Skip to main content

Fungal Morphology in Industrial Enzyme Production—Modelling and Monitoring

  • Chapter
  • First Online:
Filaments in Bioprocesses

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMG:

Glucoamylase

CM:

Capacitance Measurement

EDCF:

Energy Dissipation Circulation Function

FDA:

Food and Drug Administration

GMP:

Good Manufacturing Practices

GRAS:

Generally Recognized as Safe

IA:

Image Analysis

NIR:

Near Infrared Measurements

OTR:

Oxygen Transfer Rate

OUR:

Oxygen Uptake Rate

PAT:

Process Analytical Technology

PLS:

Partial Least Squares

VSC:

Vesicle Supply Center

References

  1. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189

    Article  CAS  Google Scholar 

  2. Peberdy JF (1994) Protein secretion in filamentous fungi—trying to understand a highly productive black box. Trends Biotechnol 12(2):50

    Article  CAS  Google Scholar 

  3. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200

    Article  CAS  Google Scholar 

  4. van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111

    Article  Google Scholar 

  5. Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817

    Article  CAS  Google Scholar 

  6. Barry DJ, Williams GA (2011) Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J Microsc 244:1

    Article  CAS  Google Scholar 

  7. Hille A, Neu TR, Hempel DC, Horn H (2005) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng 92(5):614

    Article  CAS  Google Scholar 

  8. Spohr A, Carlsen M, Nielsen J, Villadsen J (1997) Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations. Biotechnol Lett 19(3):257

    Article  CAS  Google Scholar 

  9. Meyer V (2008) Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26(2):177

    Article  CAS  Google Scholar 

  10. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23(9):468

    Google Scholar 

  11. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53

    Article  CAS  Google Scholar 

  12. Cherry B, Bashkirova EV, De Leon AL (2009) Analysis of an Aspergillus niger glucoamylase strain pedigree using comparative genome hybridization and real-time quantitative polymerase chain reaction. Ind Biotechnol 5(4):237

    Article  CAS  Google Scholar 

  13. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438

    Article  CAS  Google Scholar 

  14. Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87(4):255

    Article  Google Scholar 

  15. Lee SM, Koo YM (2001) Pilot scale production of cellulase using Trichoderma reesei Rut-c30 in fedbatch mode. Microbiol Biotechnol 11(2):229

    CAS  Google Scholar 

  16. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577

    Article  CAS  Google Scholar 

  17. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  Google Scholar 

  18. Kossen NWF (2000) The morphology of filamentous fungi. In: Scheper T (eds) Advance in biochemical engineering, vol 70, pp 1

    Google Scholar 

  19. Berry DR (1988) Physiology of industrial fungi. Blackwell Scientific Publications, Oxford

    Google Scholar 

  20. Reinhardt MO (1892) Das wachstum der pilzhyphen. Jahrbücher für wissenschafftliche 23:479

    Google Scholar 

  21. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123(45):397

    Article  CAS  Google Scholar 

  22. Wessels JGH(1990) Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press Inc., London, p 1

    Google Scholar 

  23. Harold FM (1997) New ideas in cell biology. Protoplasma 197:137

    Article  Google Scholar 

  24. Bartnicki-García S (1999) Glucans, walls, and morphogenesis: On the contributions of J. G. H. Wessels to the golden decades of fungal physiology and beyond. Fungal Genet Biol 27:119

    Article  Google Scholar 

  25. Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  26. Wösten HA, Moukha SM, Sietsma JH, Wessels JG (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137(8):2017

    Google Scholar 

  27. Metz B, Kossen NWF, van Suijdam JC (1979) The rheology of mould suspensions. Adv Biochem Eng 11:103

    Google Scholar 

  28. White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotech 22:1

    Article  Google Scholar 

  29. Peter CP, Lotter S, Maier U, Büchs J (2004) Impact of out-of-phase conditions on screening results in shaking flask experiments. Biochem Eng J 17(3):205

    Article  CAS  Google Scholar 

  30. Helmdach L, Schwartz F, Ulrich J (2014) Process control using advanced particle analyzing systems: applications from crystallization to fermentation processes. Chem Eng Technol 37(2):213

    Article  CAS  Google Scholar 

  31. Suhr H, Wehnert G, Schneider K, Bittner C, Scholz T, Geissler P, Jähne B, Scheper T (1995) In situ microscopy for on-line characterization of cell-populations in bioreactors, including cell-concentration measurements by depth from focus. Biotechnol Bioeng 47:106

    Article  CAS  Google Scholar 

  32. Wiedemann P, Egner F, Wiegemann H, Quintana JC, Storhas W, Guez JS, Schwiebert C, Suhr H (2009) Advanced in situ microscopy for on-line monitoring of animal cell culture. In: Jenkins N, Barron N, Alves P (eds) Proceedings of the 21st annual meeting of the european society for animal cell technology (ESACT), Dublin

    Google Scholar 

  33. Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) In-situ microscopy: online process monitoring of mammalian cell cultures. Cytotechnology 38:129

    Article  CAS  Google Scholar 

  34. Camisard V, Brienne JP, Baussart H, Hammann J, Suhr H (2002) Inline characterization of cell concentration and cell volume in agitated bioreactors using in situ microscopy: application to volume variation induced by osmotic stress. Biotechnol Bioeng 78:73

    Article  CAS  Google Scholar 

  35. Höpfner T, Bluma A, Rudolph G, Lindner P, Scheper T (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33(2):247

    Article  Google Scholar 

  36. Olsvik E, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1

    Article  CAS  Google Scholar 

  37. Wucherpfennig T, Lakowitz A, Krull R (2013) Comprehension of viscous morphology—Evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth. J Biotechnol 163(2):124

    Article  CAS  Google Scholar 

  38. Barry DJ (2013) Quantifying the branching frequency of virtual filamentous microbes using fractal analysis. Biotechnol Bioeng 110(2):437

    Article  CAS  Google Scholar 

  39. Rønnest N, Stocks S, Lantz A, Gernaey KV (2012) Comparison of laser diffraction and image analysis for measurement of Streptomyces coelicolor cell clumps and pellets. Biotechnol Lett 34(8):1465

    Article  Google Scholar 

  40. Papagianni M (2014) Characterization of fungal morphology using digital image analysis techniques. J Microb Biochem Technol 6(4):189

    Article  Google Scholar 

  41. Landgrebe D, Haake C, Höpfner T, Beutel S, Hitzmann B, Scheper T, Rhiel M, Reardon KF (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88:11

    Article  CAS  Google Scholar 

  42. Marison I, Hennessy S, Foley R, Schuler M, Sivaprakasam S, Freeland B (2013) The choice of suitable online analytical techniques and data processing for monitoring of bioprocesses. Adv Biochem Eng Biotechnol 132:249

    CAS  Google Scholar 

  43. Petersen N, Odman P, Padrell AEC, Stocks S, Lantz AE, Gernaey KV (2009) In situ near infrared spectroscopy for analyte-specific monitoring of glucose and ammonium in Streptomyces coelicolor fermentations. Biotechnol Prog 26:263

    Google Scholar 

  44. Rønnest NP, Stocks SM, Lantz AE, Gernaey KV (2011) Introducing process analytical technology (PAT) in filamentous cultivation process development: comparison of advanced online sensors for biomass measurement. J Ind Microbiol Biotechnol 38(10):1679

    Article  Google Scholar 

  45. Svendsen C, Skov T, van den Berg FWJ (2014) Monitoring fermentation processes using in-process measurements of different orders. J Chem Technol Biotechnol 90(2):244

    Article  Google Scholar 

  46. Kenda A, Drabe C, Schenk H, Frank A, Lenzhofer M, Scherf W (2006) Application of a micromachined translatory actuator to an optical FTIR spectrometer. In: Ürey H, El-Fatatry A (eds) Proceedings of SPIE 6186, MEMS, MOEMS, and micromachining II

    Google Scholar 

  47. Sampaio PN, Sales KC, Rosa FO, Lopes MB, Calado CR (2014) In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains. J Biotechnol 188:148

    Article  CAS  Google Scholar 

  48. Markx G, Davey C, Kell D, Morris P (1991) The dielectric permittivity at radio frequencies and the bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures. J Biotechnol 20(3):279

    Article  CAS  Google Scholar 

  49. Li L, Wang ZJ, Chen XJ, Chu J, Zhuang JP, Zhang SL (2014) Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement. Bioresour Technol 156:216

    Article  CAS  Google Scholar 

  50. Mishima K, Mimura A, Takahara Y (1991) On-line monitoring of cell concentrations during yeast cultivation by dielectric measurements. J Ferment Bioeng 72(4):296

    Article  CAS  Google Scholar 

  51. Krairak S, Yamamura K, Nakajima M, Shimizu H, Shioya S (1999) On-line monitoring of fungal cell concentration by dielectric spectroscopy. J Biotechnol 69:115

    Article  CAS  Google Scholar 

  52. Davey CL, Davey HM, Kell DB, Todd RW (1993) Introduction to the dielectric estimation of cellular biomass in real time, with special emphasis on measurements at high volume fractions. Anal Chim Acta 279:155

    Article  Google Scholar 

  53. Pohlscheidt M, Charaniya S, Bork C, Jenzsch M, Noetzel TL, Luebbert A (2013) Bioprocess and fermentation monitoring. Encycl Ind Biotechnol 1469–1491

    Google Scholar 

  54. Nielsen J (2010) Fermentation monitoring. Encycl Ind Biotechnol 1–20

    Google Scholar 

  55. Posch AE, Herwig C, Spadiut O (2013) Science-based bioprocess design for filamentous fungi. Trends Biotechnol 31:37

    Article  CAS  Google Scholar 

  56. Ehgartner D, Sagmeister P, Herwig C, Wechselberger P (2014) A novel real-time method to estimate volumetric mass biodensity based on the combination of dielectric spectroscopy and soft-sensors. J Chem Technol Biotechnol 90(2):262

    Article  Google Scholar 

  57. Wucherpfennig T, Kiep KA, Driouch H, Wittmann B, Krull R (2010) Morphology and rheology in filamentous cultivations. Adv Appl Microbiol 72(10):89

    CAS  Google Scholar 

  58. Papagianni M (2010) Rheology of filamentous microorganisms, submerged culture. Encycl Ind Biotechnol 1–23

    Google Scholar 

  59. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Rheological studies during submerged citric acid fermentation by Aspergillus niger in stirred fermentor using apple pomace ultrafiltration sludge. Food Bioprocess Technol 6(5):1240

    Article  Google Scholar 

  60. Cai M, Zhang Y, Hu W, Shen W, Yu Z, Zhou W, Jiang T, Zhou X, Zhang Y (2014) Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A. Microb Cell Fact 13:73

    Google Scholar 

  61. Formenti LR, Nørregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins AL, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey KV (2014) Challenges in industrial fermentation technology research. Biotechnol J 9(6):727

    Article  CAS  Google Scholar 

  62. Booking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci APG (1999) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65(6):638

    Article  Google Scholar 

  63. Haack MB, Olsson L, Hansen K, Lantz AE (2006) Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Appl Microbiol Biotechnol 70(4):482

    Article  CAS  Google Scholar 

  64. Agger T, Spohr AB, Carlsen M, Nielsen J (1998) Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. Biotechnol Bioeng 57(3):321

    Article  CAS  Google Scholar 

  65. Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol 100(23):5979

    Article  CAS  Google Scholar 

  66. Makagiansar HY, Shamlou PA, Thomas CR, Lilly MD (1993) The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess Eng 9:83

    Article  CAS  Google Scholar 

  67. Smith JJ, Lilly MD, Fox RI (1990) The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol Bioeng 35(10):1011

    Article  CAS  Google Scholar 

  68. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52(6):672

    Article  Google Scholar 

  69. Amanullah A, Jüsten P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5(2):109

    Article  Google Scholar 

  70. Amanullah A, Blair R, Nienow AW, Thomas CR (1999) Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae. Biotechnol Bioeng 62(4):434

    Article  CAS  Google Scholar 

  71. Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 77(7):815

    Article  CAS  Google Scholar 

  72. Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70(3):300

    Article  CAS  Google Scholar 

  73. Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18(3):437

    Article  CAS  Google Scholar 

  74. Albaek MO, Gernaey KV, Hansen MS, Stocks SM (2011) Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnol Bioeng 108(8):1828

    Article  CAS  Google Scholar 

  75. Petersen N, Stocks S, Gernaey KV (2008) Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distribution. Biotechnol Bioeng 100:61

    Article  CAS  Google Scholar 

  76. Allen DG, Robinson CW (1990) Measurement of rheological properties of filamentous fermentation broths. Chem Eng Sci 45:37

    Article  CAS  Google Scholar 

  77. Deindoerfer FH, Gaden ELJ (1955) Effects of liquid physical properties on oxygen transfer in penicillin fermentation. Appl Microbiol 3(5):253

    CAS  Google Scholar 

  78. Olsvik E, Tucker KG, Thomas CR, Kristiansen B (1993) Correlation of Aspergillus niger broth rheological properties with biomass concentration and the shape of mycelial aggregates. Biotechnol Bioeng 42(9):1046

    Article  CAS  Google Scholar 

  79. Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68(2):160

    Article  CAS  Google Scholar 

  80. Riley GL, Thomas CR (2010) Applicability of Penicillium chrysogenum rheological correlations to broths of other fungal strains. Biotechnol Lett 32(11):1623–1629

    Article  CAS  Google Scholar 

  81. Malouf P (2008) Study of the relationship of rheology, morphology and biomass concentration of Trichoderma reesei fermentation. MSc thesis, University of Ottawa

    Google Scholar 

  82. Wucherpfennig T, Hestler T, Krull R (2011) Morphology engineering—Osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact 10:58

    Article  Google Scholar 

  83. Bhargava S, Nandakumar MP, Roy A, Wenger KS, Marten MR (2003) Pulsed feeding during fed-batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng 81(3):341

    Article  CAS  Google Scholar 

  84. Metzner A, Otto RE (1957) Agitation of non-Newtonian fluids. AIChe J 3:3

    Article  CAS  Google Scholar 

  85. Stocks SM (2013) Industrial enzyme production: process scale up/scale down. In: McNeil B, Archer D, Giavasis I, Harvey L (eds) Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing, Cambridge, pp 144–172

    Chapter  Google Scholar 

  86. Sánchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1

    Google Scholar 

  87. Bhargava S, Wenger KS, Rane K, Rising V, Marten MR (2005) Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol Bioeng 89(5):524

    Article  CAS  Google Scholar 

  88. Marten MR, Velkovska S, Khan SA, Ollis DF (1996) Rheological, mass transfer, and mixing characterization of cellulase-producing Trichoderma reesei suspensions. Biotechnol Prog 12(95):602

    Article  CAS  Google Scholar 

  89. Patel N, Choy V, Malouf P, Thibault J (2009) Growth of Trichoderma reesei RUT C-30 in stirred tank and reciprocating plate bioreactors. Process Biochem 44(10):1164

    Article  CAS  Google Scholar 

  90. Li ZJ, Shukla V, Wenger K, Fordyce A, Pedersen AG, Marten M (2002) Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol Bioeng 77(6):601

    Article  CAS  Google Scholar 

  91. Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163(2):133

    Article  CAS  Google Scholar 

  92. Thomas CR (1992) Image analysis: putting filamentous microorganisms in the picture. Trends Biotechnol 10:343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of the following organizations: The Novo Nordisk Foundation, Novozymes A/S and the Technical University of Denmark (DTU)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krist V. Gernaey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quintanilla, D., Hagemann, T., Hansen, K., Gernaey, K.V. (2015). Fungal Morphology in Industrial Enzyme Production—Modelling and Monitoring. In: Krull, R., Bley, T. (eds) Filaments in Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 149. Springer, Cham. https://doi.org/10.1007/10_2015_309

Download citation

Publish with us

Policies and ethics