Skip to main content

Better One-Eyed than Blind—Challenges and Opportunities of Biomass Measurement During Solid-State Fermentation of Basidiomycetes

  • Chapter
  • First Online:
Filaments in Bioprocesses

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

Bf :

Fungal biomass (g/gsample)

C:

Carbon

CER:

CO2 evolution rate

CO2 :

Carbon dioxide

DNA:

Deoxyribonucleic acid

e:

Density of hypha (g/cm3)

ELISA:

Enzyme-linked immunosorbent assay

IR:

Infrared

L:

Length of hypha (cm/gsample)

Mbp:

Mega base pairs

mRNA:

Messenger ribonucleic acid

N:

Nitrogen

O:

Oxygen

PCR:

Polymerase chain reaction

PLFA:

Phospholipid fatty acids

qPCR:

Quantitative polymerase chain reaction

r:

Radius of hypha

RNA:

Ribonucleic acid

RNP:

Ribonucleoprotein

Sc :

Solid content

SIR:

Substrate-induced respiration

SmF:

Submerged fermentation

sRNA:

Small ribonucleic acid

SSF:

Solid-state fermentation

tRNA:

Transfer ribonucleic acid

References

  1. Krishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25(1–2):1–30

    Article  CAS  Google Scholar 

  2. Ottow JCG (2011) Mikrobiologie von Böden. Springer, Berlin, 508 p

    Google Scholar 

  3. Böhmer U, Frömmel S, Bley T, Müller M, Frankenfeld K, Miethe P (2011) Solid-state fermentation of lignocellulotic materials for the production of enzymes by the white-rot fungus Trametes hirsuta in a modular bioreactor. Eng Life Sci 11(4):395–401

    Article  Google Scholar 

  4. Mitchell DA, Krieger N, Berovic M (2006) Solid-state fermentation bioreactors: fundamentals of design and operation. Springer Science & Business Media, Berlin, 481 p

    Google Scholar 

  5. Li Y, Wadsö L (2011) Simultaneous measurements of colony size and heat production rate of a mould Penicillium brevicompactum growing on agar. J Therm Anal Calorim 104(1):105–111

    Article  CAS  Google Scholar 

  6. Madrid RE, Felice CJ (2005) Microbial biomass estimation. Crit Rev Biotechnol 25(3):97–112

    Article  CAS  Google Scholar 

  7. Couri S, Mercês EP, Neves BCV, Senna LF (2006) Digital image processing as a tool to monitor biomass growth in Aspergillus niger 3T5B8 solid-state fermentation: preliminary results. J Microsc 224(3):290–297

    Article  CAS  Google Scholar 

  8. Dutra J, da C Terzi S, Bevilaqua J, Damaso M, Couri S, Langone M, Senna LF (2008) Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl Biochem Biotechnol 147(1):63–75

    Google Scholar 

  9. Stahl PD, Parkin TB, Christensen M (1999) Fungal presence in paired cultivated and uncultivated soils in central Iowa. USA Biol Fertil Soils 29(1):92–97

    Article  Google Scholar 

  10. Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, Waltham, 298 p

    Google Scholar 

  11. Söderström B, Bååth E (1979) Fungal biomass and fungal immobilization of plants nutrients in swedish coniferous forest soils. Rev Ecol Biol Sol 16(4):477–489

    Google Scholar 

  12. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2011) Environmental, scanning electron and optical microscope image analysis software for determining volume and occupied area of solid-state fermentation fungal cultures. Biotechnol J 6(1):45–55

    Article  CAS  Google Scholar 

  13. Haus J (2014) Optische Mikroskopie: Funktionsweise und Kontrastierverfahren. Wiley, New York, 240 p

    Google Scholar 

  14. Nopharatana M, Mitchell DA, Howes T (2003) Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface. Biotechnol Bioeng 84(1):71–77

    Article  CAS  Google Scholar 

  15. Horbik D, Łowińska-Kluge A, Górski Z, Stanisz E, Zgoła-Grześkowiak A (2013) Microwave-assisted extraction combined with HPLC-MS/MS for diagnosis of fungal contamination in building materials. J Braz Chem Soc 24(9):1478–1486

    CAS  Google Scholar 

  16. Ooijkaas LP, Tramper J, Buitelaar RM (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microb Technol 22(6):480–486

    Article  CAS  Google Scholar 

  17. Desgranges C, Vergoignan C, Georges M, Durand A (1991) Biomass estimation in solid state fermentation I. Manual biochemical methods. Appl Microbiol Biotechnol 35(2):200–205

    CAS  Google Scholar 

  18. Gessner, Newell SY (2002) Manual of environmental microbiology, 2nd edn. ASM Press, Washington DC

    Google Scholar 

  19. Manter DK, Kelsey RG, Stone JK (2001) Quantification of Phaeocryptopus gaeumannii colonization in Douglas-fir needles by ergosterol analysis. For Pathol 31(4):229–240

    Article  Google Scholar 

  20. Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by three independent methods. Appl Microbiol Biotechnol 21(1):108–112

    CAS  Google Scholar 

  21. Zelles L, Hund K, Stepper K (1987) Methoden zur relativen Quantifizierung der pilzlichen Biomasse im Boden. Z Für Pflanzenernähr Bodenkd 150(4):249–252

    Article  CAS  Google Scholar 

  22. Klamer M, Bååth E (2004) Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biol Biochem 36(1):57–65

    Article  CAS  Google Scholar 

  23. Zhang H, Wolf-Hall C, Hall C (2008) Modified microwave-assisted extraction of ergosterol for measuring fungal biomass in grain cultures. J Agric Food Chem 56(23):11077–11080

    Article  CAS  Google Scholar 

  24. Reeslev M, Miller M, Nielsen KF (2003) Quantifying mold biomass on gypsum board: comparison of ergosterol and beta-N-acetylhexosaminidase as mold biomass parameters. Appl Environ Microbiol 69(7):3996–3998

    Article  CAS  Google Scholar 

  25. Snajdr J, Valásková V, Merhautová V, Cajthaml T, Baldrian P (2008) Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb Technol 43(2):186–192

    Article  CAS  Google Scholar 

  26. Muniroh MS, Sariah M, Abidin MAZ, Lima N, Paterson RRM (2014) Rapid detection of Ganoderrna-infected oil palms by microwave ergosterol extraction with HPLC and TLC. J Microbiol Methods 100:143–147

    Article  CAS  Google Scholar 

  27. Deng Z-L, Yuan J-P, Zhang Y, Xu X-M, Wu C-F, Peng J, Wang J-H (2013) Fatty acid composition in ergosteryl esters and triglycerides from the fungus Ganoderma lucidum. J Am Oil Chem Soc 90(10):1495–1502

    Google Scholar 

  28. Schmidt O (2006) Wood and tree fungi: biology, damage, protection, and use. Springer Science & Business Media, Berlin, 336 p

    Google Scholar 

  29. Abd-Aziz S, Hung GS, Hassan MA, Abdul Karim MI, Samat N (2008) Indirect method for quantification of cell biomass during solid-state fermentation of palm kernel cake based on protein content. Asian J Sci Res 1(4):385–393

    Google Scholar 

  30. Nilsson K, Bjurman J (1998) Chitin as an indicator of the biomass of two wood-decay fungi in relation to temperature, incubation time, and media composition. Can J Microbiol 44(6):575–581

    Article  CAS  Google Scholar 

  31. Ride J, Drysdale R (1972) Rapid method for chemical estimation of filamentous fungi in plant-tissue. Physiol Plant Pathol 2(1):7–15

    Article  CAS  Google Scholar 

  32. Scotti CT, Vergoignan C, Feron G, Durand A (2001) Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem Eng J 7(1):1–5

    Article  CAS  Google Scholar 

  33. Roche N, Venague A, Desgranges C, Durand A (1993) Use of chitin measurement to estimate fungal biomass in solid state fermentation. Biotechnol Adv 11(3):677–683

    Article  CAS  Google Scholar 

  34. Blagodatskaya E, Blagodatsky S, Anderson T-H, Kuzyakov Y (2014) Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9(4):e93282

    Article  Google Scholar 

  35. Jirout J, Šimek M, Elhottová D (2011) Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol Biochem 43(3):647–656

    Article  CAS  Google Scholar 

  36. May BA, VanderGheynst JS, Rumsey T (2006) The kinetics of Lagenidium giganteum growth in liquid and solid cultures. J Appl Microbiol 101(4):807–814

    Article  CAS  Google Scholar 

  37. Knoll S, Mulfinger S, Niessen L, Vogel RF (2002) Rapid preparation of Fusarium DNA from cereals for diagnostic PCR using sonification and an extraction kit. Plant Pathol 51(6):728–734

    Article  CAS  Google Scholar 

  38. Voegele RT, Schmid A (2011) RT real-time PCR-based quantification of Uromyces fabae in planta. FEMS Microbiol Lett 322(2):131–137

    Article  CAS  Google Scholar 

  39. Tellenbach C, Grünig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76(17):5764–5772

    Article  CAS  Google Scholar 

  40. Pilgård A, Alfredsen G, Björdal CG, Fossdal CG, Børja I (2011) qPCR as a tool to study basidiomycete colonization in wooden field stakes. Holzforschung 65(6):889–895

    Article  Google Scholar 

  41. Costa-de-Oliveira S, Silva AP, Miranda IM, Salvador A, Azevedo MM, Munro CA et al (2013) Determination of chitin content in fungal cell wall: an alternative flow cytometric method. Cytometry A 83(3):324–328

    Article  Google Scholar 

  42. Throndset W, Kim S, Bower B, Lantz S, Kelemen B, Pepsin M et al (2010) Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains. Enzyme Microb Technol 47(7):335–341

    Google Scholar 

  43. Steudler S, Böhmer U, Weber J, Bley T (2014) Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes. Cytometry A. doi:10.1002/cyto.a.22592

    Google Scholar 

  44. Griffin DH (1996) Fungal physiology. Wiley, New York, 476 p

    Google Scholar 

  45. Frostegård A, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625

    Article  Google Scholar 

  46. Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22(1):59–65

    Article  Google Scholar 

  47. Córdova-López J, Gutiérrez-Rojas M, Huerta S, Saucedo-Castañeda G, Favela-Torres E (1996) Biomass estimation of Aspergillus niger growing on real and model supports in solid state fermentation. Biotechnol Tech 10(1):1–6

    Article  Google Scholar 

  48. Favela-Torres E, Cordova-López J, García-Rivero M, Gutiérrez-Rojas M (1998) Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem 33(2):103–107

    Article  CAS  Google Scholar 

  49. Saucedo-Castañeda G, Trejo-Hernández MR, Lonsane BK, Navarro JM, Roussos S, Dufour D et al (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem 29(1):13–24

    Article  Google Scholar 

  50. Ikasari L, Mitchell DA (1998) Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnol Tech 12(2):171–175

    Article  CAS  Google Scholar 

  51. Larroche C, Gros JB (1992) Characterization of the growth and sporulation behavior of Penicillium roquefortii in solid substrate fermentation by material and bioenergetic balances. Biotechnol Bioeng 39(8):815–827

    Article  CAS  Google Scholar 

  52. Desgranges C, Georges M, Vergoignan C, Durand A (1991) Biomass estimation in solid state fermentation II. On-line measurements. Appl Microbiol Biotechnol 35(2):206–209

    CAS  Google Scholar 

  53. Sakurai Y, Misawa S, Shiota H (1985) Growth and respiratory activity of Aspergillus oryzae grown on solid state medium. Agric Biol Chem 49(3):745–750

    Article  CAS  Google Scholar 

  54. Dhandapani B, Mahadevan S, Dhilipkumar SS, Rajkumar S, Mandal AB (2012) Impact of aeration and agitation on metabolic heat and protease secretion of Aspergillus tamarii in a real-time biological reaction calorimeter. Appl Microbiol Biotechnol 94(6):1533–1542

    Article  CAS  Google Scholar 

  55. Anand S, Rati ER (2006) An enzyme-linked immunosorbent assay for monitoring of Aspergillus ochraceus growth in coffee powder, chilli powder and poultry feed. Lett Appl Microbiol 42(1):59–65

    Article  CAS  Google Scholar 

  56. Dubey AK, Suresh C, Kumar SU, Karanth NG (1998) An enzyme-linked immunosorbent assay for the estimation of fungal biomass during solid-state fermentation. Appl Microbiol Biotechnol 50(3):299–302

    Article  CAS  Google Scholar 

  57. Kaufmann K, Rossier N, Oberholzer H (2010) Niederhäusern A v. Vergleich dreier Methoden zur Langzeitbeobachtung der biologischen Bodenaktivität. Publ Bodenkd Ges Schweiz 30:75–80

    Google Scholar 

  58. West AW, Ross DJ, Cowling JC (1986) Changes in microbial C, N, P and ATP contents, numbers and respiration on storage of soil. Soil Biol Biochem 18(2):141–148

    Article  CAS  Google Scholar 

  59. Davey CL, Peñaloza W, Kell DB, Hedger JN (1991) Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempe fermentation. World J Microbiol Biotechnol 7(2):248–259

    Article  CAS  Google Scholar 

  60. Jones PCT, Mollison JE, Quenouille MH (1948) A technique for the quantitative estimation of soil micro-organisms. J Gen Microbiol 2(1):54–69

    Article  CAS  Google Scholar 

  61. Hill DR (1996) Thin agar film for enhanced fungal growth and microscopic viewing in a new sealable fungal culture case. J Clin Microbiol 34(9):2140–2142

    CAS  Google Scholar 

  62. Kasai K, Horikoshi T (1997) Estimation of fungal biomass in the decaying cones of Pinus densiflora. Mycoscience 38(3):313–322

    Article  Google Scholar 

  63. Lodge DJ, Ingham ER (1991) A comparison of agar film techniques for estimating fungal biovolumes in litter and soil. Agric Ecosyst Environ 34(1):131–144

    Article  Google Scholar 

  64. Ramana Murthy MV, Thakur MS, Karanth NG (1993) Monitoring of biomass in solid state fermentation using light reflectance. Biosens Bioelectron 8(1):59–63

    Google Scholar 

  65. Zornoza R, Guerrero C, Mataix-Solera J, Scow KM, Arcenegui V, Mataix-Beneyto J (2008) Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol Biochem 40(7):1923–1930

    Article  CAS  Google Scholar 

  66. Brandl H (2013) Detection of fungal infection in Lolium perenne by fourier transform infrared spectroscopy. J Plant Ecol 6(4):265–269

    Article  Google Scholar 

  67. Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22(5):585–594

    Article  Google Scholar 

  68. Lin Q, Brookes PC (1999) An evaluation of the substrate-induced respiration method. Soil Biol Biochem 31(14):1969–1983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Steudler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steudler, S., Bley, T. (2015). Better One-Eyed than Blind—Challenges and Opportunities of Biomass Measurement During Solid-State Fermentation of Basidiomycetes. In: Krull, R., Bley, T. (eds) Filaments in Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 149. Springer, Cham. https://doi.org/10.1007/10_2014_300

Download citation

Publish with us

Policies and ethics