Medicinal Plants, Human Health and Biodiversity: A Broad Review

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 147)


Biodiversity contributes significantly towards human livelihood and development and thus plays a predominant role in the well being of the global population. According to WHO reports, around 80 % of the global population still relies on botanical drugs; today several medicines owe their origin to medicinal plants. Natural substances have long served as sources of therapeutic drugs, where drugs including digitalis (from foxglove), ergotamine (from contaminated rye), quinine (from cinchona), and salicylates (willow bark) can be cited as some classical examples.Drug discovery from natural sources involve a multifaceted approach combining botanical, phytochemical, biological, and molecular techniques. Accordingly, medicinal-plant–based drug discovery still remains an important area, hitherto unexplored, where a systematic search may definitely provide important leads against various pharmacological targets.Ironically, the potential benefits of plant-based medicines have led to unscientific exploitation of the natural resources, a phenomenon that is being observed globally. This decline in biodiversity is largely the result of the rise in the global population, rapid and sometimes unplanned industrialization, indiscriminate deforestation, overexploitation of natural resources, pollution, and finally global climate change.Therefore, it is of utmost importance that plant biodiversity be preserved, to provide future structural diversity and lead compounds for the sustainable development of human civilization at large. This becomes even more important for developing nations, where well-planned bioprospecting coupled with nondestructive commercialization could help in the conservation of biodiversity, ultimately benefiting mankind in the long run.Based on these findings, the present review is an attempt to update our knowledge about the diverse therapeutic application of different plant products against various pharmacological targets including cancer, human brain, cardiovascular function, microbial infection, inflammation, pain, and many more.

Graphical Abstract


Biodiversity CNS Cardiovascular Anticancer Antimicrobial 



The authors are thankful to Ratul Sarkar, Kirendra Kr. Yadav, D. Sinha, Md. Firdaus, Pritam Saha, Amrita Sharma, Prof. Samantak Das, and Aritro Bhattacharjee for their help during the preparation of the manuscript.


  1. 1.
    Bezerra RJS, Calheiros AS, Ferreira NCS, Frutuoso VS, Alves LA (2013) Natural products as a source for new anti-inflammatory and analgesic compounds through the inhibition of purinergic P2X receptors. Pharmaceuticals (Basel) 6(5):650–658Google Scholar
  2. 2.
    Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 121:147–155Google Scholar
  3. 3.
    Kushiro T, Nambara E, McCourt P (2003) Hormone evolution: the key to signalling. Nature 422:122Google Scholar
  4. 4.
    Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. Stud Nat Prod Chem 21:3–122Google Scholar
  5. 5.
    Palavan-Unsal N, Arisan D (2009) Nitric oxide signalling in plants. Bot Rev 75:203–229Google Scholar
  6. 6.
    Chivian E, McCally M, Hu H, Haines A (eds) (1993) Critical condition: human health and the environment. MIT Press, Cambridge, MAGoogle Scholar
  7. 7.
    Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotechnol Biochem 71:1387–1404Google Scholar
  8. 8.
    Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19Google Scholar
  9. 9.
    Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96Google Scholar
  10. 10.
    Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014Google Scholar
  11. 11.
    Lee D-S, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368Google Scholar
  12. 12.
    Nässel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92:42–104Google Scholar
  13. 13.
    Klowden MJ (2007) Physiological systems in insects. Academic, LondonGoogle Scholar
  14. 14.
    Marder E (2007) Searching for insight. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  15. 15.
    Wolf FW, Heberlein U (2003) Invertebrate models of drug abuse. J Neurobiol 54:161–178Google Scholar
  16. 16.
    Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529Google Scholar
  17. 17.
    Giurfa M (2007) Invertebrate cognition: nonelemental learning beyond simple conditioning. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  18. 18.
    Mixson TA, Abramson CI, Bozi J (2010) The behavior and social communication of honey bees (Apis mellifera carnica poll). Under the influence of alcohol 1, 2. Psychol Rep 106:701–717Google Scholar
  19. 19.
    Ho KS, Sehgal A (2005) Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol 393:772–793Google Scholar
  20. 20.
    Horiuchi J, Saitoe M (2005) Can flies shed light on our own age-related memory impairment? Ageing Res Rev 4:83–101Google Scholar
  21. 21.
    Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT 1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell Mol Life Sci 67:2467–2479Google Scholar
  22. 22.
    Mustard JA, Pham PM, Smith BH (2010) Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J Insect Physiol 56:422–430Google Scholar
  23. 23.
    Hassani AK, Dupuis JP, Gauthier M, Armengaud C (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9:91–100Google Scholar
  24. 24.
    Ismail N, Christine S, Robinson GE, Fahrbach SE (2008) Pilocarpine improves recognition of nestmates in young honey bees. Neurosci Lett 439:178–181Google Scholar
  25. 25.
    Guez D, Zhu H, Zhang S, Srinivasan M (2010) Enhanced cholinergic transmission promotes recall in honeybees. J Insect Physiol 56:1341–1348Google Scholar
  26. 26.
    Schultz JC (2002) Shared signals and the potential for phylogenetic espionage between plants and animals. Integr Comp Biol 42:454–462Google Scholar
  27. 27.
    Brunton L, Lazo J, Parker K (2005) Goodman & Gilman’s the pharmacological basis of therapeutics, vol 11. McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Halpern JH (2004) Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol Ther 102:131–138Google Scholar
  29. 29.
    Kitagawa M, Houzen H, Tashiro K (2007) Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord 22(5):710–712Google Scholar
  30. 30.
    Roth BL, Lopez E, Beischel S, Westkaemper RB, Evans JM (2004) Screening the receptorome to discover themolecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. Pharmacol Ther 102:99–110Google Scholar
  31. 31.
    Kumar V (2006) Potential medicinal plants for CNS disorders: an overview. Phytotherapy Research 20(12):1023–1035Google Scholar
  32. 32.
    Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512Google Scholar
  33. 33.
    Halpern R, Sewell A (2005) Hallucinogenic botanicals of America: a growing need for focused drug education and research. Life Sci 78:519–526Google Scholar
  34. 34.
    Singh YN, Singh NN (2002) Therapeutic potential of kava in the treatment of anxiety disorders. CNS Drugs 16:731–743Google Scholar
  35. 35.
    Willmore-Fordham CB, Krall DM, McCurdy CR, Kinder DH (2007) The hallucinogen derived from Salvia divinorum, salvinorin A, has κ-opioid agonist discriminative stimulus effects in rats. Neuropharmacology 53:481–486Google Scholar
  36. 36.
    Calixto JB, Beirith A, Ferreira J, Santos ARS, Filho VC, Yunes RA (2000) Naturally occurring antinociceptive substances from plants. Phytother Res 14:401–418Google Scholar
  37. 37.
    Chen LX, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28:705–740Google Scholar
  38. 38.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801Google Scholar
  39. 39.
    Takeuchi O, Akira S (2010) Pattern Recognition Receptors and Inflammation. Cell 140:805–820Google Scholar
  40. 40.
    Schroder K, Tschopp J (2010) The inflammosomes. Cell 140:821–832Google Scholar
  41. 41.
    Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nature 4:206–220Google Scholar
  42. 42.
    Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820Google Scholar
  43. 43.
    Picerno P, Autore G, Marzocco S, Meloni M, Sanogo R, Aquino RP (2005) Anti-inflammatory activity of verminoside from Kigelia africana and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. J Nat Prod 68:1610–1614Google Scholar
  44. 44.
    Kassuya CA, Leite DF, de Melo LV, Rohder VL, Calixto JB (2005) Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med 71:721–726Google Scholar
  45. 45.
    Lin LC, Shen CC, Shen YC, Tsai TH (2006) Antiinflammatory neolignans from Piper kadsura. J Nat Prod 69:842–844Google Scholar
  46. 46.
    Ito C, Itoigawa M, Okada T, Furukawa H (2007) Anti-inflammatory activity of phenylpropanoids and phytoquinoids from Illicium species in RBL-2H3 cells. Planta Med 73:662–665Google Scholar
  47. 47.
    Min HY, Nam JW, Lee NY, Wiryawan A, Suprapto W et al (2008) Identification of a new naphthalene and its derivatives from the bulb of Eleutherine Americana with inhibitory activity on lipopolysaccharide induced nitric oxide production. Chem Pharm Bull 56:1314–1316Google Scholar
  48. 48.
    Seelinger G, Merfort I, Schempp CM (2008) Antioxidant, antiinflammatory and antiallergic activities of luteolin. Planta Med 74:1667–1677Google Scholar
  49. 49.
    Yongmei Z, Nan Z, Ning T, Baolin L (2007) Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med 73:221–226Google Scholar
  50. 50.
    Sindhu ER, Kuttan R (2007) Antioxidant and anti-inflammatory activity of lutein and its ester. Amala Res Bull 27:261–270Google Scholar
  51. 51.
    Lee SA, Han XH, Lee MH, Hwang S, Park JS et al (2008) Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of LPS-induced nitric oxide production. Chem Pharm Bull 56:199–202Google Scholar
  52. 52.
    Byeon SE, Lee YG, Kim JC, Han JG, Lee HY, Cho JY (2008) Hinokitiol: a natural tropolone derivative, inhibits TNF-alpha production in LPS-activated macrophages via suppression of NF-KB. Planta Med 74:828–833Google Scholar
  53. 53.
    Shin EM, Kim YS, Cai XF, Lee JJ, Kim HP (2006) Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms. Arch Pharmacal Res 29:293–297Google Scholar
  54. 54.
    Lee SH, Kim JY, Zhao YZ, Park EJ, Lee BS et al (2006) Polyozellin inhibits nitric oxide production by down-regulating LPS-induced activity of NF-kB and SAPK/JNK in RAW 264.7 cells. Planta Med 72:857–859Google Scholar
  55. 55.
    Lee J, Jung E, Lim J, Lee J, Hur S, Kim SS et al (2006) Involvement of nuclear factor-kB in the inhibition of pro-inflammatory mediators by pinosylvin. Planta Med 72:801–806Google Scholar
  56. 56.
    Patel B, Patel S, Hoffman R (2005) Inhibition of cyclo-oxygenase-2 expression in mouse macrophages by 4-(3-methyl-but-1-enyl)-3,5,3’,4’-tetrahydroxystilbene: a resveratrol derivative from peanuts. Phytother Res 19:552–555Google Scholar
  57. 57.
    Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P, Vanek T (2005) In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and-2-catalyzed prostaglandin E2 biosyntheses. Planta Med 71:739–742Google Scholar
  58. 58.
    Won JH, Kim JY, Yun KJ, Lee JH, Back NI, Chung HG et al (2006) Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced INOS and COX-2 Expression via NF-kB inactivation in RAW 264.7 macrophages cells. Planta Med 72:1181–1187Google Scholar
  59. 59.
    Alves LA, Bezerra RJ, Faria RX, Ferreira LG, da Silva Frutuoso V (2013) Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 18:10953–10972Google Scholar
  60. 60.
    Ao CW, Araki N, Tawata S (2009) Cyclooxygenase inhibitory compounds with antioxidant activities from Sophora subprostrata. Asian J Chem 21:745–754Google Scholar
  61. 61.
    Shang JH, Cai XH, Feng T, Zhao YL, Wang JK, Zhang LY, Yan M, Luo XD (2010) Pharmacological evaluation of Alstonia scholaris: anti-inflammatory and analgesic effects. J Ethnopharmacol 129(174):181Google Scholar
  62. 62.
    Kupeli E, Kosar M, Yesilada E, Baser KHC, Baser CA (2002) Comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the rootsof turkish berberis species. Life Sci 72:645–657Google Scholar
  63. 63.
    Danz H, Stoyanova S, Wippich P, Brattstrom A, Hamburger M (2001) Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med 67:411–416Google Scholar
  64. 64.
    Danz H, Stoyanova S, Thomet OAR, Simon HU, Dannhardt G, Ulbrich H, Hamburger M (2002) Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis. Planta Med 68:875–880Google Scholar
  65. 65.
    Ishihara T, Kohno K, Ushio S, Iwaki K, Ikeda M, Kurimoto M (2000) Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. Eur J Pharmacol 407:197–204Google Scholar
  66. 66.
    Noh EJ, Ahn KS, Shin EM, Jung SH, Kim YS (2006) Inhibition of lipopolysaccharide-induced iNOS and COX-2 expression by dehydroevodiamine through suppression of NF-kB activation in RAW 264.7 macrophages. Life Sci 79:695–701Google Scholar
  67. 67.
    Woo HG, Lee CH, Noh M-S, Lee JJ, Jung Y-S, Baik EJ, Moon C-H, Lee SH (2001) Rutaecarpine, a quinazolinocarboline alkaloid, inhibits prostaglandin production in RAW264.7 macrophages. Planta Med 67:505–509Google Scholar
  68. 68.
    Ko HC, Wang YH, Liou KT, Chen CM, Chen CH, Wang WY, Chang S, Hou YC, Chen KT, Chen CF, Shen YC (2007) Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. Eur J Pharmacol 555:211–217Google Scholar
  69. 69.
    Moon TC, Murakami M, Kudo I, Son KH, Kim HP, Kang SS, Chang HW (1999) A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm Res 48:621–625Google Scholar
  70. 70.
    Choi YH, Shin EM, Kim YS, Cai XF, Lee JJ, Kim HP (2006) Anti-inflammatory principles from the fruits of Evodia rutaecarpa and their cellular action mechanisms. Arch Pharm Res 29:293–297Google Scholar
  71. 71.
    Wang Y, Fang Y, Huang W, Zhou X, Wang M, Zhong B, Peng D (2005) Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol 98:37–43Google Scholar
  72. 72.
    Choi HS, Kim HS, Min KR, Kim Y, Lim HK, Chang YK, Chung MW (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol 69:173–179Google Scholar
  73. 73.
    Shen YC, Chou CJ, Chiou WF, Chen C (2001) Anti-inflammatory effects of the partially purified extract of radix Stephaniae tetrandrae: comparative studies of its active principles tetrandrine and fangchinoline on human polymorphonuclear leukocyte functions. Mol Pharmacol 60(5):1083–1090Google Scholar
  74. 74.
    Wu SJ, Ng LT (2007) Tetrandrine inhibits proinflammatory cytokines, iNOS and COX-2 expression in human monocytic cells. Biol Pharm Bull 30:59–62Google Scholar
  75. 75.
    Choi BH, Ahn IS, Kim YH, Park JW, Lee SY, Hyun CK, Do MS (2006) Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med 38:599–605Google Scholar
  76. 76.
    Lee CH, Chen JC, Hsiang CY, Wu SL, Wu HC, Ho TY (2007) Berberine suppresses inflammatory agents-induced interleukin-1b and tumor necrosis factor-a productions via the inhibition of IkB degradation in human lung cells. Pharmacol Res 56:193–201Google Scholar
  77. 77.
    Hu J-P, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kB and Akt pathways. Eur J Pharmacol 580:70–79Google Scholar
  78. 78.
    Chiou WF, Peng CH, Chen CF, Chou CJ (2003) Anti-inflammatory properties of piperlactam S: modulation of complement 5a-induced chemotaxis and inflammatory cytokines production in macrophages. Planta Med 69:9–14Google Scholar
  79. 79.
    Hanh TTH, Hang DTT, van Minh C, Dat NT (2011) Anti-inflammatory effects of fatty acids isolated from Chromolaena odorata. Asian Pac J Trop Med 4(10):760–763Google Scholar
  80. 80.
    Ringbom T, Huss U, Stenholm A, Flock S, Skattebol L, Perera P, Bohlin L (2001) COX-2 inhibitory effects of naturally occurring and modified fatty acids. J Nat Prod 64:745–749Google Scholar
  81. 81.
    Su B-N, Cuendet M, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD (2002) Activity-guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitor assay. Planta Med 68:1125–1128Google Scholar
  82. 82.
    Jang DS, Cuendet M, Su B-N, Totura S, Riswan S, Fong HHS, Pezzuto JM, Kinghorn AD (2004) Constituents of the seeds of Hernandia ovigera with inhibitory activity against cyclooxygenase-2. Planta Med 70:893–896Google Scholar
  83. 83.
    Shen CC, Wang YH, Chang TT, Lin LC, Don MJ, Hou YC, Lio KT, Chang S, Wang WY, Ko HC, Shen YC (2007) Anti-inflammatory ergostanes from the basidiomata of Antrodia salmonea. Planta Med 73:1208–1213Google Scholar
  84. 84.
    Manjula N, Gayathri B, Vinaykumar KS, Shankernarayanan NP, Vishwakarma RA, Balakrishnan A (2006) Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-a, IL-1b and IL-2. Int Immunopharmacol 6:122–132Google Scholar
  85. 85.
    Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351Google Scholar
  86. 86.
    Bai L, Wang L, Zhao M, Toki A, Hasegawa T, Ogura H, Kataoka T, Hiroe K, Sakai J, Bai J, Ando M (2007) Bioactive pregnanes from Nerium oleander. J Nat Prod 70:14–18Google Scholar
  87. 87.
    Ende C, Gebhardt R (2004) Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med 70:1006–1008Google Scholar
  88. 88.
    Matsuda H, Morikawa T, Ueda K, Managi H, Yoshikawa M (2002) Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-a and IL-4 production from RBL-2H3 cells. Bioorg Med Chem 10:3123–3128Google Scholar
  89. 89.
    Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58:759–765Google Scholar
  90. 90.
    Sadik CD, Sies H, Schewe T (2003) Inhibition of 15-lipoxygenases by flavonoids: Structure-activity relations and mode of action. Biochem Pharmacol 65:773–781Google Scholar
  91. 91.
    Venables BJ, Waggoner CA, Chapman KD (2005) N-acylethanolamines in seeds of selected legumes. Phytochemistry 66:1913–1918Google Scholar
  92. 92.
    Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351Google Scholar
  93. 93.
    Paul AT, Gohil VM, Bhutani KK (2006) Modulating TNF-a signaling with natural products. Drug Discov Today 11:725–732Google Scholar
  94. 94.
    Ishikawa YT, Goto M, Yamaki K (2006) Structure–activity relations of inhibitory effects of various flavonoids on lipopolysaccharide-induced prostaglandin E2 production in rat peritoneal macrophages: comparison between subclasses of flavonoids. Phytomedicine 13:310–317Google Scholar
  95. 95.
    Calixto JB, Campos MM, Otuki MF, Santos ARS (2004) Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103Google Scholar
  96. 96.
    Yamaki K, Kim DH, Ryu N, Kim YP, Shin KH, Ohuchi K (2002) Effects of naturally occurring isoflavones on prostaglandin E2 production. Planta Med 68:97–100Google Scholar
  97. 97.
    Laupattarakasem P, Houghton PJ, Hoult JR (2004) Anti-inflammatory isoflavonoids from the stems of Derris scandens. Planta Med 70:496–501Google Scholar
  98. 98.
    Matsuda H, Morikawa T, Ando S, Toguchida I, Yoshikawa M (2003) Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem 11:1995–2000Google Scholar
  99. 99.
    Zeng Y, Gu B, Ji X, Ding X, Song C, Wu F (2007) Sinomenine, an antirheumatic alkaloid, ameliorates clinical signs of disease in the lewis rat model of acute experimental autoimmune encephalolmyelitis. Biol Pharm Bull 30:1438–1444Google Scholar
  100. 100.
    Jachak SM, Saklani A (2007) Challenges and opportunities in drug discovery from plants. Curr Sci 92:1251–1257Google Scholar
  101. 101.
    Ho L-H, Juan T-Y, Chao P, Wu W-L, Chang D-M, Chang S-Y, Lai J-H (2004) Plant alkaloid tetrandrine downregulates IkBa kinases-IkBa-NF-kB signaling pathway in human peripheral blood T cell. Br J Pharmacol 143:919–927Google Scholar
  102. 102.
    Jeon TW, Jin CH, Lee SK, Jun IH, Kim GH, Lee DJ, Jeong HG, Lee K-B, Jahng Y, Jeong TC (2006) Immunosuppressive effects of rutaecarpine in female BALB/c mice. Toxicol Lett 164:155–166Google Scholar
  103. 103.
    Giang PM, Jin HZ, Son PT, Lee JH, Hong YS, Lee JJ (2003) ent-Akurane diterpenoids from Croton tonkinensis inhibit LPS-induced NF-kB activation and NO production. J Nat Prod 66:1217–1220Google Scholar
  104. 104.
    Hong SS, Lee SA, Han XH, Jin HZ, Lee JH, Lee D, Lee JJ, Hong JT, Kim Y, Ro JS, Hwang BY (2007) Akurane diterpenoids from Isodon excisus inhibit LPS-induced NF-kB activation and NO production in macrophage RAW264.7 cells. J Nat Prod 70:632–636Google Scholar
  105. 105.
    Perez-Garcia F, Martin E, Parella T, Adzet T, Canigueral S (2005) Activity of taraxasteryl acetate on inflammation and heat shock protein synthesis. Phytomedicine 12:278–284Google Scholar
  106. 106.
    Figueredo SM, do Nascimento FP, Freitas CS, Baggio CH, Soldi C, Pizzolatti MG, de Ibarrola Mdel C, de Arrua RL, Santos AR (2011) Antinociceptive and gastroprotective actions of ethanolic extract from Pluchea sagittalis (Lam.) Cabrera. J Ethnopharmacol 135(3):603-609Google Scholar
  107. 107.
    Pandey A, Bani S, Satti NK, Gupta BD, Suri KA (2012) Anti-arthritic activity of agnuside mediated through the down-regulation of inflammatory mediators and cytokines. Inflamm Res 61(4):293–304Google Scholar
  108. 108.
    Suksamrarn A, Kumpun S, Kirtikara K, Yingyongnarongkul, Suksamrarn S (2002) Iridoids with antiinflamatory activity from Vitex peduncularis. Planta Med 68:72–73Google Scholar
  109. 109.
    Yoshikawa K, Inoue M, Mastumoto Y, Sakkakibara C, Miyataka H, Mastumoto H, Arihara S (2005) Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J Nat Prod 68(1):69–73Google Scholar
  110. 110.
    Chao KP, Hua KF, Hsu HY, Su YC, Chang ST (2005) Anti-inflammatory activity of Sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Med 71:300–305Google Scholar
  111. 111.
    Ma J, Dey M, Yang H, Poulev A, Pouleva R, Dorn R, Lipsky PE, Kennelly EJ, Raskin I (2007) Antiinflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry 68:1172–1178Google Scholar
  112. 112.
    Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kB-regulated gene products and TAK1-mediated NF-kB activation. Blood 109:2727–2735Google Scholar
  113. 113.
    Koo TH, Lee J-H, Park YJ, Hong Y-S, Kim HS, Kim K-W, Lee JJ (2001) A sesquiterpene lactone, costunolide, from Magnolia grandiflora inhibits NF-kB by targeting IkB phosphorylation. Planta Med 67:103–107Google Scholar
  114. 114.
    Siedle B, Gustavsson L, Johansson S, Murillo R, Castro V, Bohlin L, Merfort I (2003) The effect of sesquiterpene lactones on the human neutrophil elastase. Biochem Pharmacol 65:897–903Google Scholar
  115. 115.
    Castro V, Murillo R, Klaas CA, Meunier C, Mora G, Pahl HL, Merfort I (2000) Inhibition of the transcription factor NF-kB by sesquiterpene lactones from Podachaenium eminens. Planta Med 66:591–595Google Scholar
  116. 116.
    LyX G, Schmidt TJ, Merfort I, Pahl HL (1997) Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kB. Biol Chem 378:951–961Google Scholar
  117. 117.
    LyX G, Knorre A, Schmidt TJ, Merfort I, Pahl HL (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kB by directly targeting p65. J Biol Chem 273:33508–33516Google Scholar
  118. 118.
    de Marino S, Borbone N, Zollo F, Lanaro A, di Meglio P, Iorizzi M (2005) New sesquiterpene lactones from Laurus nobilis leaves as inhibitors of nitric oxide production. Planta Med 71: 706–710Google Scholar
  119. 119.
    Rungeler P, Castro V, Mora G, Goren N, Vichnewski W, Pahl HL, Merfort I, Schmidt TJ (1999) Inhibition of transcription factor NF-kB by sesquiterpene lactones: a proposed molecular mechanism of action. Bioorg Med Chem 7:2343–2352Google Scholar
  120. 120.
    Honda T, Finlay HJ, Gribble GW, Suh N, Sporn MB (1997) New enone derivatives of oleanolic acid and ursolic acid as inhibitors of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett 7:1623–1628Google Scholar
  121. 121.
    Honda T, Rounds BV, Gribble GW, Suh N, Wang Y, Sporn MB (1998) Design and synthesis of 2- cyano-3,12-dioxooolean-1,9-dien-28-oic acid, a novel and highly active inhibitors of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett 8:2711–2724Google Scholar
  122. 122.
    Honda T, Rounds BV, Bore L Jr, Favaloro FG, Gribble GW, Suh N, Wang Y, Sporn MB (1999) Novel synthetic oleanane triterpenoids: a series of highly active inhibitors of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett 9:3429–3434Google Scholar
  123. 123.
    Honda T, Gribble GW, Suh N, Finlay HJ, Rounds BV, Bore L Jr, Favaloro FG, Wang Y, Sporn MB (2000) Novel synthetic oleanane and ursane triterpenoids with various enone functionalities in ring A as inhibitors of nitric oxide production in mouse macrophages. J Med Chem 43:1866–1877Google Scholar
  124. 124.
    Honda T, Rounds BV, Bore L, Finlay HJ Jr, Favaloro FG, Suh N, Wang Y, Sporn MB, Gribble GW (2000) Synthetic oleanane and ursane triterpenoids with modified ring A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J Med Chem 43:4233–4246Google Scholar
  125. 125.
    Zhang M, Munekazu Iinuma, Jun-Song Wang Masayoshi Oyama, Tetsuro Ito, and Ling-Yi Kong (2012) Terpenoids from Chloranthus serratus and their anti-inflammatory activities. J Nat Prod 75(4):694–698Google Scholar
  126. 126.
    Honda T, Honda Y Jr, Favaloro FG, Gribble GW, Suh N, Place AE, Rendi MH, Sporn MB (2002) A novel dicyanotriterpenoid, 2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile, active at picomolar concentrations for inhibition of nitric oxide production. Bioorg Med Chem Lett 12:1027–1030Google Scholar
  127. 127.
    Cho JY, Baik KU, Yoo ES, Yoshikawa K, Park MH (2000) In vitro anti-inflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica. J Nat Prod 63:1205–1209Google Scholar
  128. 128.
    Cho JY, Kim AR, Park MH (2001) Lignans from the rhizomes of Coptis japonica differentially act as anti-inflammatory principles. Planta Med 67:312–316Google Scholar
  129. 129.
    Saleem M, Kim HJ, Ali MS, Lee YS (2001) An update on bioactive plant lignans. Nat Prod Rep 22:696–716Google Scholar
  130. 130.
    Bin L, Lee YJ, Kim YC, Yoon JJ, Lee SM, Lee YP, Kang DG, Lee HS (2013) Sauchinone from Saururus chinensis protects vascular inflammation by heme oxygenase-1 induction in human umbilical vein endothelial cells. Phytomedicine 21(2):101–108Google Scholar
  131. 131.
    Han HJ, Li M, Son JK, Seo CS, Song SW, Kwak SH, Bae HB (2013) Sauchinone, a lignan from Saururus chinensis, attenuates neutrophil pro-inflammatory activity and acute lung injury. Int Immunopharmacol 17(2):471–477Google Scholar
  132. 132.
    Prieto JM, Giner RM, Recio MC, Schinella G, Manez S, Rios JL (2002) Diphyllin acetylapioside, a 5-lipoxygenase inhibitor from Halophyllum hispanicum. Planta Med 68:359–360Google Scholar
  133. 133.
    Kim SJ, Lu Y, Kwon O, Hwangbo K, Seo CS, Lee SH, Kim CH, Chang YC, Son JK, Chang HW (2011) Manassantin A isolated from Saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene C4 generation by blocking mitogen-activated protein kinase activation in mast cells. Biol Pharm Bull 34(11):1769–1772Google Scholar
  134. 134.
    Kwon OE, Lee HS, Lee SW, Chung MY, Bae KHB, Rho MC, Kim YK (2005) Manassantin A and B isolated from Saururus chinensis inhibit TNF-induced cell adhesion molecule expression of human umbilical vein endothelial cells. Arch Pharm Res 28(1):55–60Google Scholar
  135. 135.
    Hwang BY, Lee J-H, Nam JB, Hong Y-S, Lee JJ (2003) Lignans from Saururus chinensis inhibiting the transcription factor NF-kB. Phytochemistry 64:765–771Google Scholar
  136. 136.
    Park HC, Bae HB, Jeong CW, Lee SH, Jeung HJ, Kwak SH (2012) Effect of manassantin B, a lignan isolated from Saururus chinensis, on lipopolysaccharide-induced interleukin-1β in RAW 264.7 cells. Korean J Anesthesiol 62(2):161–165Google Scholar
  137. 137.
    Zschocke S, van Staden J, Paulus K, Bauer R, Horn MM, Munro OQ, Brown NJ, Drewes SE (2000) Stereostructure and anti-inflammatory activity of three diastereomers of ocobullenone from Ocotea bullata. Phytochemistry 54:591–595Google Scholar
  138. 138.
    Zhao F, Wang L, Liu K (2009) In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 122(3):457–462Google Scholar
  139. 139.
    Hyam SR, Lee IA, Gu W, Kim KA, Jeong JJ, Jang SE, Han MJ, Kim DH (2013) Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3 K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol 708(1–3):21–29Google Scholar
  140. 140.
    Lee JY, Kim CJ (2010) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan inhibits type I-IV allergic inflammation and pro-inflammatory enzymes. Arch Pharm Res 6(33):947–957Google Scholar
  141. 141.
    Weng JR, Tsao LT, Wang JP, Wu RR, Lin CN (2004) Lin CN anti-inflammatory phloroglucinols and terpenoids from Garcinia subelliptica. J Nat Prod 67(11):1796–1799Google Scholar
  142. 142.
    Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 11(5):373–381Google Scholar
  143. 143.
    Abourashed EA, Muhammad I, Resch M, Bauer R, El-Feraly FS, Hufford CD (2001) Inhibitory effects of maesanin and analogues on arachidonic acid metabolizing enzymes. Planta Med 67:360–361Google Scholar
  144. 144.
    Calixto JB, Campos MM, Otuki MF, Santos ARS (2004) Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103Google Scholar
  145. 145.
    Kang BK, Chung SW, Kim TS (2001) Inhibition of interleukin-12 production in lipopolysaccharide activated mouse macrophages by hypericin, an active component of Hypericum perforatum. Planta Med 67:364–366Google Scholar
  146. 146.
    Wube AA, Bucar F, Asres K, Gibbons S, Adams M, Streit B, Bodensieck A, Bauer R (2006) Knipholone, a selective inhibitor of leukotriene metabolism. Phytomedicine 13:452–456Google Scholar
  147. 147.
    Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P, Vanek T (2005) In vitro effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1 and -2 catalysed prostaglandin E2 biosynthesis. Planta Med 71:739–742Google Scholar
  148. 148.
    Meng G, Liu Y, Lou C, Yang H (2010) Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br J Pharmacol 161(7):1628–1644Google Scholar
  149. 149.
    Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421Google Scholar
  150. 150.
    Folmer F, Jaspars M, Dicato M, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-kB. Biochem Pharmacol 75:603–617Google Scholar
  151. 151.
    Huang Q, Shen H-M, Ong C-N (2004) Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kB. Biochem Pharmacol 68:361–371Google Scholar
  152. 152.
    Matsui T, Ito C, Itoigawa M, Okada T, Furukawa H (2007) Anti-inflammatory activity of phenylpropanoids and plastoquinoids from Illicium species in RBL-2H3 cells. Planta Med 73:662–665Google Scholar
  153. 153.
    Lee JY, Woo E-R, Kang KW (2005) Inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J Ethnopharmacol 97:561–566Google Scholar
  154. 154.
    Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G (2013) Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 341(2):139–149. doi: 10.1016/j.canlet.2013.08.023(Epub ahead of print)
  155. 155.
    Hartley L, Igbinedion E, Holmes J, Flowers N, Thorogood M, Clarke A, Stranges S, Hooper L, Rees K (2013) Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD009874.pub2 Google Scholar
  156. 156.
    Nguelefack TB, Dongmo AB, Dimo T, Kamanyi A (2007) Phytopharmacology of some medicinal plants used in cameroonian traditional medicine to handle cardiovascular diseases. In: Capasso A (ed) Recent developments in medicinal plants research. Research Signpost, Trivandrum, Kerala, India, ISBN:978-81-308-0160-5Google Scholar
  157. 157.
    Miller AL (1998) Botanical influences on cardiovascular disease. Altern Med Rev 3(6):422–431Google Scholar
  158. 158.
    Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Rojas-Molina I, Zavala-Sánchez MA (2013) Vasodilator compounds derived from plants and their mechanisms of action. Molecules 18(5):5814–5857Google Scholar
  159. 159.
    Chiou WF, Chou CJ, Liao JF, Sham AY, Chen CF (1994) The mechanism of the vasodilator effect of rutaecarpine, an alkaloid isolated from Evodia rutaecarpa. Eur J Pharmacol 257:59–66Google Scholar
  160. 160.
    Oh KS, Ryu SY, Kim YS, Lee BH (2007) Large conductance Ca2+-activated K+(BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from Rheum undulatum rhizome. Planta Med 73:1441–1446Google Scholar
  161. 161.
    Alvarez E, Campos-Toimil M, Justiniano-Basaran H, Lugnier C, Orallo F (2006) Study of the mechanisms involved in the vasorelaxation induced by (−)-epigallocatechin-3-gallate in rat aorta. Br J Pharmacol 147:269–280Google Scholar
  162. 162.
    de Sánchez Rojas VR, Somoza B, Ortega T, Villar AM (1996) Different mechanisms involved in the vasorelaxant effect of flavonoids isolated from Satureja obovata. Planta Med 62:554–556Google Scholar
  163. 163.
    Ojewole JA (2008) Cardiovascular effects of mollic acid glucoside, a 1alpha-hydroxycycloartenoid saponin extractive from Combretum molle R Br ex G Don (Combretaceae) leaf. Cardiovasc J Afr 19:128–134Google Scholar
  164. 164.
    Kawakami K, Aketa S, Sakai H, Watanabe Y, Nishida H, Hirayama M (2011) Antyhipertensive and vasorelaxant effects of water-soluble proanthocyanidins from persimmon leaf tea in spontaneously hypertensive rats. Biosci Biotechnol Biochem 75:1435–1439Google Scholar
  165. 165.
    Wang Y, Shi JG, Wang MZ, Che CT, Yeung JH (2009) Vasodilatory actions of xanthones isolated from a Tibetan herb Halenia elliptica. Phytomedicine 16:1144–1150Google Scholar
  166. 166.
    Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Rojas-Molina I, Zavala-Sánchez MA (2013) Vasodilator compounds derived from plants and their mechanisms of action. Molecules 18(5):5814–5857Google Scholar
  167. 167.
    Somova LI, Shode FO, Moodley K, Govender Y (2001) Cardiovascular and diuretic activity of kaurene derivatives of Xylopia aethiopica and Alepidea amatymbica. J Ethnopharmacol 77(2–3):165–174Google Scholar
  168. 168.
    Zaima K, Koga I, Iwasawa N, Hosoya T, Hirasawa Y, Kaneda T, Ismail IS, Lajis NH, Morita H (2013) Vasorelaxant activity of indole alkaloids from Tabernaemontana dichotoma. J Nat Med 67:9–16Google Scholar
  169. 169.
    Pote W, Tagwireyi D, Chinyanga HM, Musara C, Nyandoro G, Chifamba J, Nkomozepi P (2013) Cardiovascular effects of Boophone disticha aqueous ethanolic extract on early maternally separated BALB/C mice. J Ethnopharmacol 148(2):379–385Google Scholar
  170. 170.
    Wang Y, Shi JG, Wang MZ, Che CT, Yeung JH (2009) Vasodilatory actions of xanthones isolated from a Tibetan herb Halenia elliptica. Phytomedicine 16:1144–1150Google Scholar
  171. 171.
    Gonçalves RL, Lugnier C, Keravis T, Lopes MJ, Fantini FA, Schmitt M, Cortes SF, Lemos VS (2009) The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. Eur J Pharmacol 620:78–83Google Scholar
  172. 172.
    Pawlaczy I, Czerchawski L, Pilecki W, Zarawska EL, Gancarz R (2009) Polyphenolic-polysaccharide compounds from selected medicinal plants of Asteraceae and Rosaceae families: chemical characterization and blood anticoagulant activity. Carbohydr Polym 77:568–575Google Scholar
  173. 173.
    Circosta C, Pasquale RD, Occhiuto F (2005) Cardiovascular effects of the aqueous extract of Gynostemma pentaphyllum Makino. Phytomedicine 12:638–643Google Scholar
  174. 174.
    Rossler MF, Pyton CP, Capponi AM et al (1993) Blocking T type calcium channels with tetrandrine inhibits steroidgenesis in bovine adrenal glomerulosa cells. Endocrinology 132:1035–1043Google Scholar
  175. 175.
    Jing-Shan SHI, Jun-Xian YU, Xiu-Ping CHEN, Rui-Xia XU (2003) Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol Sin 24(2):97–101Google Scholar
  176. 176.
    Jayakumar T, Sheu JR (2011) Cardiovascular pharmacological actions of rutaecarpine, a quinazolinocarboline alkaloid isolated from Evodia rutaecarpa. J Exp Clin Med 3(2):63e69Google Scholar
  177. 177.
    Zhang W, Wojta J, Binder BR (1994) Effect of notoginsenoside R1 on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 14:1040–1046Google Scholar
  178. 178.
    Sheykhzade M, Smajilovic S, Issa A, Haunso S, Christensen SB, Tfelt-Hansen J (2008) S-262 and butterbur lactones dilate vessels through blockage of voltage gated calcium channels and block DNA synthesis. Eur J Pharmacol 593:79–86Google Scholar
  179. 179.
    Guillaume M, Padioleall F (1994) Veinotoinc effect, vascular protection, antiinflammatory and free radical scavenging properties of horse chestnut extract. Arzneimitt Elforschung 44:25–35Google Scholar
  180. 180.
    Fusi F, Cavalli M, Mulholland D, Crouch N, Coombes P, Dawson G, Bova S, Sgaragli G, Saponara S (2010) Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. J Pharmacol Exp Ther 332:531–540Google Scholar
  181. 181.
    Lin YL, Dai ZK, Lin RJ, Chu KS, Chen IJ, Wu JR, Wu BN (2010) Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. Phytomedicine 17:760–770Google Scholar
  182. 182.
    Lzabela P, Czerchawski, Leszek, Kulliezkowski et al (2011) Anticoagulent and antiplatelet activity of polyphenolic polysaccharide preparation isolated from themedicinal plant Erigeron Canadensis L.Throm Res 127(4):328–340Google Scholar
  183. 183.
    Medeiros MA, Pinho JF, De-Lira DP, Barbosa-Filho JM, Araújo DA, Cortes SF, Lemos VS, Cruz JS (2011) Curine, a bisbenzylisoquinoline alkaloid, blocks L-type Ca2+ channels and decreases intracellular Ca2+ transients in A7r5 cells. Eur J Pharmacol 669:100–107Google Scholar
  184. 184.
    Deng R (2007) Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovasc Drug Rev 25(4):375–390Google Scholar
  185. 185.
    Maulik SK, Katiyar CK (2010) Terminalia arjuna in cardiovascular diseases: making the transition from traditional to modern medicine in India. Curr Pharm Biotechnol 11(8):855–860Google Scholar
  186. 186.
    Dwivedi S (2007) Terminalia arjuna Wight & Arn.—a useful drug for cardiovascular disorders. J Ethnopharmacol 114(2):114–129Google Scholar
  187. 187.
    Ojha S, Nandave M, Kumara S, Dharmavhir S (2010) Cardioprotective activity of Inula racemosa hook in experimental model of myocardial ischemia reperfusion injury. Ind J Exp Biol 48:918–924Google Scholar
  188. 188.
    Chabukswar AR, Kuchekar BS, Jagdale SC, Lokhande PD, Raut CG (2010) Cardio protective activity of Inula racemosa. Int J Chem Sci 8(3):1545–1552Google Scholar
  189. 189.
    Fathiazad F, Matlobi A, Khorrami A, Hamedeyazda S, Soraya H, Hammami M, Maleki-Dizaji N, Garjani A (2012) Phytochemical screening and evaluation ofcardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats. DARU J Pharm Sci 20:87Google Scholar
  190. 190.
    Panda VS, Naik SR (2009) Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents. Altern Med Rev 14(2):161–171Google Scholar
  191. 191.
    Zanwar AA, Hegde MV, Bodhankar SL (2011) Cardioprotective activity of flax lignin concentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats. Interdiscip Toxicol 4(2):90–97Google Scholar
  192. 192.
    Rahman K, Lowe GM (2006) Garlic and cardiovascular disease: a critical review. J Nutr 136:736S–740SGoogle Scholar
  193. 193.
    Senthilkumar GP, Moses MF, Sengottuvenlu S, Rajarajan T, Sarvanan G (2010) Cardioprotective activity of garlic (Allium sativum) in isoproterenol induced rat myocardial necrosis: a biochemical and histoarchitectural evaluation. Int J Pharm Sci Nanotech 2(4):779–784Google Scholar
  194. 194.
    Sakthivel K, Palani S,Kalash RS, Devi K, Kumar BS (2010) Phytoconstituents analysis by GC-MS, cardioprotective and antioxidant activity of Buchanania Axillaris against doxorubicin-induced cardio toxicity in albino rats. Int J Pharm Stud Res 1:34–48Google Scholar
  195. 195.
    Thippeswamy BS, Thakker SP, Tubachi S, Kalyani GA, Netra MK, Patil U, Desai S, Gavimath CC, Veerapur VP (2009) Cardioprotective effect of Cucumis trigonus Roxb on isoproterenol-induced myocardial infarction in rat. Am J Pharmacol Toxicol 4(2):29–37Google Scholar
  196. 196.
    Ojha S, Jagriti B, Sachin A, Golechha M, Kumari S (2011) Cardioprotective effects of Commiphora mukul againstisoprenaline-induced cardiotoxicity: a biochemical and histopathological evaluation. J Environ Biol 32:731–738Google Scholar
  197. 197.
    Hina S, Rehman KU, Dogar ZUH, Jahan N, Hameed M, Khan ZI, Ahmad K, Mukhtar K, Valeem EE (2010) Cardioprotective effect of gemmotherapeuticallytreated withania somnifera against chemically induced myocardial injury. Pak J Bot 42(2):1487–1499Google Scholar
  198. 198.
    Rajendran R, Basha NS (2008) Cardioprotective effect of ethanol extract of stem-bark and stem-wood of Premna serratifolia Lin., (Verbenaceae) Res J Pharm Tech 1(4):487–491Google Scholar
  199. 199.
    Muralidharan P, Balamurugan G, Kumar P (2008) Inotropic and cardioprotective effects of Daucus carota Linn. On isoproterenol-induced myocardial infarction. Bangladesh J Pharmacol 3:74–79Google Scholar
  200. 200.
    Firoz M, Bharatesh K, Nilesh P, Vijay G, Tabassum S, Nilofar N (2011) Cardioprotective activity of ethanolic extract of Callistemon lanceolatus leaves on doxorubicin-induced cardiomyopathy in rats. Bangladesh J Pharmacol 6:38–45Google Scholar
  201. 201.
    Eman M El-Sayed1, Amal S Abd El-azeem1, Abeer A Afify1, Manal H Shabana, Ahmed HH (2011) Cardioprotective effects of Curcuma longa L. extracts against doxorubicin-induced cardiotoxicity in rats. J Med Plants Res 5(17):4049–4058Google Scholar
  202. 202.
    Siddiq A, Shanmukha I, Jyoti TM, Gupt K (2012) Cardioprotective effect of Spathodea campanulata bark on isoproterenol-induced myocardial infarction in rats. Asian Pac J Trop Dis 2:S1–S5Google Scholar
  203. 203.
    Ramadoss S, Kannan K, Balamurugan K, Jeganathan NS, Manavalan R (2012) Cardioprotective effect of Cyathula prostrata Linn on isoproterenol induced myocardial infarction in rat. Int J Res Pharm Biomed Sci 3(2):551–555Google Scholar
  204. 204.
    Raju K, Balaraman R, Hariprasad A, Kumar MV, Ali A (2008) Cardioprotective effect of Momordica Cymbalaria fenzl in rats with isoproterenol-induced myocardial injury. J Clin Diagn Res 2(1):699–705Google Scholar
  205. 205.
    Girija K, Lakshman K (2011) Anti-hyperlipidemic activity of methanol extracts of three plants of Amaranthus in triton-WR 1339 induced hyperlipidemic rats. Asian Pac J Trop Biomed 1(1):S62–S65Google Scholar
  206. 206.
    Israni DA, Patel KV, Gandhi TR (2010) Anti-hyperlipidemic activity of aqueous extract of Terminalia Chebula & Gaumutra in high cholesterol diet fed rats. Int J Pharm Sci 1(1):48–59Google Scholar
  207. 207.
    Lakshmi BVS, Neelima N, Kasthuri N, Umarani V, Sudhakar M (2011) Antihyperlipidemic activity of Bauhinia purpurea extracts in hypercholesterolemic albino rats. Int J Pharm Tech Res 3(3):1265–1272Google Scholar
  208. 208.
    Jeyabalan S, Palayan M (2009) Antihyperlipidemic activity of Sapindus emarginatus in Triton WR-1339 induced albino rats. Res J Pharm Tech 2(2):319–323Google Scholar
  209. 209.
    Bhuvaneswari R, Sasikumar K (2013) Antihyperlipidemic activity of Aegle marmelos (l) corr., leaf extract in triton wr- 1339 induced hyperlipidemic rats. Pharmacie Globale (IJCP) 4(3):1Google Scholar
  210. 210.
    Kamalraj R (2011) Antihyperlipidemic studies on leaf extract of Erythrina Indica Lam IJRPC 1(3):488–490Google Scholar
  211. 211.
    Dubey AK, Devi A, Kutty G, Shankar RP (2005) Hypolipidemic activity of Ginkgo biloba extract, EGb 761 in hypercholesterolemic wistar rats. IJPT 4:9–12Google Scholar
  212. 212.
    Sumbul S, Ahmed SI (2012) Anti-hyperlipidemic activity of Carissa carandas (Auct.) leaves extract in egg yolk induced hyperlipidemic rats J Basic Appl Sci 8:124–134Google Scholar
  213. 213.
    Rajendran R, Krishnakumar E (2010) Hypolipidemic activity of chloroform extract of Mimosa pudica leaves. Avicenna J Med Biotech 2(4):215–221Google Scholar
  214. 214.
    Khuda-Bukhsh AR, Das S, Saha SK (2014) Molecular approaches toward targeted cancer prevention with some food plants and their products: inflammatory and other signal pathways. Nutr Cancer 66(2):194–205Google Scholar
  215. 215.
    Hostettmann K, Marston A, Ndjoko K, Wolfender JL (2000) The potential of African plants as source of drugs. Curr Org Chem 4:973–1010Google Scholar
  216. 216.
    Schnekenburger M et al (2014) Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv 29. doi: 10.1016/j.biotechadv.2014.03.009. (Epub ahead of print)
  217. 217.
    Feng Yibin, Wang Ning, Zhu Meifen, Feng Yigang, Li Hongyun, Tsao Saiwah (2011) Recent progress on anticancer candidates in patents of herbal medicinal products. Recent patents on food. Nutr Agric 3:30–48Google Scholar
  218. 218.
    Dennis JW, Shah RN, Ziser L (2002) Alkaloid halide salts of swainsonine and methods of use. US6395745Google Scholar
  219. 219.
    Rosen, RTHo, Dipaola RS, Rafi MM, Vastano BC,Ghai G (2002) Use of 1- propanone-1-(2,4-dihydroxyphenyl)-3-hydroxy- 3-(4’-hydroxyphenyl) as an anti- carcinogenic agent. US6498195Google Scholar
  220. 220.
    Hahm JC, Lee DS, Ko JP, Lee IK, Lee HW, Park JS (2004) Pharmaceutical composition containing the extract of Saururus chinensis baill useful as an anticancer agent and a process for the preparation thereof. US20040024055Google Scholar
  221. 221.
    Aylward JH (2004) Anti-cancer compounds. US6787161Google Scholar
  222. 222.
    Wang L, Liu X, Chen R (2005) Derivatives of isoindigo, indigo andindirubin and methods of treating cancer. US6933315Google Scholar
  223. 223.
    Zhang MQ, Sheridan RM (2007) 39-desmethoxyrapamycin, compositions and methods of use thereof. US7183289Google Scholar
  224. 224.
    Khanuja SPS, Tiruppadiripuliyur RSK, Gupta VK, Chand P,Garg A, Srivastava SK, Verma SC, Saikia D, Darokar MP, Shasany AK, Pal A (2007) Antimicrobial an anticancer properties of methyl-beta-orcinolcarboxylate from lichen. US20070099993Google Scholar
  225. 225.
    Maung TW (2007) Berberine as a selective lung cancer agent. US20070298132Google Scholar
  226. 226.
    Qazi GN, Taneja SC, Singh J, Saxena AK, Sethi VK, Shah BA, Kapahi BK, Andotra SS, Kumar A, Bhushan S, Malik F, Mondhe DM, Muthiah S, Singh S, Verma M, Singh SK (2009) Use of semi synthetic analogues of boswellic acids for anticancer activity. US20090298938Google Scholar
  227. 227.
    Han QB, Song JZ, Qiao CF, Yang L, Xu HX (2009) Compounds from Garcinia hanburyi, their use in treating cancer and method of separating epimers thereof. US7592367Google Scholar
  228. 228.
    Chan PK, Mak MS, Wang Y (2009) Anticancer biangeloyl saponins. US7514412Google Scholar
  229. 229.
    Banerjee P, Raja KS (2010) Use of curcumin to block brain tumor formation in mice. US20100197584Google Scholar
  230. 230.
    Zhang S, Bao Y, Sun Y, Li K, Zou L, Ma J, Sun X, Shang H, Li J (2010) Cyclin-dependent protein kinases inhibitor of Scutellaria flavonoid organic amine derivatives, synthesis and use there of. US20100197619Google Scholar
  231. 231.
    Dai D, Musser JH, Lennox ES (2007) Triptolide derivatives for modulation of apoptosis and immunosuppression. US7662976Google Scholar
  232. 232.
    Pei H, Guo Q, Chen B, Zhu H (2002) Fagopyrum cymosum (Trev.) Meisn composition, method to prepare and analyze the same and uses thereof.US6451353Google Scholar
  233. 233.
    Fabre P, Raynaud JP, Cousse H (2003) Use of a Serenoa repens extract for the production of a medicament to treat prostate cancer. US6599540Google Scholar
  234. 234.
    Bassa BV (2003) Antitumor agent. US6660309Google Scholar
  235. 235.
    Lin CH (2003) Euphorbia antiquorum extract, a pharmaceutical composition containing the same and methods for treatment of cancers. US20030165579Google Scholar
  236. 236.
    Wu RT (2003) Polysaccharide-based extract from Ganoderma, pharmaceutical use thereof, and process for preparing the same. US6613754Google Scholar
  237. 237.
    Kwon BM, Son KH, Han DC, Kim JH, Kang HM, Jeon SB (2004) Artemisolide compound isolated from the aerial parts of Artemisia sylvatica, isolation method, and use thereof. US6808724Google Scholar
  238. 238.
    Ryu SY, Lee CO, Choi SU, Park SH, Kim YS, Kim SK, Kim SK, Kang SK (2004) Anticancer composition comprising sesquiterpenes isolated from Resina ferulae. US20040043083Google Scholar
  239. 239.
    Kuok KY, Ly H (2004) Herbal compositions for prostate conditions. US6790464Google Scholar
  240. 240.
    Lee SH, Lee YC, Jun YC, Seo JK, Noh JS (2005) Medicines manufactured from old platycodon extracts. US6902748Google Scholar
  241. 241.
    Wang ZP (2005) Saponins as anticancer agent. US20050175623Google Scholar
  242. 242.
    Kim MY (2004) Composition comprising Melissa leaf extract for antiangiogenic and matrix metalloproteinase inhibitory activity. US20040009244Google Scholar
  243. 243.
    Page TK (2003) Herbal formulation. US6649185Google Scholar
  244. 244.
    Kwak TH, Shin MS, Kim JY, Park JK (2006) Active fraction having anti-cancer and anti-metastasis isolated from leaves and stems of ginseng. US20060034951Google Scholar
  245. 245.
    Saxena AK, Gupta BD, Kapahi BK, Muthiah S, Mondhe DM, Baleshwar N, Qazi GN, Kumar V, Mathan G (2006) Pharmaceutical composition useful for the treatment of hepatocellular carcinoma. US20060280817Google Scholar
  246. 246.
    Shyur LF, Yang NS, Kang PL, Sun SJ, Wang SY (2006) Use of Anoectochilus formosanus plant extracts and their derived fractions as herbal medicines or nutraceutical supplements for chemoprevention or treatment of human malignancies. US7033617Google Scholar
  247. 247.
    Kuo KW (2006) Water soluble extract from plant of Solanum genus and the preparation process thereof, and pharmaceutical composition containing the water soluble extract. US7078063Google Scholar
  248. 248.
    Arellano EC (2007) Anti-prostate cancer composition and therapeutic uses therefor. US7250180Google Scholar
  249. 249.
    Rao JM, Srinivas PV, Yadav JS, Raghavan KV, Saxena AK, Shamugavel H, Qazi GN (2007) Herbal chemical composition for the treatment of cancer. US7285571Google Scholar
  250. 250.
    Mitra SK, Saxena E, Dixit MN, Uddagiri VB, Marikunte VR, Mathad SA, Shanbhag SV (2008) Novel anticancer agent, methods for obtaining the same and pharmaceutical compositions hereof. US20080199550Google Scholar
  251. 251.
    Chu KH (2008) Method of inducing apoptosis in cancer treatment by using Cucubritacins. US20080207578Google Scholar
  252. 252.
    Cohen I (2009) Anticancer methods employing extracts of Gleditsia sinensis lam. US20090258096Google Scholar
  253. 253.
    Choi WC, Park SJ, Kwon SP (2009) Process for preparation of Rhus verniciflua extracts having excellent anti-cancer activity and anticancer pharmaceutical composition containing the same. US7618661Google Scholar
  254. 254.
    Cohen I (2010) Anticancer methods using extracts of Anemarrhena asphodeloides bunge. US20100009017Google Scholar
  255. 255.
    Joshi KS, Wagh V, Sharma S (2010) Herbal composition and process for its preparation. US20100028472Google Scholar
  256. 256.
    Greenway FL (2010) Angiogenic agents from plant extracts, gallic acid, and derivatives. US7709031Google Scholar
  257. 257.
    Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831Google Scholar
  258. 258.
    Sultana N (2011) Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 26:616–642Google Scholar
  259. 259.
    Shahid M, Shahzad A, Sobia F et al (2009) Plant natural products as a potential source for antibacterial agents: recent trends. AntiInfective Agents Med Chem 8:211–225Google Scholar
  260. 260.
    Assob JC, Kamga HL, Nsagha DS (2011) Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine. BMC Complement Altern Med 11:70–81Google Scholar
  261. 261.
    Arruda AL, Vieira CJ, Sousa DG, Oliveira RF, Castilho RO (2011) Jacaranda cuspidifolia Mart. (Bignoniaceae) as antibacterial agent. J Med Food 14:1604–1608Google Scholar
  262. 262.
    Ciocan ID, Băra II (2007) Plant products as antimicrobial agents. Analele Ştiinţifice ale Universităţii „Alexandru Ioan Cuza”, Secţiunea Genetică şi Biologie Moleculară, TOM VIIIGoogle Scholar
  263. 263.
    Saleem M, Nazir M, Ali MS et al (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254Google Scholar
  264. 264.
    Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI (2011) New antibacterial therapeutics and strategies. Pol J Microbiol 60:3–12Google Scholar
  265. 265.
    Cowan MM (1999) Plant product as antimicrobial agents. Clin Microbiol Rev 12:564–582Google Scholar
  266. 266.
    Fowler ZL, Baron CM, Panepinto JC, Koffas MA (2011) Melanization of flavonoids by fungal and bacterial laccases. Yeast 28:181–188Google Scholar
  267. 267.
    Araujo MG, Hilario F, Nogueira LG, Vilegas W, Santos LC, Bauab TM (2011) Chemical constituents of the methanolic extract of leaves of Leiothrix spiralis Ruhland and their antimicrobial activity. Molecules 16:10479–10490Google Scholar
  268. 268.
    Garcia A, Bocanegra-Garcia V, Palma-Nicolas JP, Rivera G (2012) Recent advances in antitubercular natural products. Eur J Med Chem 49:1–23Google Scholar
  269. 269.
    Critchfield JW, Butera ST, Folks TM (1996) AIDS Res Hum Retroviruses 12:39Google Scholar
  270. 270.
    Johann S, Sà NP, Lima LA et al (2010) Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis. Ann Clin Microbiol Antimicrob 9:30Google Scholar
  271. 271.
    Engels C, Schieber A, Gänzle MG (2011) Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl Environ Microbiol 77:2215–2223Google Scholar
  272. 272.
    Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582Google Scholar
  273. 273.
    Garcia A, Bocanegra-Garcia V, Palma-Nicolas JP, Rivera G (2012) Recent advances in antitubercular natural products. Eur J Med Chem 49:1–23Google Scholar
  274. 274.
    Tian J, Ban X, Zeng H et al (2012) The mechanism of antifungal action of essential oil from dill. (Anethum graveolens) on Aspergillus flavus. PLoS ONE 7:e30147Google Scholar
  275. 275.
    Termentzi A, Fokialakis N, Skaltsounis AL (2011) Natural resins and bioactive natural products thereof as potential antimicrobial agents. Curr Pharm Des 17:1267–1290Google Scholar
  276. 276.
    Paraschos S, Mitakou S, Skaltsounis AL (2012) Chios gum mastic: a review of its biological activities. Curr Med Chem 19:2292–2302Google Scholar
  277. 277.
    Wangchuk P, Keller PA, Stephen GP et al (2011) Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities. J Etnopharmacol 137:730–742Google Scholar
  278. 278.
    Yigit D, Yigit N, Ozgen U (2009) An investigation on the anticandidal activity of some traditional medicinal plants in Turkey. Mycoses 52:135–140Google Scholar
  279. 279.
    Agarwal V, Lal P, Pruthi V (2008) Prevention of Candida albicans biofilm by plant oils. Mycopathologia 165:13–19Google Scholar
  280. 280.
    Pietrella D, Angiolella L, Vavala E et al (2011) Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern Med 11:18Google Scholar
  281. 281.
    Tomczychowa M, Leszczynsk K, Tomczyk M, Tryniszewska E, Kelemba D (2011) Composition of the essential oil of Bidens tripartita L. roots and its antibacterial and antifungal activities. J Med Food 14:428–433Google Scholar
  282. 282.
    Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC (2011) Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin A. Phytomedicine 19:42–47Google Scholar
  283. 283.
    Oliva Mde L, Carezzano ME, Gallucci MN, Demo MS (2011) Antimycotic effect of the essential oil of Aloysia triphylla against Candida species obtained from human pathologies. Nat Prod Commun 6:1039–1043Google Scholar
  284. 284.
    Shafagha A, Shafaghatlonbar M (2011) Antimicrobial activity and chemical constituents of the essential oils from flower, leaf and stem of Gypsophila bicolor from Iran. Nat Prod Commun 6:275–276Google Scholar
  285. 285.
    Zuzarte M, Goncalves MJ, Cavaleiro C et al (2011) Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J Med Microbiol 60:612–618Google Scholar
  286. 286.
    Nazaruk J, Karna E, Wieczorek P, Sacha P, Tryniszewska E (2010) In vitro antiproliferative and antifungal activity of essential oils from Erigeron acris L. and E. annuus (L). Pers Z Naturforsch 65:642–646Google Scholar
  287. 287.
    Huang Y, Zhao J, Zhou L et al (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15:7558–7569Google Scholar
  288. 288.
    Pietrella D, Angiolella L, Vavala E et al (2011) Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern Med 11:18Google Scholar
  289. 289.
    Khan MS, Ahmad I (2012) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621Google Scholar
  290. 290.
    Ghoshal S, Prasad BNK, Lakshmi V (1996) Antiamoebicactivity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo. J Ethnopharmacol 50:167–170Google Scholar
  291. 291.
    Omulokoli E, Khan B, Chhabra SC (1997) Antiplasmodial activity of four Kenyan medicinal plants. J Ethnopharmacol 56:133Google Scholar
  292. 292.
    Kim SH, Lee SJ, Lee JH, Sun WS, Kim JH (2002) Antimicrobial activity of 9-O-acyl and 9-O-alkylberberrubine derivatives. Planta Med 68:277–281Google Scholar
  293. 293.
    Iwasa K, Moriyasu M, Yamori T, Turuo T, Lee D, Wiegrebe V (2001) In vitro cytotoxicity of the protoberberine-type alkaloids. J Nat Prod 64:896–898Google Scholar
  294. 294.
    Yi ZB, Yu Y, Liang YZ, Zeng B (2007) Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J Pharm Biomed Anal 44:301–304Google Scholar
  295. 295.
    Stotz HU, Waller F, Wang K (2013) Innate immunity in plants: the role of antimicrobial peptides. In: Hiemstra PS, Zaat SAJ (eds) Antimicrobial peptides and innate immunity, Springer, BaselGoogle Scholar
  296. 296.
    Zeitler B, Herrera Diaz A, Dangel A, Thellmann M, Meyer H et al (2013) De Novo Design of Antimicrobial Peptides for Plant Protection. PLoS ONE 8(8):e71687Google Scholar
  297. 297.
    Van KP, Proost P, Damme J, Coosemans J, Damine EJ, Peumans WJ (2002) Five disulfide bridges stabilize a hevein type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus I). FEBS Lett 530:181–185Google Scholar
  298. 298.
    Koike M, Okamoto T, Tsuda S, Imai R (2002) A novel plant defensin like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 298:46–53Google Scholar
  299. 299.
    Flores T, Giron A, Diaz M, Flores HE (2002) Ocatin. A novel tuber storage protein from the Andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol 128:1291–1302Google Scholar
  300. 300.
    Ye X, Ng TB (2002) Purification of angularin, a novel antifungal peptide from adzuki beans. J Pept Sci 8:101–106Google Scholar
  301. 301.
    Berrocal ML, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128(3):951–961Google Scholar
  302. 302.
    Tomie T, Ishibashi J, Furukawa S, Kobayashi S, Sawahata R, Asaoka A, Michito T, Yamakawab M (2003) Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros. Biochem Biophys Res Commun 307:261–266Google Scholar
  303. 303.
    Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotechnol Biochem 67(8):1636–1642Google Scholar
  304. 304.
    Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K (2004) Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.). Biosci Biotechnol Biochem 68(3):571–577Google Scholar
  305. 305.
    Sharma N, Gruszewski HA, Park SW, Holm DG, Vivanco JM (2004) Purification and characterization of an isoform of patatin from late blight-resistant potatoes with antimicrobial activity against Phytophthora infestans. Plant Physiol Biochem 42:647–655Google Scholar
  306. 306.
    Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat antimicrobial peptides. Peptides 26:2064–2073Google Scholar
  307. 307.
    Xia L, NG T (2005) Isolation of alliumin, a novel protein with antimicrobial and antiproliferative activities from multiple-cloved garlic bulbs. Peptides 26(2):177–183Google Scholar
  308. 308.
    Wong JH, Ng TB (2005) Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int J Biochem Cell Biol 37(8):1626–1632Google Scholar
  309. 309.
    Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS (2005) Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem Biophys Res Commun 330:921–927Google Scholar
  310. 310.
    Santi-Gadelha T, Gadelha CAA, Aragão KS, Oliveira CC, Mota MRL, Gomes RC, Pires AF, Toyama MH, Toyama DO, Alencar NMN, Criddle DN, Assreuy AMS, Cavada BS (2006) Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin. Biochem Biophys Res Commun 350:1050–1055Google Scholar
  311. 311.
    Girish KS, Machiah KD, Ushanandini S, Harish Kumar K, Nagaraju S, Govindappa M et al (2006) Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol 46:365–374Google Scholar
  312. 312.
    Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha AK, Sharma N, Vivanco JM, Chambery A et al (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim Biophys Acta 1760:783–792Google Scholar
  313. 313.
    Diz MS, Carvalho AO, Rodrigues R, Neves-Ferreira AG, da Cunha M et al (2006) Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochim Biophys Acta 1760:1323–1332Google Scholar
  314. 314.
    Maruyama NIC, Mun M, Tatsuhara M, Sawada M, Ishimoto S, Utsumi (2006). Multiple vacuolar sorting determinants exist in soybean IIS globulin. Plant Cell 18:1253–1273Google Scholar
  315. 315.
    Oard VS, Enright FM (2006) Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572Google Scholar
  316. 316.
    Wong JH, Ng TB (2006) An antifungal peptide from baby lima bean. Appl Microbiol Biotechnol 73(3):576–581Google Scholar
  317. 317.
    Roy S, Sadhana P, Begum M, Kumar S, Lodha ML, Kapoor HC (2006) Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. Phytochemistry 67(17):1865–1873Google Scholar
  318. 318.
    Boleti AP, Freire MG, Coelho MB, Silva W, Baldasso PA, Gomes VM, Marangoni S, Novello JC, Macedo ML (2007) Insecticidal and antifungal activity of a protein from Pouteria torta seeds with lectin-like properties. J Agric Food Chem 55:2653–2658Google Scholar
  319. 319.
    Sawano Y, Miyakawa T, Yamazaki H, Tanokura M, Hatano K (2007) Purification, characterization, and molecular cloning of an antifungal protein gene from Ginkgo biloba seeds. Biol Chem 388:273–280Google Scholar
  320. 320.
    Ribeiro SFF, Carvalho AO, Cunha MD, Rodrigues R, Cruz LP, Melo VMM, Carvalho AO, Cunha MD, Rodrigues R, Cruz LP, Melo VMM, Vasconcelos IM, Melo EJT, Gomes VM (2007) Isolation and characterization of novel peptides from chilli pepper seeds: antimicrobial activities against pathogenic yeasts. Toxicon 50:600–611Google Scholar
  321. 321.
    Nema AK, Agarwal A (2011) Hepatoprotective prospective of herbal drugs and their vesicular carriers—a review. Int J Res Pharm Biomed Sci 2(2):360–374Google Scholar
  322. 322.
    Dixit PK, Mittal S (2013) A comprehensive review on Hepatoprotective herbal agents. Int J Pharm Sci Rev Res 20(1):165–170Google Scholar
  323. 323.
    Krishnaveni M, Mirunalini S (2010) Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol 21(1):93–105Google Scholar
  324. 324.
    Okamoto T, Hino O (2000) Drug development with hints from traditional Indian ayurveda medicine: hepatitis and rheumatoid as an example. Int J Mol Med 6(6):613–615Google Scholar
  325. 325.
    Kumar KTMS, Puia Z, Samanta SK, Barik R, Dutta A, Gorain B, Roy DK, Adhikari D, Karmakar S, Sen T (2012) The gastroprotective role of Acanthus ilicifolius—a study to unravel the underlying mechanism of anti-ulcer activity. Sci Pharm 80(3):701–717Google Scholar
  326. 326.
    Sen T, Ghosh TK, Chaudhuri AK (1993) Studies on the mechanism of anti-inflammatory and anti-ulcer activity of Pluchea indica–probable involvement of 5-lipooxygenase pathway. Life Sci 52(8):737–743Google Scholar
  327. 327.
    Sen T, Basu A, Chaudhuri AK (1998) Studies on the possible mechanism of the gastric mucosal protection by Calotropis procera–involvement of 5-lipoxygenase pathway. Fundam Clin Pharmacol 12(1):82–87Google Scholar
  328. 328.
    Hussain H, Al-Harrasi A, Abbas G, Rehman NU, Mabood F, Ahmed I, Saleem M, van Ree T, Green IR, Anwar S, Badshah A, Shah A, Ali I (2013) The genus Pluchea: phytochemistry, traditional uses, and biological activities. Chem Biodivers 10(11):1944–1971Google Scholar
  329. 329.
    Rozza AL, Pellizzon CH (2013) Essential oils from medicinal and aromatic plants: a review of the gastroprotective and ulcer-healing activities. Fundam Clin Pharmacol 27(1):51–63Google Scholar
  330. 330.
    Gadekar R, Singour PK, Chaurasiya PK, Pawar RS, Patil UK (2010) A potential of some medicinal plants as an antiulcer agents. Pharmacogn Rev 4(8):136–146Google Scholar
  331. 331.
    Schmeda-Hirschmann G, Yesilada E (2005) Traditional medicine and gastroprotective crude drugs. J Ethnopharmacol 100(1-2):61–66Google Scholar
  332. 332.
    Salimifar M, Fatehi-Hassanabad Z, Fatehi M (2013) A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev 9(5):402–411Google Scholar
  333. 333.
    Li GQ, Kam A, Wong KH, Zhou X, Omar EA, Alqahtani A, Li KM, Razmovski-Naumovski V, Chan K (2012) Herbal medicines for the management of diabetes. Adv Exp Med Biol 771:396–413Google Scholar
  334. 334.
    DiNardo MM, Gibson JM, Siminerio L, Morell AR, Lee ES (2012) Complementary and alternative medicine in diabetes care. Curr Diab Rep 12(6):749–761Google Scholar
  335. 335.
    Hayasaka S, Kodama T, Ohira A (2012) Traditional Japanese herbal (kampo) medicines and treatment of ocular diseases: a review. Am J Chin Med 40(5):887–904Google Scholar
  336. 336.
    Hui H, Tang G, Go VLW (2009) Hypoglycemic herbs and their action mechanisms. Chin Med 4:11Google Scholar
  337. 337.
    Salimifar M, Fatehi-Hassanabad Z, Fatehi M (2013) A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev 9(5):402–411Google Scholar
  338. 338.
    Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583):999–1002Google Scholar
  339. 339.
    Dold AP, Cocks ML (2002) The trade in medicinal plants in the Eastern Cape Province, South Africa. S Afr J Sci 98:11–12Google Scholar
  340. 340.
    Reid WV (1992) Conserving life’s diversity. Environ Sci Technol 26:1090–1095Google Scholar
  341. 341.
    de Jonge VN, Elliot M, Orive E (2002) Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475(476):1–19Google Scholar
  342. 342.
    Reid WV et al (2005) Millennium ecosystem assessment. Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology and School of Natural Product StudiesJadavpur UniversityKolkataIndia
  2. 2.Calcutta Institute of Pharmaceutical TechnologyBanitablaUluberiaIndia

Personalised recommendations