergren B, Horvai G, Barcelo D (2000) Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem 72:3934–3941

    Article  CAS  Google Scholar 

  13. Jenkins AL, Yin R, Jensen JL (2001) Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst 126:798–802

    Article  CAS  Google Scholar 

  14. Kandimalla VB, Ju H (2004) Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Anal Bioanal Chem 380:587–605

    Article  CAS  Google Scholar 

  15. Lin Y, Shi Y, Jin Y, Peng Y, Lu B, Dai K (2008) Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environ Pollut 153:483–491

    Article  CAS  Google Scholar 

  16. Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622:48–61

    Article  CAS  Google Scholar 

  17. Zhongbo Z, Hu J (2008) Selective removal of estrogenic compounds by molecular imprinted polymer (MIP). Water Res 42:4101–4108

    Article  CAS  Google Scholar 

  18. Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  19. Afeyan NB, Fulton SP (1991) Perfusion chromatography packing material for proteins and peptides. J Chromatogr A 544:267–279

    Article  CAS  Google Scholar 

  20. Hajizadeh S, Xu C, Kirsebom H, Lei Y, Mattiasson B (2013) Cryogelation of molecularly imprinted nanoparticles: a macroporous structure as affinity chromatography column for removal of beta-blockers from complex samples. J Chromatogr A 1274:6–12

    Article  CAS  Google Scholar 

  21. Rachkov AE, Cheong S-H, El´skaya AV, Yano K, Karube I (1998) Molecular imprinted polymers as artificial steroid receptors. Polym Adv Technol 9:511–519

    Google Scholar 

  22. Le Noir M, Guieysse B, Mattiasson B (2006) Removal of trace contaminants using molecularly imprinted polymers. Water Sci Technol 53:205–212

    Article  Google Scholar 

  23. Le Noir M (2007) Removal of endocrine-disrupting compounds from wastewater using molecular imprinting. PhD-thesis Lund University. ISBN 978-91-869627-55-0

    Google Scholar 

  24. Dahlentoft E, Thulin P (1997) The use of the Kaldnes suspended carrier process in treatment of wastewaters from the forest industry. Water Sci Technol 35:123–130

    Article  Google Scholar 

  25. Odegaard H, Gisvold B, Strickland J (2000) The influence of carrier size and shape in the moving bed biofilm process. Water Sci Technol 41:383–391

    CAS  Google Scholar 

  26. Plieva FM, Mattiasson B (2008) Macroporous gel particles as novel sorbent materials: rational design. Ind Eng Chem Res 47:4131–4141

    Article  CAS  Google Scholar 

  27. Persson P, Beybak O, Plieva F, Galaev IYu, Mattiasson B, Nilsson B, Axelsson A (2004) Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles. Biotechnol Bioeng 88:224–236

    Article  CAS  Google Scholar 

  28. Hajizadeh S, Mattiasson B, Kirsebom H (2014) Flow-through-mediated surface immobilization of sub-micrometre particles in monolithic cryogels. Macromol Materials Eng 299:631–638

    Article  CAS  Google Scholar 

  29. Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampali RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539

    Article  CAS  Google Scholar 

  30. Gaido KW, Leonar LS, Lovell S, Gould JC, Dabai D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212

    Article  CAS  Google Scholar 

  31. Le Noir M, Plieva F, Mattiasson B (2009) Removal of endocrine-disrupting compounds from water using macroporous molecularly imprinted cryogels in a moving-bed reactor. J Sep Sci 32:1471–1479

    Article  Google Scholar 

  32. C Dai, Geissen S-U, Y-l Zhang, Y-j Zhang, X-f Zhou (2011) Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres. Environ Pollut 159:1660–1666

    Article  Google Scholar 

  33. Alvarez ABC, Diaper C, Parsons SA (2001) Partial oxidation by ozone to remove recalcitrance from wastewater—a review. Environ Technol 22:409–427

    Article  Google Scholar 

  34. Ulson de Souza G, Santos Bonilla KA, Ulson de Souza AA (2010) Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater 179:35–42

    Article  CAS  Google Scholar 

  35. Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and colour removal from polyester and acetate fiber dying effluent. Chemosphere 55:35–43

    Article  CAS  Google Scholar 

  36. Onnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers of aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46:4111–4120

    Article  CAS  Google Scholar 

  37. Hajizadeh S, Kirsebom H, Galaev IY, Mattiasson B (2010) Evaluation of selective composite cryogel for bromate removal from drinking water. J Sep Sci 33:1752–1759

    Google Scholar 

  38. Prasad BB, Tiwari K, Singh M, Sharma PS, Patel AM, Srivastava S (2008) Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid. J Chromatogr A 1198–1199:59–66

    Article  Google Scholar 

  39. Suna Z, Schüsslerb W, Senglb M, Niessnera R, Knopp D (2008) Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer. Anal Chim Acta 620:73–81

    Google Scholar 

  40. Lenain P, De Saeger S, Hedström M, Mattiasson B (2015) Affinity sensor based on immobilized molecular imprinted synthetic ligands. Biosens Bioelectron 69:34–39

    Google Scholar 

  41. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for resolution of racemates. Tetrahedron Lett 14(44):4239–4332

    Article  Google Scholar 

  42. Alexander C, Davison L, Hayes W (2003) Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 59:2025–2057

    Article  CAS  Google Scholar 

  43. Shen X, Zhu L, Liu G, Yu H, Tang H (2008) Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ Sci Technol 42:1687–1692

    Article  CAS  Google Scholar 

  44. Shen X, Zhu L, Huang C, Tang H, Yu Z, Deng F (2009) J Mater Chem 19:4843–4851

    Article  CAS  Google Scholar 

  45. Lebogang L (2014) Biosensor-based methods for detection of microcystins as early warning systems. PhD-thesis, Lund University. ISBN 978-91-76623-082-4

    Google Scholar 

  46. Ertürk G, Berillo D, Hedström M, Mattiasson B (2014) Microcontact BSA-imprinted capacitive biosensor for real time, sensitive and selective detection of BSA. Biotechnol Reports 3:65–72

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Mattiasson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mattiasson, B. (2015). MIPs as Tools in Environmental Biotechnology. In: Mattiasson, B., Ye, L. (eds) Molecularly Imprinted Polymers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 150. Springer, Cham. https://doi.org/10.1007/10_2015_311

Download citation

Publish with us

Policies and ethics