Cell Processing Engineering for Regenerative Medicine

Noninvasive Cell Quality Estimation and Automatic Cell Processing
  • Mutsumi TakagiEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 152)


The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell.

Graphical Abstract


Regenerative medicine Cell processing Noninvasive Quality Automatic 


  1. 1.
    Yoshida T, Takagi M (2004) Cell processing engineering for ex vivo expansion of hematopoietic cells. Biochem Eng J 20(2–3):99–106CrossRefGoogle Scholar
  2. 2.
    Takagi M (2005) Cell processing engineering for ex-vivo expansion of hematopoietic cells: a review. J Biosci Bioeng 99(3):189–196CrossRefGoogle Scholar
  3. 3.
    Nakajima K, Kanazawa K, Takagi M, Wakitani S, Inagi M (2009) Development of the automatic cell culture machine for the adherent cell. Inflam Regen 29(2):133–136Google Scholar
  4. 4.
    Yokoyama M, Miwa H, Maeda S, Wakitani S, Takagi M (2008) Influence of fetal calf serum on differentiation of mesenchymal stem cells during expansion. J Biosci Bioeng 106(1):46–50CrossRefGoogle Scholar
  5. 5.
    Takagi M, Kitabayashi T, Koizumi S, Hirose H, Kondo S, Fujiwara M, Ueno K, Misawa H, Hosokawa Y, Masuhara H, Wakitani S (2008) Correlation between cell morphology and aggrecan gene expression level during differentiation from mesenchymal stem cells to chondrocytes. Biotechnol Lett 30:1189–1195CrossRefGoogle Scholar
  6. 6.
    Lee CR, Grodzinsky AJ, Spector M (2003) Modulation of the contractile and biosynthetic activity of chondrocytes seeded in collagen-glycosaminoglycan matrices. Tissue Eng 9(1):27–36CrossRefGoogle Scholar
  7. 7.
    Oda R, Suardita K, Fujimoto K, Pan H, Yan W, Shimazu A, Shintani H, Kato Y (2003) Anti-membrane-bound transferrin-like protein antibodies induce cell-shape change and chondrocyte differentiation in the presence or absence of concanavalin. Am J Cell Sci 116:2029–2038CrossRefGoogle Scholar
  8. 8.
    Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG (2008) Cell population tracking and lineage construction with spatiotemporal context. Med Imag Anal 12:546–566CrossRefGoogle Scholar
  9. 9.
    Kato R, Shiono H, Yamamoto W, Nagura Y, Mukaiyama K, Kojima K, Kii H, Koshiba R, Yamada A, Uozumi T, Watanabe H, Mizuno J, Tomioka K, Honda H (2009) Cell quality prediction system based on image analysis combined with bioinformatics for the quality control of regenerative cell therapy. Tissue Eng Regen Med 6(12):S95Google Scholar
  10. 10.
    Kagalwala F, Kanade T (2003) Reconstructing specimens using DIC microscope images. Cybernetics 33(5):728–737Google Scholar
  11. 11.
    Fotiadis D, Scheuring S, Muller SA, Engel A, Muller DJ (2002) Review: imaging and manipulation of biological structures with AFM. Micron 33:385–397CrossRefGoogle Scholar
  12. 12.
    Takagi M, Hayashi H, Yoshida T (2000) The effect of osmolarity on metabolism and morphology in adhesion and suspension Chinese hamster ovary cells producing tissue plasminogen activator. Cytotechnology 32:171–179CrossRefGoogle Scholar
  13. 13.
    Kemper B, Carl D, Schnekenburger J, Bredebusch I, Schäfer M, Domschke W, von Bally G (2006) Investigation of living pancreas tumor cells by digital holographic microscopy. J Biomed Opt 11:34005CrossRefGoogle Scholar
  14. 14.
    Endo J, Chen J, Kobayashi D, Wada Y, Fujita H (2002) Transmission laser microscope using the phase-shifting technique and its application to measurement of optical waveguides. Appl Opt 41(7):1308–1314CrossRefGoogle Scholar
  15. 15.
    Takagi M, Kitabayashi T, Ito S, Fujiwara M, Tokuda A (2007) Noninvasive measurement of three-dimensional morphology of adhered Chinese hamster ovary cells employing phase-shifting laser microscope. J Biomed Opt 12(5):054010-1–054010-5Google Scholar
  16. 16.
    Sanger JW, Sanger JM (1980) Surface and shape changes during cell division. Cell Tissue Res 209:177–186CrossRefGoogle Scholar
  17. 17.
    Ito S, Takagi M (2009) Correlation between cell cycle phase of adherent Chinese hamster ovary cells and laser phase shift determined by phase-shifting laser microscopy. Biotechnol Lett 31:39–42Google Scholar
  18. 18.
    Tokumitsu A, Wakitani S, Takagi M (2009) Noninvasive estimation of cell cycle phase and proliferation rate of human mesenchymal stem cells by phase-shifting laser microscopy. Cytotechnol 59(3):161–167Google Scholar
  19. 19.
    Hilliard C, Hill R, Armstrong M, Fleckenstein C, Crowley J, Freelamd E, Duffy D, Galloway S (2007) Chromosome aberrations in Chinese hamster and human cells: a comparison using compounds with various genotoxicity profiles. Mutat Res 616:103–118CrossRefGoogle Scholar
  20. 20.
    Cross SE, Jin YS, Rao J, Gimzewski J (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 12:780–783CrossRefGoogle Scholar
  21. 21.
    Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316CrossRefGoogle Scholar
  22. 22.
    Tokumitsu A, Wakitani S, Takagi M (2010) Noninvasive discrimination of human normal cells and malignant tumor cells by phase-shifting laser microscopy. J Biosci Bioeng 109:499–503CrossRefGoogle Scholar
  23. 23.
    Macnab GM, Alexander JJ, Lecatsas G, Bey EM, Urbanowicz JM (1976) Hepatitis B surface antigen produced by a human hepatoma cell line. Br J Cancer 34:509–515CrossRefGoogle Scholar
  24. 24.
    Doi I, Namba M, Sato J (1975) Establishment and some biological characteristics of human hepatoma cell lines. Gann 66:385–392Google Scholar
  25. 25.
    Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J (1982) Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863Google Scholar
  26. 26.
    Takagi M, Tokunaga N (2013) Correlation between actin content and phase-shift of adhesive normal and malignant prostate epithelial cells J Biosci Bioeng 115(3):310–313Google Scholar
  27. 27.
    Yamazaki D, Kurisu S, Takenawa T (2005) Regulation of cancer cell motility through actin reorganization. Cancer Sci 96:379–386CrossRefGoogle Scholar
  28. 28.
    Li QS, Lee GYH, Ong NC, Lim TC (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613CrossRefGoogle Scholar
  29. 29.
    Kim YC, Park SJ, Park JK (2008) Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 133:1432–1439CrossRefGoogle Scholar
  30. 30.
    Takagi M Shibaki Y (2012).Time-lapse analysis of laser phase shift for noninvasive discrimination of human normal cells and malignant tumor cells. J Biosci Bioeng 114(5):556–559Google Scholar
  31. 31.
    Sakai J, Roldán D, Ueno K, Misawa H, Hosokawa Y, Iino T, Wakitani S, Takagi M (2012) Effect of the distance between adherent mesenchymal stem cell and the focus of irradiation of femtosecond laser on cell replication capacity. Cytotechnol. doi: 10.1007/s10616-012-9437-2 Google Scholar
  32. 32.
    Koehler MR, Bosserhoff AK, von Beust G, Bauer A, Blesch A, Buettner R, Schlegel J, Bogdahn U, Schmid M (1996) Assignment of the human melanoma inhibitory activity gene (MIA) to 19q13.32-q13.33 by fluorescence in situ hybridization (FISH). Genomics 35:265–267CrossRefGoogle Scholar
  33. 33.
    Bosserhoff AK, Hein R, Bogdahn U, Buettner R (1996) Structre and promoter analysis of the gene encoding the human melanoma-inhibiting protein MIA. J Biol Chem 271:490–495CrossRefGoogle Scholar
  34. 34.
    Bosserhoff AK, Kondo S, Moser M, Dietz UH, Copeland NG, Gilbert DJ, Jenkins NA, Buettner R, Sandell LJ (1997) Mouse CD-RAP/MIA gene: structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Dev Dynam 208:516–525CrossRefGoogle Scholar
  35. 35.
    Bosserhoff AK, Kaufmann M, Kaluza B, Bartke I, Zirngibl H, Hein R, Stolz W, Buettner R (1997) Melanoma inhibiting activity, a novel serum marker for progression of malignant melanoma. Cancer Res 57:3149–3153Google Scholar
  36. 36.
    Tscheudschilsuren G, Bosserhoff AK, Schlegel J, Vollmer D, Anton A, Alt V, Schnettler R, Brandt J, Proetzel G (2006) Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA. Exp Cell Res 312:63–72Google Scholar
  37. 37.
    Bosserhoff AK, Buettner R (2003) Establishing the protein MIA (melanoma inhibitory activity) as a marker for chondrocyte differentiation. Biomaterials 24:3229–3234CrossRefGoogle Scholar
  38. 38.
    Onoue K, Kusubashi H, Wakitani S, Takagi M (2009) Noninvasive estimation of aggrecan gene expression level of chondrocytes by the analysis of culture supernatant. Abstract of 61st annual meeting of the Japanese society for bioscience and bioengineering, Nagoya, Japan, 23–25 SeptGoogle Scholar
  39. 39.
    Wu XZ, Terada S (2005) Noninvasive diagnosis of a single cell with a probe beam. Biotechnol Prog 21:1772–1774CrossRefGoogle Scholar
  40. 40.
    Miyamoto K, Yamada P, Yamaguchi R, Muto T, Hirano A, Kimura Y, Niwano M, Isoda H (2007) In situ observation of cell adhesion and metabolism using surface infrared spectroscopy. Cytotechnol 55:143–149CrossRefGoogle Scholar
  41. 41.
    Yamaguchi R, Hirano-Iwata A, Kimura Y, Niwano M, Miyamoto K, Isoda H, Miyazaki H (2009) In situ real-time monitoring of apoptosis on leukemia cells by surface infrared spectroscopy. J Appl Phys 105:024701CrossRefGoogle Scholar
  42. 42.
    Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM (2008) Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res 86A:31–40CrossRefGoogle Scholar
  43. 43.
    Draux F, Jeannesson P, Beljebbar A, Tfayli A, Fourre N, Manfait M, Sule-Suso J, Sockalingum GD (2009) Raman spectral imaging of single living cancer cells: a preliminary study. Analyst 134:542–548CrossRefGoogle Scholar
  44. 44.
    Kunstar A, Otto C, van Blitterswij CA, van Apeldoorn AA (2009) Raman monitoring of chondrocyte dedifferentiation and differentiation. Tissue Eng Regen Med 6(12):S231Google Scholar
  45. 45.
    Takagi M, Miyata Y, Wakitani S, Ishizaka, S, Kitamura N (2009) Noninvasive discrimination of adherent chondrocytes from fibroblasts using Raman spectroscopy. Abstract of 61st annual meeting of the Japanese society for bioscience and bioengineering, Nagoya, Japan, 23–25 SeptGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Biotechnology and Macromolecular Chemistry, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations