Skip to main content

Advances in the Analysis of Volatile Isoprenoid Metabolites

  • Chapter
  • First Online:
Biotechnology of Isoprenoids

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 148))

Abstract

The advances in the analysis of volatile isoprenoid metabolites from sample preparation to separation and detection over the past 3 years are discussed in this overview. Novel headspace sampling techniques like the so-called high concentration capacity techniques are compared with the classical liquid extraction and distillation methods. The advantages of multidimensional separation techniques in the analysis of complex samples are outlined and commercially available dedicated heart-cutting and comprehensive GC systems are described.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alonso J, González P (2013) Isotope Dilution Mass Spectrometry. Royal Society of Chemistry, Cambridge, p 472

    Google Scholar 

  2. Bai Z, Pilote A, Sarker PK, Vandenberg G, Pawliszyn J (2013) In vivo solid-phase microextraction with in vitro calibration: determination of off-flavor components in live fish. Anal Chem 85:2328–2332. doi:10.1021/ac3033245

    Article  CAS  Google Scholar 

  3. Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2012) 4.01—Headspace sampling in flavor and fragrance field. In: Pawliszyn J (ed) Comprehensive sampling and sample preparation, Academic Press, Oxford, pp 1–25

    Google Scholar 

  4. Boeker P, Haas T, Lammers PS (2013) Theory and practice of a variable dome splitter for gas chromatography-olfactometry. J Chromatogr A 1286:200–207. doi:10.1016/j.chroma.2013.02.057

    Article  CAS  Google Scholar 

  5. Boeker P, Leppert J, Mysliwietz B, Lammers PS (2013) Comprehensive theory of the deans’ switch as a variable flow splitter: fluid mechanics, mass balance, and system behavior. Anal Chem 85:9021–9030. doi:10.1021/ac401419j

    Article  CAS  Google Scholar 

  6. Bojko B, Cudjoe E, Gomez-Rios GA, Gorynski K, Jiang R, Reyes-Garces N, Risticevic S, Silva EAS, Togunde O, Vuckovic D, Pawliszyn J (2012) SPME—Quo vadis? Anal Chim Acta 750:132–151. doi:10.1016/j.aca.2012.06.052

    Article  CAS  Google Scholar 

  7. Chaintreau A (2001) Simultaneous distillation-extraction: from birth to maturity—review. Flavour Fragr J 16:136–148. doi:10.1002/ffj.967

    Article  CAS  Google Scholar 

  8. Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q (2010) Targeted and non-targeted approaches for complex natural sample profiling by GCxGC-qMS. J Chromatogr Sci 48:251–261

    Article  CAS  Google Scholar 

  9. Cordero C, Zebelo SA, Gnavi G, Griglione A, Bicchi C, Maffei ME, Rubiolo P (2012) HS-SPME-GCxGC-qMS volatile metabolite profiling of Chrysolina herbacea frass and Mentha spp. leaves. Anal Bioanal Chem 402:1941–1952. doi:10.1007/s00216-011-5600-4

    Article  CAS  Google Scholar 

  10. D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32. doi:10.1039/b507589k

    Article  Google Scholar 

  11. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation—a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241. doi:10.1007/s002170050486

    Article  CAS  Google Scholar 

  12. Jochmann MA, Yuan X, Schilling B, Schmidt TC (2008) In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. J Chromatogr A 1179:96–105. doi:10.1016/j.chroma.2007.11.100

    Article  CAS  Google Scholar 

  13. Komes D, Ulrich D, Lovric T, Schippel K (2005) Isolation of white wine volatiles using different sample preparation methods. Vitis 44:187–193

    CAS  Google Scholar 

  14. Laaks J, Jochmann MA, Schilling B, Molt K, Schmidt TC (2014) In-tube extraction-GC-MS as a high-capacity enrichment technique for the analysis of alcoholic beverages. J Agric Food Chem 62:3081–3091. doi:10.1021/jf405832u

    Article  CAS  Google Scholar 

  15. Laaks J, Jochmann MA, Schilling B, Schmidt TC (2010) In-tube extraction of volatile organic compounds from aqueous samples: an economical alternative to purge and trap enrichment. Anal Chem 82:7641–7648. doi:10.1021/ac101414t

    Article  CAS  Google Scholar 

  16. Lockwood GB (2001) Techniques for gas chromatography of volatile terpenoids from a range of matrices. J Chromatogr A 936:23–31. doi:10.1016/S0021-9673(01)01151-7

    Article  CAS  Google Scholar 

  17. Marriott PJ, Chin S-T, Maikhunthod B, Schmarr H-G, Bieri S (2012) Multidimensional gas chromatography. Trac-Trends Anal Chem 34:1–21. doi:10.1016/j.trac.2011.10.013

    Article  CAS  Google Scholar 

  18. Purcaro G, Tranchida PQ, Ragonese C, Conte L, Dugo P, Dugo G, Mondello L (2010) Evaluation of a rapid-scanning quadrupole mass spectrometer in an apolar × ionic-liquid comprehensive two-dimensional gas chromatography system. Anal Chem 82:8583–8590. doi:10.1021/ac101678r

    Article  CAS  Google Scholar 

  19. Sanchez-Palomo E, Alanon ME, Diaz-Maroto MC, Gonzalez-Vinas MA, Perez-Coello MS (2009) Comparison of extraction methods for volatile compounds of Muscat grape juice. Talanta 79:871–876. doi:10.1016/j.talanta.2009.05.019

    Article  CAS  Google Scholar 

  20. Schimanski S, Krings U, Berger RG (2013) Rapid analysis of volatiles in fat-containing matrices for monitoring bioprocesses. Eur Food Res Technol 237:739–746. doi:10.1007/s00217-013-2047-1

    Article  CAS  Google Scholar 

  21. Seeley JV (2011) Flow-modulated comprehensive two-dimensional gas chromatography. In: Mondello L, (ed) Comprehensive chromatography in combination with mass spectrometry, Wiley, Hoboken, p 145–170

    Google Scholar 

  22. Silva EAS, Risticevic S, Pawliszyn J (2013) Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trac-Trends Anal Chem 43:24–36. doi:10.1016/j.trac.2012.10.006

    Article  Google Scholar 

  23. Snow NH, Bullock GP (2010) Novel techniques for enhancing sensitivity in static headspace extraction-gas chromatography. J Chromatogr A 1217:2726–2735. doi:10.1016/j.chroma.2010.01.005

    Article  CAS  Google Scholar 

  24. Socaci SA, Socaciu C, Muresan C, Farcas A, Tofana M, Vicas S, Pintea A (2014) Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochem Anal 25:161–169. doi:10.1002/pca.2483

    Article  CAS  Google Scholar 

  25. Socaci SA, Socaciu C, Tofana M, Rati IV, Pintea A (2013) In-tube Extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp Carpatica) berry varieties and juice. Phytochem Anal 24:319–328. doi:10.1002/pca.2413

    Article  CAS  Google Scholar 

  26. Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560. doi:10.1111/j.1365-313X.2005.02612.x

    Article  CAS  Google Scholar 

  27. Tranchida PQ, Mondello L, Poynter SDH, Shellie R.A (2011a) Comprehensive two-dimensional gas chromatography combined with mass spectrometry. In: Mondello L (ed) Comprehensive chromatography in combination with mass spectrometry. Wiley, Hoboken, p 171–242

    Google Scholar 

  28. Tranchida PQ, Purcaro G, Dugo P, Mondello L, Purcaro G (2011) Modulators for comprehensive two-dimensional gas chromatography. TrAC Trends Anal Chem 30:1437–1461. doi:10.1016/j.trac.2011.06.010

    Article  CAS  Google Scholar 

  29. Tranchida PQ, Shellie RA, Purcaro G, Conte LS, Dugo P, Dugo G, Mondello L (2010) Analysis of fresh and aged tea tree essential oils by using GCxGC-qMS. J Chromatogr Sci 48:262–266

    Article  CAS  Google Scholar 

  30. Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22. doi:10.1016/j.aca.2013.07.069

    Article  CAS  Google Scholar 

  31. Zapata J, Lopez R, Herrero P, Ferreira V (2012) Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid-gas transfer rates. J Chromatogr A 1266:1–9. doi:10.1016/j.chroma.2012.10.015

    Article  CAS  Google Scholar 

  32. Zapata J, Mateo-Vivaracho L, Lopez R, Ferreira V (2012) Automated and quantitative headspace in-tube extraction for the accurate determination of highly volatile compounds from wines and beers. J Chromatogr A 1230:1–7. doi:10.1016/j.chroma.2012.01.037

    Article  CAS  Google Scholar 

  33. Zhang C, Zhang Z, Li G (2014) Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes. J Chromatogr A 1346:8–15. doi:10.1016/j.chroma.2014.04.043

    Article  CAS  Google Scholar 

  34. Zhu F, Xu J, Ke Y, Huang S, Zeng F, Luan T, Ouyang G (2013) Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: a review. Anal Chim Acta 794:1–14. doi:10.1016/j.aca.2013.05.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wüst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wüst, M. (2014). Advances in the Analysis of Volatile Isoprenoid Metabolites. In: Schrader, J., Bohlmann, J. (eds) Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, vol 148. Springer, Cham. https://doi.org/10.1007/10_2014_278

Download citation

Publish with us

Policies and ethics