Skip to main content

Advances and Practices of Bioprocess Scale-up

  • Chapter
  • First Online:
Bioreactor Engineering Research and Industrial Applications II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 152))

Abstract

This chapter addresses the update progress in bioprocess engineering. In addition to an overview of the theory of multi-scale analysis for fermentation process, examples of scale-up practice combining microbial physiological parameters with bioreactor fluid dynamics are also described. Furthermore, the methodology for process optimization and bioreactor scale-up by integrating fluid dynamics with biokinetics is highlighted. In addition to a short review of the heterogeneous environment in large-scale bioreactor and its effect, a scale-down strategy for investigating this issue is addressed. Mathematical models and simulation methodology for integrating flow field in the reactor and microbial kinetics response are described. Finally, a comprehensive discussion on the advantages and challenges of the model-driven scale-up method is given at the end of this chapter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schamalzriedt S et al (2003) Integration of physiology and fluid dynamics. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 19–68

    Google Scholar 

  2. Babel W, Brinkmann U, Müller R (1993) The auxiliary substrate concept—an approach for overcoming limits of microbial performances. Acta Biotechnol 13(3):211–242

    Article  CAS  Google Scholar 

  3. Landgrebe D et al (2010) On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 88(1):11–22

    Article  CAS  Google Scholar 

  4. Lee HLT et al (2004) In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vibrational Spectroscopy 35(1–2):131–137

    Article  CAS  Google Scholar 

  5. Li L et al (2014) Optimization of polyhydroxyalkanoates fermentations with on-line capacitance measurement. Bioresour Technol 156:216–221

    Article  CAS  Google Scholar 

  6. Zhang SL et al (2004) Studies on the multi-scale problems of guanosine fermentation process. Chin J Bioprocess Eng 2(3):23–29

    CAS  Google Scholar 

  7. Bonneau R et al (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131(7):1354–1356

    Article  CAS  Google Scholar 

  8. Ishii N et al (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597

    Article  CAS  Google Scholar 

  9. Zhang SL, Chu J, Zhuang Y (2004) A multi-scale study of industrial fermentation processes and their optimization. Adv Biochem Eng Biotechnol 87:97–150

    CAS  Google Scholar 

  10. Lara AR et al (2006) Living with heterogeneities in bioreactors. Mol Biotechnol 34(3):355–381

    Article  CAS  Google Scholar 

  11. Enfors S-O et al (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185

    Article  CAS  Google Scholar 

  12. Bylund F et al (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18(3):171–180

    Article  CAS  Google Scholar 

  13. Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr Opin Biotechnol 21(1):114–121

    Article  CAS  Google Scholar 

  14. Zou X et al (2012) Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess Biosyst Eng 35(5):789–800

    Article  CAS  Google Scholar 

  15. Tyo KEJ, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13(3):255–262

    Article  CAS  Google Scholar 

  16. Almquist J et al (2014) Kinetic models in industrial biotechnology—improving cell factory performance. Metab Eng 24:38–60

    Article  CAS  Google Scholar 

  17. Vrabel P et al (2001) CMA: integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations. Chem Eng J 84(3):463–474

    Article  CAS  Google Scholar 

  18. Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with euler–lagrange methods: traveling along the lifelines of single cells. Ind Eng Chem Res 43(16):4647–4656

    Article  CAS  Google Scholar 

  19. Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor–A structured-segregated approach. Chem Eng Sci 61(14):4783–4797

    Article  CAS  Google Scholar 

  20. Wang G et al (2014) Prelude to rational scale-up of penicillin production: a scale-down study. Appl Microbiol Biotechnol 98(6):2359–2369

    Article  CAS  Google Scholar 

  21. Ottino JM (2003) Complex systems. AIChE J 49(2):292–299

    Article  CAS  Google Scholar 

  22. Zhang SL, Chu J, Zhuang YP (2004) A multi-scale study of industrial fermentation processes and their optimization. In: Biomanufacturing. Springer, Berlin, pp 97–150

    Google Scholar 

  23. Vardar F, Lilly M (1982) Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations. Eur J Appl Microbiol Biotechnol 14(4):203–211

    Article  CAS  Google Scholar 

  24. Pedersen L et al (2012) Industrial glucoamylase fed-batch benefits from oxygen limitation and high osmolarity. Biotechnol Bioeng 109(1):116–124

    Article  CAS  Google Scholar 

  25. Baez A et al (2011) Simulation of dissolved CO2 gradients in a scale-down system: a metabolic and transcriptional study of recombinant Escherichia coli. Biotechnol J 6(8):959–967

    Article  CAS  Google Scholar 

  26. Käß F et al (2013) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosyst Eng 1–12

    Google Scholar 

  27. Taymaz-Nikerel H et al (2013) Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. Metabol Eng 16:115–129

    Article  CAS  Google Scholar 

  28. de Jonge LP et al (2011) Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol J 6(8):944–958

    Article  Google Scholar 

  29. Käß F et al (2014) Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum. Microb Cell Fact 13(1):1–11

    Article  Google Scholar 

  30. Larsson G et al (1996) Substrate gradients in bioreactors: origin and consequences. Bioprocess Eng 14(6):281–289

    Article  CAS  Google Scholar 

  31. Takors R (2012) Scale-up of microbial processes: impacts, tools and open questions. J Biotechnol 160(1–2):3–9

    Article  CAS  Google Scholar 

  32. Noorman H (2011) An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6(8):934–943

    Article  CAS  Google Scholar 

  33. de Jonge L et al (2014) Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic 13C labeling. Biotechnol J 9(3):372–385

    Article  Google Scholar 

  34. Chu J et al (2005) Correlation between key enzyme activities in the inosine synthetic pathway and inosine production. Process Biochem 40(2):891–894

    Article  CAS  Google Scholar 

  35. Chen SX et al (2005) Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate. Biotechnol Lett 27(10):689–692

    Article  CAS  Google Scholar 

  36. Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24(6):1262–1287

    Article  CAS  Google Scholar 

  37. Jorgensen H et al (1995) Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnol Bioeng 46(2):117–131

    Article  CAS  Google Scholar 

  38. Zhao J et al (2002) Study on chaos of the erythromycin fermentation process. Chin J Antibiot 27(12):717–719

    CAS  Google Scholar 

  39. Chatterji D, Kumar Ojha A (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4(2):160–165

    Article  CAS  Google Scholar 

  40. Kang SG et al (1998) Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomyces coelicolor A3 (2) grown in continuous culture. FEMS Microbiol Lett 168(2):221–226

    Article  CAS  Google Scholar 

  41. Hoyt S, Jones GH (1999) relA is required for actinomycin production in Streptomyces antibioticus. J Bacteriol 181(12):3824–3829

    CAS  Google Scholar 

  42. Kuhar I, Žgur-Bertok D (1999) Transcription Regulation of the Colicin Kcka Gene Reveals Induction of Colicin Synthesis by Differential Responses to Environmental Signals. J Bacteriol 181(23):7373–7380

    CAS  Google Scholar 

  43. Ye X et al (2005) Multi-scale methodology: a key to deciphering systems biology. Front Biosci 10:961–965

    Article  CAS  Google Scholar 

  44. Wang Y et al (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27(6):989–995

    Article  CAS  Google Scholar 

  45. Sharma C, Malhotra D, Rathore AS (2011) Review of computational fluid dynamics applications in biotechnology processes. Biotechnol Prog 27(6):1497–1510

    Article  CAS  Google Scholar 

  46. Xia JY et al (2008) Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochem Eng J 38(3):406–413

    Article  CAS  Google Scholar 

  47. Xia JY et al (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem Eng J 43(3):252–260

    Article  CAS  Google Scholar 

  48. Yang YM et al (2012) A novel impeller configuration to improve fungal physiology performance and energy conservation for cephalosporin C production. J Biotechnol 161(3):250–256

    Article  CAS  Google Scholar 

  49. Hewitt CJ, Nienow AW (2007) The scale up of microbial batch and fed-batch fermentation processes. Adv Appl Microbiol 62:105–135

    Article  CAS  Google Scholar 

  50. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97(6):347–364

    Article  CAS  Google Scholar 

  51. Neubauer P et al (2013) Consistent development of bioprocesses from microliter cultures to the industrial scale. Engineering in Life Sciences 13(3):224–238

    Article  CAS  Google Scholar 

  52. Oosterhuis NMG et al (1985) Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol Bioeng 27(5):711–720

    Article  CAS  Google Scholar 

  53. Sweere APJ, Luyben KCAM, Kossen NWF (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microb Technol 9(7):386–398

    Article  CAS  Google Scholar 

  54. Lara AR et al (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng 93(2):372–385

    Article  CAS  Google Scholar 

  55. Lorantfy B, Jazini M, Herwig C (2013) Investigation of the physiological response to oxygen limited process conditions of Pichia pastoris Mut+ strain using a two-compartment scale-down system. J Biosci Bioeng 116(3):371–379

    Article  CAS  Google Scholar 

  56. Nasution U et al (2006) Generating short-term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the bioscope mini reactor. Metab Eng 8(5):395–405

    Article  CAS  Google Scholar 

  57. Nienow AW et al (2013) Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture. Chem Eng Res Des 91(11):2265–2274

    Article  CAS  Google Scholar 

  58. Serrato JA et al (2004) Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol Bioeng 88(2):176–188

    Article  CAS  Google Scholar 

  59. Papagianni M, Mattey M, Kristiansen B (2003) Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Biotechnol Prog 19(5):1498–1504

    Article  CAS  Google Scholar 

  60. León-Rodríguez AD, Galindo E, Ramírez OT (2010) Design and characterization of a one-compartment scale-down system for simulating dissolved oxygen tension gradients. J Chem Technol Biotechnol 85(7):950–956

    Article  Google Scholar 

  61. Junne S et al (2011) A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6(8):1009–1017

    Article  CAS  Google Scholar 

  62. Sandoval-Basurto EA et al (2005) Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: metabolic response and production of recombinant protein. Biotechnol Bioeng 89(4):453–463

    Article  CAS  Google Scholar 

  63. Trägårdh C (1988) A hydrodynamic model for the simulation of an aerated agitated fed-batch fermenter. In: BHRA (ed) Proceedings of the Second International Conference on Bioreactor Fluid Dynamics, Cambridge, p 117–131

    Google Scholar 

  64. Yu L et al (2012) Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol Bioeng 109(7):1755–1768

    Article  CAS  Google Scholar 

  65. Bannari R et al (2012) A model for cellulase production from Trichoderma reesei in an airlift reactor. Biotechnol Bioeng 109(8):2025–2038

    Article  CAS  Google Scholar 

  66. Noorman H et al (1993) Measurements and computational fluid dynamics simulation of Saccharomyces cerevisiae production in a 30 m3 stirred tank reactor. In: Proceedings of International Symposium on Bioreactor Performance, Helsingùr, Denmark

    Google Scholar 

  67. Teng ELW, P Kumar, Y Samyudia (2010) Computational fluid dynamics of mixing in aerated bioreactors. In: Proceedings of International Conference on Biology, Environment and Chemistry

    Google Scholar 

  68. Elqotbi M et al (2013) CFD modelling of two-phase stirred bioreaction systems by segregated solution of the Euler-Euler model. Comput Chem Eng 48:113–120

    Article  CAS  Google Scholar 

  69. Morchain J, Gabelle J-C, Cockx A (2014) A coupled population balance model and CFD approach for the simulation of mixing issues in lab-scale and industrial bioreactors. AIChE J 60(1):27–40

    Article  CAS  Google Scholar 

  70. Lapin A, Klann M, Reuss M (2010) Multi-scale spatio-temporal modeling: lifelines of microorganisms in bioreactors and tracking molecules in cells. In: Wittmann C, Krull R (eds) Biosystems engineering II. Springer, Berlin, pp 23–43

    Chapter  Google Scholar 

  71. Grünberger A et al (2012) A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12:2060–2068

    Article  Google Scholar 

  72. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  CAS  Google Scholar 

  73. Humphrey A (1998) Shake flask to fermentor: what have we learned? Biotechnol Prog 14:3–7

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support of State Key Development Program of Basic Research of China (973 Program, Grant No. 2013CB733600), NWO-MoST Joint Program (2013DFG32630), National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA021201 and 2014AA021701), and China Ministry of Science and Technology under Contract (Grant No. 2012BAI44G00) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siliang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xia, J. et al. (2015). Advances and Practices of Bioprocess Scale-up. In: Bao, J., Ye, Q., Zhong, JJ. (eds) Bioreactor Engineering Research and Industrial Applications II. Advances in Biochemical Engineering/Biotechnology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2014_293

Download citation

Publish with us

Policies and ethics