Skip to main content

Investigation of Microbial Biofilm Structure by Laser Scanning Microscopy

  • Chapter
  • First Online:
Productive Biofilms

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 146))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CARD-FISH:

CAtalyzed Reported Deposition—Fluorescence In Situ Hybridization

CLSM:

Confocal Laser Scanning Microscopy

eDNA:

Extracellular DNA

EPS:

Extracellular Polymeric Substances

FISH:

Fluorescence In Situ Hybridisation

FITC:

Fluorescein IsoThioCyanate

FISH-MAR:

Fluorescence In Situ Hybridisation—Micro Auto Radiography

FLBA:

Fluorescence Lectin-Binding Analysis

GFP:

Green Fluorescent Protein

GSD:

Ground State Depletion microscopy with individual molecule return (GSDIM)

LSM:

Laser Scanning Microscopy

MIP:

Maximum Intensity Projection

MRI:

Magnetic Resonance Imaging

nanoSIMS:

Nano Secondary Ion Mass Spectrometry

OCT:

Optical Coherence Tomography

PALM:

PhotoActivated Localization Microscopy

SIM:

Structured Illumination Microscopy

SPIM:

Selected Plane Illumination Microscopy

STED:

Stimulated Emission Depletion microscopy

STXM:

Scanning Transmission X-ray Microscopy

TRITC:

Tetramethyl Rhodamine IsoThioCyanate

References

  1. Adair CG, Gorman SP, Byers LB, Jones DS, Gardiner TA (2000) Confocal laser scanning microscopy for examination of microbial biofilms. In: An YH, Friedman RJ (eds) Handbook of bacterial adhesion. Humana Press, Totowa, pp 249–256

    Google Scholar 

  2. Adav SS, Lee D-J, Tay J-H (2008) Extracellular polymeric substances and structural stability of aerobic granule. Water Res 42:1644–1650

    CAS  Google Scholar 

  3. Allesen-Holm M, Bundvik Barken K, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterisation of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    CAS  Google Scholar 

  4. Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  5. Amann R, Snaidr J, Wagner M, Ludwig W, Schleifer K-H (1996) In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500

    CAS  Google Scholar 

  6. Andersen JBO, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    CAS  Google Scholar 

  7. Anguish LJ, Ghiorse WC (1997) Computer-assisted laser scanning and video microscopy for analysis of Cryptosporidium parvum oocysts in soil, sediment, and feces. Appl Environ Microbiol 63:724–733

    CAS  Google Scholar 

  8. Ariosa Y, Quesada A, Aburto J, Carrasco D, Carreres R, Leganes F, Valiente EF (2004) Epiphytic cyanobacteria on Chara vulgaris are the main contributors to N2 fixation in rice fields. Appl Environ Microbiol 70:5391–5397

    CAS  Google Scholar 

  9. Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    CAS  Google Scholar 

  10. Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215

    CAS  Google Scholar 

  11. Ascaso C, Wierzchos J (2003) New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int Microbiol 5:215–222

    Google Scholar 

  12. Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    CAS  Google Scholar 

  13. Assmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb Ecol 33:32–40

    Google Scholar 

  14. Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65:2041–2048

    CAS  Google Scholar 

  15. Baldi F, Pepi M, Fava F (2003) Growth of Rhodosporium toruloides strain DBVPG 6662 on dibenzothiophene crystals and orimulsion. Appl Environ Microbiol 69:4689–4696

    CAS  Google Scholar 

  16. Barr JJ, Cook AE, Bond PL (2010) Granule formation mechanisms within an aerobic wastewater system for phosphorus removal. Appl Environ Microbiol 76:7588–7597

    CAS  Google Scholar 

  17. Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442

    CAS  Google Scholar 

  18. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nature 5:76–81

    CAS  Google Scholar 

  19. Bennke CM, Neu TR, Fuchs BM, Amann R (2013) Mapping glycoconjugate-mediated interactions of marine Bacteroidetes with diatoms. Systematic Appl Microbiol 36:417--425

    Google Scholar 

  20. Berne C, Kysela DT, Brun YV (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77:815–829

    CAS  Google Scholar 

  21. Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD baclight kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290

    CAS  Google Scholar 

  22. Bertozzini E, Galluzzi L, Penna A, Magnani M (2011) Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods 87:17–23

    CAS  Google Scholar 

  23. Besemer K, Singer G, Hödl I, Battin TJ (2009) Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl Environ Microbiol 75:7189–7195

    CAS  Google Scholar 

  24. Besemer K, Singer G, Limberger R, Chlup A-K, Hochedlinger G, Hödl I, Baranyi C, Battin TJ (2007) Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol 73:4966–4974

    CAS  Google Scholar 

  25. Biggerstaff JP, Le Puil M, Weidow BL, Leblanc-Gridley J, Jennings E, Busch-Harris J, Sublette KL, White DC, Alberte RS (2007) A novel and in situ technique for the quantitative detection of MTBE and benzene degrading bacteria in contaminated matrices. J Microbiol Methods 68:437–441

    CAS  Google Scholar 

  26. Böckelmann U, Manz W, Neu TR, Szewzyk U (2002) A new combined technique of fluorescent in situ hybridization and lectin-binding-analysis (FISH-LBA) for the investigation of lotic microbial aggregates. J Microbiol Methods 49:75–87

    Google Scholar 

  27. Boessmann M, Neu TR, Horn H, Hempel DC (2004) Growth, structure and oxygen penetration in particle supported autotrophic biofilms. Water Sci Technol 49:371–377

    CAS  Google Scholar 

  28. Böhme A, Risse-Buhl U, Küsel K (2009) Protists with different feeding modes change biofilm morphology. FEMS Microbiol Ecol 69:158–169

    Google Scholar 

  29. Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190

    CAS  Google Scholar 

  30. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD ® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    CAS  Google Scholar 

  31. Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200

    CAS  Google Scholar 

  32. Bruhn JB, Haagensen JAJ, Bagge-Ravn D, Gram L (2006) Culture conditions of Roseobacter strain 27-4 affect its attachment and biofilm formation as quantified by real-time PCR. Appl Environ Microbiol 72:3011–3015

    CAS  Google Scholar 

  33. Brul S, Nussbaum J, Dielbandhoesing SK (1997) Fluorescent probes for wall porosity and membrane integrity in filamentous fungi. J Microbiol Methods 28:169–178

    CAS  Google Scholar 

  34. Bryers JD (2001) Two-photon excitation microscopy for analyses of biofilm processes. Methods Enzymol 337:259–269

    CAS  Google Scholar 

  35. Burdikova Z, Capek M, Ostasov P, Machac J, Pelc R, Mitchell EAD, Kubinova L (2010) Testate amoebae examined by confocal and two-photon microscopy: Implications for taxonomy and ecophysiology. Microsc Anal 16:735–746

    CAS  Google Scholar 

  36. Burnett SL, Chen J, Beuchat LR (2000) Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy. Appl Environ Microbiol 66:4679–4687

    CAS  Google Scholar 

  37. Caldwell DE, Korber DR, Lawrence JR (1992) Confocal laser scanning microscopy and digital image analysis in microbial ecology. Adv Microb Ecol 12:1–67

    CAS  Google Scholar 

  38. Catala P, Parthuisot N, Bernard L, Baudart J, Lemarchand K, Lebaron P (1999) Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters. FEMS Microbiol Lett 178:219–226

    CAS  Google Scholar 

  39. Cattaneo R, Rouviere C, Rassoulzadegan F, Weinbauer MG (2010) Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy. FEMS Microbiol Ecol 74:382–396

    CAS  Google Scholar 

  40. Chalmers NI, Palmer RJ Jr, Du-Thumm L, Sullivan R, Shi W, Kolenbrander PE (2007) Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl Environ Microbiol 73:630–636

    CAS  Google Scholar 

  41. Chen F, Lu JR, Binder BJ, Liu YC, Hodson RE (2001) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl Environ Microbiol 67:539–545

    CAS  Google Scholar 

  42. Chen MY, Lee DJ, Tay JH (2007) Distribution of extracellular polymeric substances in aerobic granules. Appl Microbiol Biotechnol 73:1463–1469

    CAS  Google Scholar 

  43. Chen M-Y, Lee D-J, Tay J-H, Show K-Y (2007) Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474

    CAS  Google Scholar 

  44. Christensen BB, Haagensen JAJ, Heydorn A, Molin S (2002) Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502

    CAS  Google Scholar 

  45. Christensen BB, Sternberg C, Andersen JB, Eberl L, Möller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255

    CAS  Google Scholar 

  46. Ciglenecki I, Plavsic M, Vojvodic V, Cosovic B, Pepi M, Baldi F (2003) Mucopolysaccharide transformation by sulfide in diatom cultures and natural mucilage. Mar Ecol Prog Ser 263:17–23

    CAS  Google Scholar 

  47. Cole L, Davies D, Hyde GJ, Ashford AE (2000) ER-tracker dye and BODIPY-breveldin A differentiate the endoplasmic reticulum and golgi bodies from the tubularvacuole system in living hyphae of Pisolithus tinctorius. J Microsc 197:239–248

    CAS  Google Scholar 

  48. Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926

    CAS  Google Scholar 

  49. Coote PJ, Billon CMP, Pennell S, McClure PJ, Ferdinando DP, Cole MB (1995) The use of confocal scanning laser microscopy (CSLM) to study the germination of individual spores of Bacillus cereus. J Microbiol Methods 21:193–208

    Google Scholar 

  50. Cotner JB, Ogdahl ML, Biddanda BA (2001) Double-stranded DNA measurement in lakes with the fluorescent stain PicoGreen and the application to bacterial assays. Aquat Microb Ecol 25:65–74

    Google Scholar 

  51. Cowan SE, Gilbert E, Khlebnikov A, Keasling JD (2000) Dual labeling with green fluorescent proteins for confocal microscopy. Appl Environ Microbiol 66:413–418

    CAS  Google Scholar 

  52. Cowan SE, Gilbert E, Liepmann D, Keasling JD (2000) Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl Environ Microbiol 66:4481–4485

    CAS  Google Scholar 

  53. Cowen JP, Holloway CF (1996) Structural and chemical analysis of marine aggregates: in situ macrophotography and laser confocal and electron microscopy. Mar Biol 126:163–174

    Google Scholar 

  54. Creach V, Baudoux A-C, Bertru G, Rouzic BL (2003) Direct estimate of active bacteria: CTC use and limitations. J Microbiol Methods 52:19–28

    CAS  Google Scholar 

  55. Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantification. Appl Environ Microbiol 66:1175–1182

    CAS  Google Scholar 

  56. Czechowska K, van der Meer JR (2011) Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux. Environ Sci Technol 46:1201–1208

    Google Scholar 

  57. Czymmek KJ, Whallon JH, Klomparens KL (1994) Confocal microscopy in mycological research. Exp Mycol 18:275–293

    Google Scholar 

  58. Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in waste water treatments plants. Appl Environ Microbiol 67:5273–5284

    CAS  Google Scholar 

  59. Daims H, Ramsing NB, Schleifer K-H, Wagner M (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl Environ Microbiol 67:5810–5818

    CAS  Google Scholar 

  60. Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171

    CAS  Google Scholar 

  61. Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576

    CAS  Google Scholar 

  62. de los Rios A, Ascaso C, Wierzchos J, Fernandez-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo ice shelf, Antarctica. Appl Environ Microbiol 70:569–580

    Google Scholar 

  63. de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environ Microbiol 5:231–237

    Google Scholar 

  64. del Giorgio PA, Bird DF, Prairie YT, Planas D (1996) Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol Oceanogr 41:783–789

    Google Scholar 

  65. DeLeo PC, Baveye P, Ghiorse WC (1997) Use of confocal laser scanning microscopy on soil thin-sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials. J Microbiol Methods 30:193–203

    Google Scholar 

  66. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    CAS  Google Scholar 

  67. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  Google Scholar 

  68. Diaz JM, Ingall ED (2010) Fluorometric quantification of natural inorganic polyphosphate. Environ Sci Technol 44:4665–4671

    CAS  Google Scholar 

  69. Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B (2009) Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155:2116–2126

    CAS  Google Scholar 

  70. Doherty SB, Wang L, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2010) Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices. J Microbiol Methods 82:301–310

    CAS  Google Scholar 

  71. Dominiak DM, Nielsen JL, Nielsen PH (2011) Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ Microbiol 13:710–721

    CAS  Google Scholar 

  72. Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriaphage. Trends Microbiol 17:66–72

    CAS  Google Scholar 

  73. Donlan RM, Piede JA, Heyes CD, Sanii L, Edmonds P, El-Sayed I, El-Sayed MA (2004) Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol 70:4980–4988

    CAS  Google Scholar 

  74. Doolittle MM, Cooney JJ, Caldwell DE (1996) Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenetic probes. J Ind Microbiol 16:331–341

    CAS  Google Scholar 

  75. Dopheide A, Lear G, Stott R, Lewis G (2011) Preferential feeding by the ciliates Chilodonella and Tetrahymena spp. and effects of these protozoa on bacterial biofilm structure and composition. Appl Environ Microbiol 77:4564–4572

    CAS  Google Scholar 

  76. Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil–water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70:6333–6336

    CAS  Google Scholar 

  77. Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R (1997) Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol Lett 149:77–83

    CAS  Google Scholar 

  78. Eisenmann H, Letsiou J, Feuchtinger A, Beisker W, Mannweiler E, Hutzler P, Arnz P (2001) Interception of small particles by flocculent structures, sessile ciliates, and the basic layer of a wastewater biofilm. Appl Environ Microbiol 67:4286–4292

    CAS  Google Scholar 

  79. Fernandez M, Sanchez J (2002) Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451. Microbiology 148:405–412

    CAS  Google Scholar 

  80. Ferrari BC, Tujula N, Stoner K, Kjelleberg S (2006) Catalyzed reporter deposition—fluorescence in situ hybridization allows for enrichment—independent detection of microcolony—forming soil bacteria. Appl Environ Microbiol 72:918–922

    CAS  Google Scholar 

  81. Filoche SK, Coleman MJ, Angker L, Sissons CH (2007) A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms. J Microbiol Methods 69:489–496

    CAS  Google Scholar 

  82. Finelli A, Gallant CV, Jarvi K, Burrows LL (2003) Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. Appl Environ Microbiol 69:2700–2710

    Google Scholar 

  83. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259

    CAS  Google Scholar 

  84. Forster S, Snape JR, Lappin-Scott HM, Porter J (2002) Simultaneous fluorescent gram staining and activity assesment of activated sludge bacteria. Appl Environ Microbiol 68:4772–4779

    CAS  Google Scholar 

  85. Forterre P, Soler N, Krupovic M, Marguet E, Ackermann HW (2013) Fake virus particles generated by fluorescence microscopy. Trends Microbiol 21:1–5

    CAS  Google Scholar 

  86. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    CAS  Google Scholar 

  87. Furuno S, Päzolt K, Rabe C, Neu TR, Harms H, Wick LY (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol 12:1391–1398

    CAS  Google Scholar 

  88. Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, Wick LY (2012) Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol 46:5463–5470

    CAS  Google Scholar 

  89. Gaines S, James TC, Folan M, Baird AW, O’Farrelly C (2003) A novel spectrofluorometric microassay for Streptococcus mutans adherence to hydroxylapatite. J Microbiol Methods 54:315–323

    CAS  Google Scholar 

  90. Garny K, Horn H, Neu TR (2008) Interaction between biofilm development, structure and detachment in rotating annular reactors. Bioprocess Biosyst Eng 31:619–629

    CAS  Google Scholar 

  91. Garny K, Neu TR, Horn H (2009) Sloughing and limited substrate conditions trigger filamentous growth in heterotrophic biofilms—measurements in flow-through tube reactor. Chem Eng Sci 64:2723–2732

    CAS  Google Scholar 

  92. Gerritsen HC, Grauw dCJ (1999) Imaging of optically thick specimen using two-photon excitation microscopy. Microsc Res Tech 47:206–209

    Google Scholar 

  93. Gieseke A, Bjerrum L, Wagner M, Amann R (2003) Structure and acitvity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ Microbiol 5:355–369

    CAS  Google Scholar 

  94. Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    CAS  Google Scholar 

  95. Gieseke A, Tarre S, Green M, de Beer D (2006) Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl Environ Microbiol 72:4283–4292

    CAS  Google Scholar 

  96. Gilbert B, Assmus B, Hartmann A, Frenzel P (1998) In situ localization of two methanotrophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25:117–128

    CAS  Google Scholar 

  97. Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvatio-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7:894–904

    CAS  Google Scholar 

  98. Godeke J, Paul K, Lassak J, Thormann KM (2011) Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J 5:613–626

    Google Scholar 

  99. Gorman SP, Mawhinney WM, Adair CG (1993) Confocal laser scanning microscopy of adherent microorganisms, biofilms and surfaces. In: Denyer SP, Gorman SP, Sussman M (eds) Microbial biofilms: formation and control. Blackwell, London, pp 95–107

    Google Scholar 

  100. Gorokhova E, Mattsson L, SundströmAM (2012) A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy. J Microbiol Methods 89:216–221

    Google Scholar 

  101. Gray ND, Howarth R, Pickup RW, Jones JG, Head IM (2000) Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured from the genus Achromatium. Appl Environ Microbiol 66:4518–4522

    CAS  Google Scholar 

  102. Gregori G, Citterio S, Ghiani A, Labra M, Sgorbati S, Brown S, Denis M (2001) Resolution of vial and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining. Appl Environ Microbiol 67:4662–4670

    CAS  Google Scholar 

  103. Grossart H-P, Steward GF, Martinez J, Azam J (2000) A simple, rapid method for demonstrating bacterial flagella. Appl Environ Microbiol 66:3632–3636

    CAS  Google Scholar 

  104. Grube M, Cardinale M, de Castro JV Jr, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115

    Google Scholar 

  105. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85

    Google Scholar 

  106. Gu F, Lux R, Du-Thumm L, Stokes I, Kreth J, Anderson MH, Wong DT, Wolinsky L, Sullivan R, Shi W (2005) In situ and non-invasive detection of specific bacterial species in oral biofilms using fluorescently labelled monoclonal antibodies. J Microbiol Methods 62:145–160

    CAS  Google Scholar 

  107. Guggenheim M, Shapiro S, Gmür R, Guggenheim B (2001) Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol 67:1343–1350

    CAS  Google Scholar 

  108. Guindulain T, Comas J, Vives-Rego J (1997) Use of nucleic acid dyes SYTO-13, TOTO-1, and YOYO-1 in the study of Escherichia coli and marine prokaryotic populations by flow cytometry. Appl Environ Microbiol 63:4608–4611

    CAS  Google Scholar 

  109. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ (2009) Contribuation of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun 77:3626–3638

    CAS  Google Scholar 

  110. Haagensen JAJ, Hansen SK, Johansen T, Molin S (2002) In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42:261–268

    CAS  Google Scholar 

  111. Haagensen JAJ, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin—and sodium dodecyl sulfate—tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37

    CAS  Google Scholar 

  112. Hamasaki K, Long RA, Azam F (2004) Individual cell growth rates of marine bacteria, measured by bromodeoxyuridine incorporation. Aquat Microb Ecol 35:217–227

    Google Scholar 

  113. Hansen M, Kragelund L, Nybroe O, Sörensen J (1997) Early colonization of barley roots by Pseudomons fluorescens studies by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23:353–360

    CAS  Google Scholar 

  114. Hansen SK, Haagensen JAJ, Gjermansen M, Jorgensen TM, Tolker-Nielsen T, Molin S (2007) Characterization of a Pseudomonas putida rough varient evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J Bacteriol 189:4932–4943

    CAS  Google Scholar 

  115. Harrison JJ, Ceri H, Yerly J, Stremick CA, Hu Y, Martinuzzi RJ, Turner RJ (2006) The use of microscopy and three-dimensional visualisation to evaluate the structure of microbial biofilms cultivated in the Calgary biofilm device. Biol Proced 8:194–215

    CAS  Google Scholar 

  116. Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:-3710

    Google Scholar 

  117. Hazen TC, Jiménez L (1988) Enumeration and identification of bacteria from environmental samples using nucleic acid probes. Microbiol Sci 5:340–343

    CAS  Google Scholar 

  118. Henche AL, Koerdt A, Ghosh A, Albers SV (2012) Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 14:779–793

    CAS  Google Scholar 

  119. Hendry MJ, Lawrence JR, Maloszewski P (1997) The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand. Ground Water 35:574–583

    CAS  Google Scholar 

  120. Henry-Stanley MJ, Garni RM, Wells CL (2004) Adaptation of FUN-1 and Calcofluor white stains to assess the ability of viable and non-viable yeast to adhere to and be internalized by cultured mammalian cells. J Microbiol Methods 59:289–292

    CAS  Google Scholar 

  121. Hernandez-Marine M, Clavero E, Roldan M (2003) Why there is such luxurious growth in the hypogean environments. Archiv für Hydrobiologie Supplement 148:229–239

    Google Scholar 

  122. Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017

    CAS  Google Scholar 

  123. Heydorn A, Ersböll BK, Hentzer M, Parsek MR, Givskov M, Molin S (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415

    CAS  Google Scholar 

  124. Hickey PC, Swift SR, Roca MG, Read ND (2004) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol 34:63–87

    Google Scholar 

  125. Hoefel D, Grooby WL, Monis PT, Andrews S, Saint CP (2003) A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. J Microbiol Methods 52:379–388

    CAS  Google Scholar 

  126. Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518

    CAS  Google Scholar 

  127. Holloway CF, Cowen JP (1997) Development of a scanning confocal laser microscopic technique to examine the structure and composition of marine snow. Limnol Oceanogr 42:1340–1352

    CAS  Google Scholar 

  128. Hope CK, Wilson M (2003) Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping. J Microbiol Methods 54:403–410

    CAS  Google Scholar 

  129. Hovis DB, Heuer AH (2010) The use of laser scanning confocal microscopy (LSCM) in materials science. J Microsc 240:173–180

    CAS  Google Scholar 

  130. Hu Z, Hidalgo G, Houston PL, Hay AG, Shuler ML, Abruna HD, Ghiorse WC, Lion LW (2005) Determination of spatial distribution of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl Environ Microbiol 71:4014–4021

    CAS  Google Scholar 

  131. Hubbuch J, Kula M-R (2008) Confocal laser scanning microscopy as an analytical tool in chromatographic research. Bioprocess Biosyst Eng 31:241–259

    CAS  Google Scholar 

  132. Hugenholtz P, Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197

    CAS  Google Scholar 

  133. Ibrahim P, Whiteley AS, Barer MR (1997) SYTO 16 labelling and flow cytometry of Mycobacterium avium. Lett Appl Microbiol 25:437–441

    CAS  Google Scholar 

  134. Ito T, Nielsen JL, Okabe S, Watanabe Y, Nielsen PH (2002) Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm fluorescent in situ hybridization. Appl Environ Microbiol 68:356–364

    CAS  Google Scholar 

  135. Ito T, Sugita K, Okabe S (2004) Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Appl Environ Microbiol 70:3122–3129

    CAS  Google Scholar 

  136. Jacobsen CN, Rasmussen J, Jakobsen M (1997) Viability staining and flow cytometric detection of Listeria monocytogenes. J Microbiol Methods 28:35–43

    Google Scholar 

  137. Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    CAS  Google Scholar 

  138. Jayaraman A, Earthman JC, Wood TK (1997) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl Microbiol Biotechnol 47:62–68

    CAS  Google Scholar 

  139. Jepras RI, Carter J, Pearson SC, Paul FE, Wilkinson MJ (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl Environ Microbiol 61:2696–2701

    CAS  Google Scholar 

  140. Johnsen AR, Hausner M, Schnell A, Wuertz S (2000) Evaluation of fluorescently labeled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl Environ Microbiol 66:3487–3491

    CAS  Google Scholar 

  141. Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ, Christiansen G, Hojrup P, Nielsen PH, Otzen DE (2009) Widespread abundance of functional bacterial amyloid mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110

    CAS  Google Scholar 

  142. Juang Y-C, Adav SS, Lee D-J, Lai J-Y (2010) Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane reactors. Environ Sci Technol 44:1267–1273

    CAS  Google Scholar 

  143. Jurcisek JA, Bakaletz LO (2007) Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol 189:3868–3875

    CAS  Google Scholar 

  144. Karimi-Lotfabad S, Gray MR (2000) Characterization of contaminated soils using confocal laser scanning microscopy and cryogenic-scanning electron microscopy. Environ Sci Technol 34:3408–3414

    CAS  Google Scholar 

  145. Keer JT, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53:175–183

    CAS  Google Scholar 

  146. Kerstens M, Gl Boulet, Pintelon I, Hellings M, Voeten L, Delputte P, Maes L, Cos P (2013) Quantification of Candida albicans by flow cytometry using TO-PRO®-3 iodide as a single-stain viability dye. J Microbiol Methods 92:189–191

    CAS  Google Scholar 

  147. Kim J-W, Choi H, Pachepsky YA (2010) Biofilm morphology as related to the porous media clogging. Water Res 44:1193–1201

    CAS  Google Scholar 

  148. Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, Okabe S (2007) In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol 73:4931–4939

    CAS  Google Scholar 

  149. Kirkelund Hansen S, Rainey P, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    Google Scholar 

  150. Klausen M, Aaes-Jörgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    CAS  Google Scholar 

  151. Van Ommen Kloecke F, Geesey GG (1999) Localization and identification of populations of phosphatase—active bacterial cells associated with activated sludge flocs. Microbial Ecol 38:201–214

    Google Scholar 

  152. Kolari M, Mattila K, Mikkola R, Salkinoja-Salonen MS (1998) Community structure of biofilms on ennobled stainless steel in Baltic Sea water. J Ind Microbiol Biotechnol 21:261–274

    CAS  Google Scholar 

  153. Korber DR, Choi A, Wolfaardt GM, Ingham SC, Caldwell DE (1997) Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Appl Environ Microbiol 63:3352–3358

    CAS  Google Scholar 

  154. Kuehn M, Mehl M, Hausner M, Bungartz H-J, Wuertz S (2001) Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS. Water Sci Technol 43:143–151

    CAS  Google Scholar 

  155. Kulakova AN, Hobbs D, Smithen M, Pavlov E, Gilbert JA, Quinn JP, McGrath JW (2011) Direct quantification of inorganic polyphosphate in microbial cells using 4′-6-diamidino-2-phenylindole (DAPI). Environ Sci Technol 45:7799–7803

    CAS  Google Scholar 

  156. Laca A, Garcia LA, Argüeso F, Diaz M (1999) Protein diffusion in alginate beads monitored by confocal microscopy. The application of wavelets for data reconstruction and analysis. J Ind Microbiol Biotechnol 23:155–165

    CAS  Google Scholar 

  157. Lanthier M, Tartakovsky B, Villemur R, DeLuca G, Guiot SR (2002) Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 68:4035–4043

    CAS  Google Scholar 

  158. Lappmann M, Claus H, van Alen T, Harmsen M, Elias J, Molin S, Vogel U (2010) A dual role of extracellular DNA during biofil formation of Neisseria meningitis. Mol Microbiol 75:1355–1371

    Google Scholar 

  159. Larrainzar E, O’Gara F, Morrissey JP (2005) Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol 59:257–277

    CAS  Google Scholar 

  160. Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D, Nielsen PH (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9:3077–3090

    CAS  Google Scholar 

  161. Laue H, Schenk A, Hongqiao L, Lambertsen L, Neu TR, Molin S, Ullrich MS (2006) Contribution of alginate and levan to biofilm formation by Pseudomonas syringae. Microbiology 152:2909–2918

    CAS  Google Scholar 

  162. Lawrence JR, Chenier MR, Roy R, Beaumier D, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of the impacts of nickel, nutrients, and oxygen level on the structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339

    CAS  Google Scholar 

  163. Lawrence JR, Hendry MJ (1996) Transport of bacteria through geologic media. Can J Microbiol 42:410–422

    CAS  Google Scholar 

  164. Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47:634–641

    CAS  Google Scholar 

  165. Lawrence JR, Korber D, Neu TR (2007) Analytical imaging and microscopy techniques. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology. ASM Press, Washington D.C., pp 40–68

    Google Scholar 

  166. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  167. Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE (1996) Analytical imaging and microscopy techniques. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM, Washington, pp 29–51

    Google Scholar 

  168. Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE, Neu TR (2002) Analytical imaging and microscopy techniques. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. ASM, Washington, pp 39–61

    Google Scholar 

  169. Lawrence JR, Kwong YTJ, Swerhone GDW (1997) Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43:178–188

    CAS  Google Scholar 

  170. Lawrence JR, Neu TR (1999) Confocal laser scanning microscopy for analysis of microbial biofilms. Methods Enzymol 310:131–144

    CAS  Google Scholar 

  171. Lawrence JR, Neu TR (2003) Microscale analyses of the formation and nature of microbial biofilm communities in river systems. Rev Environ Sci Bio/Technol 2:85–97

    CAS  Google Scholar 

  172. Lawrence JR, Neu TR (2007) Laser scanning microscopy. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM, Washington DC, pp 34–53

    Google Scholar 

  173. Lawrence JR, Neu TR (2007) Laser scanning microscopy for microbial flocs and particles. In: Wilkinson KJ, Lead JR (eds) Environmental colloids: behavior, structure and characterisation. Wiley, Chichester, pp 469–505

    Google Scholar 

  174. Lawrence JR, Neu TR, Swerhone GDW (1998) Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods 32:253–261

    CAS  Google Scholar 

  175. Lawrence JR, Scharf B, Packroff G, Neu TR (2002) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 43:199–207

    Google Scholar 

  176. Lawrence JR, Swerhone GDW, Kwong YTJ (1998) Natural attenuation of aqueous metal contamination by an algal mat. Can J Microbiol 44:825–832

    CAS  Google Scholar 

  177. Lawrence JR, Swerhone GDW, Neu TR (2000) A simple rotating annular reactor for replicated biofilm studies. J Microbiol Methods 42:215–224

    CAS  Google Scholar 

  178. Lawrence JR, Swerhone GDW, Topp E, Korber D, Neu TR, Wassenaar LI (2007) Structural and functional responses of river biofilms communities to the non-steroidal anti-inflammatory diclofenac. Environ Toxicol Chem 26:573–582

    CAS  Google Scholar 

  179. Lawrence JR, Swerhone GDW, Wasenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51:655–669

    CAS  Google Scholar 

  180. Lawrence JR, Wolfaardt G, Neu TR (1998) The study of microbial biofilms by confocal laser scanning microscopy. In: Wilkinson MHF, Shut F (eds) Digital image analysis of microbes. Wiley, Chichester, pp 431–465

    Google Scholar 

  181. Lawrence JR, Zhu B, Swerhone GDW, Topp E, Roy J, Wasenaar LI, Rema T, Korber DR (2008) Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. Appl Environ Microbiol 74:3541–3550

    CAS  Google Scholar 

  182. Le Puil M, Biggerstaff JP, Weidow BL, Price JR, Naser SA, White DC, Alberte RS (2006) A novel fluorescence imaging technique combining deconvolution mircoscopy and spectral analysis for quantitative detection of opportunistic pathogens. J Microbiol Methods 67:597–602

    Google Scholar 

  183. Lebaron P, Catala P, Parthuisot N (1998) Effectiveness of SYTOX green stain for bacterial viability assessment. Appl Environ Microbiol 64:2697–2700

    CAS  Google Scholar 

  184. Lebaron P, Parthuisot N, Catala P (1998) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl Environ Microbiol 64:1725–1730

    CAS  Google Scholar 

  185. Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer K, Wagner M (1999) Combination of fluorescent in situ hybridisation and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  Google Scholar 

  186. Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of Extremophilic archaea and visualisation of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886

    CAS  Google Scholar 

  187. Li L, Li Y, Lim TM, Pan SQ (1999) GFP-aided confocal laser scanning microscopy can monitor Agrobacterium tumefacians cell morphology and gene expression associated with infection. FEMS Microbiol Lett 179:141–146

    CAS  Google Scholar 

  188. Li S, Spear N, Andrews JH (1997) Quantitative fluorescence in situ hybridization of Aureobasidium pullulans on microscope slides and leaf surfaces. Appl Environ Microbiol 63:3261–3267

    CAS  Google Scholar 

  189. Li WKW, Jellett JF, Dickie PM (1995) DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol Oceanogr 40:1485–1495

    CAS  Google Scholar 

  190. Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualisation of soil microorganisms—a review. Biol Fertil Soils 39:301–311

    Google Scholar 

  191. Linden T, Ljunglöf A, Kula M-R, Thömmes J (1999) Visualizing two-component protein diffusion in porous adsorbents by confocal scanning laser microscopy. Biotechnol Bioeng 65:622–630

    CAS  Google Scholar 

  192. Liu L, Li WW, Sheng GP, Liu ZF, Zeng RJ, Liu JX, Yu HQ, Lee DJ (2010) Microscale hydrodynamic analysis of aerobic granules in the mass transfer process. Environ Sci Technol 44:7555–7560

    CAS  Google Scholar 

  193. Lloyd D, Hayes AJ (1995) Vigour, vitality and viability of microorganisms. FEMS Microbiol Lett 133:1–7

    CAS  Google Scholar 

  194. Lloyd D, Thomas KL, Hayes A, Hill B, Hales BA, Edwards C, Saunders JR, Ritchie DA, Upton M (1998) Micro-ecology of peat: minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry and PCR amplification of methanogen-specific gene sequences. FEMS Microbiol Ecol 25:179–188

    CAS  Google Scholar 

  195. Lower BH, Yongsunthon R, Vellano FP III, Lower SK (2005) Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J Bacteriol 187:2127–2137

    CAS  Google Scholar 

  196. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Nat Acad Sci USA 104:11197–11202

    CAS  Google Scholar 

  197. Lübeck PS, Hansen M, Sörensen J (2000) Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiol Ecol 33:11–19

    Google Scholar 

  198. Luef B, Neu TR, Peduzzi P (2009) Imaging and quantifying virus fluorescence signals on aquatic aggregates: a new method and its implication for aquatic microbial ecology. FEMS Microbiol Ecol 68:372–380

    CAS  Google Scholar 

  199. Luef B, Neu TR, Zweimüller I, Peduzzi P (2009) Structure and composition of aggregates in two large European rivers, based on confocal laser scanning microscopy and image and statistical analysis. Appl Environ Microbiol 75:5952–5962

    CAS  Google Scholar 

  200. Luna GM, Manini E, Danovaro R (2002) Large fraction of dead and inactiv bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl Environ Microbiol 68:3509–3513

    CAS  Google Scholar 

  201. Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M (2005) An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol 7:961–968

    Google Scholar 

  202. Lupini G, Proia L, Di Maio M, Amalfitano S, Fazi S (2011) CARD-FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms. J Microbiol Methods 86:248–251

    Google Scholar 

  203. Lydmark P, Lind M, Sörensson F, Hermansson M (2006) Vertical distribution of nitrifying populations in bacterial biofilms from a full—scale nitrifying trickling filter. Environ Microbiol 8:2036–2049

    CAS  Google Scholar 

  204. Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A (2006) Escherichia coli biofilms formed under low—shear modeled microgravity in a ground-based system. Appl Environ Microbiol 72:7701–7710

    CAS  Google Scholar 

  205. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens 5(3):e1000354

    Google Scholar 

  206. Macnaughton SJ, Booth T, Embley TM, O’Donnell AG (1996) Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent-labeled oligonucleotide probes. J Microbiol Methods 26:279–285

    CAS  Google Scholar 

  207. Mangalappalli-Illathu AK, Lawrence JR, Swerhone GDW, Korber DR (2008) Architectural adaptation and protein expression patterns of Salmonella enterica serovar enteritidis biofilms under laminar flow conditions. Int J Food Microbiol 123:109–120

    CAS  Google Scholar 

  208. Manini E, Danovaro R (2006) Synoptic determination of living/dead and active/dormant bacterial fractions in marine sediments. FEMS Microbiol Ecol 55:416–423

    CAS  Google Scholar 

  209. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4:e5822

    Google Scholar 

  210. Manning PA (1995) Use of confocal microscopy in studying bacterial adhesion and invasion. Methods Enzymol 253:159–167

    CAS  Google Scholar 

  211. Manz W, Arp G, Schumann-Kindel G, Szewzyk U, Reitner J (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Methods 40:125–134

    CAS  Google Scholar 

  212. Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37:225–237

    CAS  Google Scholar 

  213. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193

    CAS  Google Scholar 

  214. Marie D, Vaulot D, Partensky F (1996) Application of the novel nucleic acid dyes YOYO-1, Yo-Pro-1, and PicoGreen for flow cytometric analysis of marine procaryotes. Appl Environ Microbiol 62:1649–1655

    CAS  Google Scholar 

  215. Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge

    Google Scholar 

  216. Martens-Habbena W, Sass H (2006) Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Appl Environ Microbiol 72:87–95

    CAS  Google Scholar 

  217. Martin-Cereceda M, Alvarez AM, Serrano S, Guinea A (2001) Confocal and light microscope examination of protozoa and other microorganisms in the biofilms from a rotating biological contactor wastewater treatment plant. Acta Protozoologica 40:263–272

    Google Scholar 

  218. Martiny AC, Jorgensen TM, Albrechtsen H-J, Arvin E, Molin S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69:6899–6907

    CAS  Google Scholar 

  219. Mason DJ, Lopez-Amoros R, Allman R, Stark JM, Lloyd D (1995) The ability of membrane potential dyes and calcofluor white to distinguish between viable and non-viable bacteria. J Appl Bacteriol 78:309–315

    CAS  Google Scholar 

  220. Mason DJ, Shanmuganathan S, Mortimer FC, Gant VA (1998) A fluorescent gram stain for flow cytometry and epifluorescence microscopy. Appl Environ Microbiol 64:2681–2685

    CAS  Google Scholar 

  221. Massol-Deya AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic biofilms on fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61:769–777

    CAS  Google Scholar 

  222. Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226

    Google Scholar 

  223. May T, Tsuruta K, Okabe S (2011) Exposure of conjugative plasmid carrying Escherichia coli biofilms to male-specific bacteriophages. ISME J 5:771–775

    CAS  Google Scholar 

  224. McAuliffe L, Ellis RJ, Miles K, Ayling RD, Nicholas RAJ (2006) Biofilm formation by mycoplasma species and its role in environmental persistance and survival. Microbiology 152:913–922

    CAS  Google Scholar 

  225. McLean JS, Majors PD, Reardon CL, Bilskis CL, Reed SB, Romine MF, Fredrickson JK (2008) Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. J Microbiol Methods 74:47–56

    CAS  Google Scholar 

  226. McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA, Hill EA, Saffarini DA, Romine MF, Gorby YA, Frederickson JK, Beliaev AS (2008) Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 10:1861–1876

    CAS  Google Scholar 

  227. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    CAS  Google Scholar 

  228. Michael T, Smith CM (1995) Lectins probe molecular films in biofouling: characterization of early films on non-living and living surfaces. Mar Ecol Prog Ser 119:229–236

    CAS  Google Scholar 

  229. Millard PJ, Roth BL, Thi HT, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905

    CAS  Google Scholar 

  230. Min KR, Rickard AH (2009) Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation. Appl Environ Microbiol 75:3987–3997

    CAS  Google Scholar 

  231. Mir M, Babacan SD, Bednarz M, Do MN, Golding I, Popescu G (2012) Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography. PLoS ONE 7:e39816

    CAS  Google Scholar 

  232. Miura Y, Okabe S (2008) Quantification of cell specific uptake activity of microbial products by uncultured Chloroflexi by microautoradiography combined with fluorescence in situ hybridization. Environ Sci Technol 42:7380–7386

    CAS  Google Scholar 

  233. Mohamed MN, Lawrence JR, Robarts RD (1998) Phosphorus limitation of heterotrophic biofilms from the Fraser River, British Columbia, and the effect of pulp mill effluent. Microb Ecol 36:121–130

    CAS  Google Scholar 

  234. Möhle RB, Langemann T, Haesner M, Augustin W, Scholl S, Neu TR, Hempel DC, Horn H (2007) Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol Bioeng 98:747–755

    Google Scholar 

  235. Möller S, Pedersen AR, Poulsen LK, Arvin E, Molin S (1996) Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl Environ Microbiol 62:4632–4640

    Google Scholar 

  236. Möller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732

    Google Scholar 

  237. Morris C, Monier J-M, Jacques M-A (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576

    CAS  Google Scholar 

  238. Morris JD, Hewitt JL, Wolfe LG, Kamatkar NG, Chapman SM, Diener JM, Courtney AJ, Leevy WM, Shrout JD (2011) Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl Environ Microbiol 77:8310–8317

    CAS  Google Scholar 

  239. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    CAS  Google Scholar 

  240. Mulcahy H, Charron-Mazenod L, Lewenza S (2009) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens 4(11):e1000213

    Google Scholar 

  241. Nancharaiah YV, Venugopalan VP, Wuertz S, Wilderer PA, Hausner M (2005) Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. J Microbiol Methods 60:179–187

    CAS  Google Scholar 

  242. Nebe-von Caron G, Badley RA (1995) Viability assessment of bacteria in mixed populations using flow cytometry. J Microsc 179:55–66

    Google Scholar 

  243. Nebe-von Caron G, Stephens P, Badley RA (1998) Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84:988–998

    Google Scholar 

  244. Neef A, Zaglauer A, Meier H, Amann R, Lemmer H, Schleifer K-H (1996) Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl Environ Microbiol 62:4329–4339

    CAS  Google Scholar 

  245. Neef AB, Luedtke NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci 108:20404–20409

    CAS  Google Scholar 

  246. Neu TR (2000) In situ cell and glycoconjugate distribution in river snow studied by confocal laser scanning microscopy. Aquat Microb Ecol 21:85–95

    Google Scholar 

  247. Neu TR, Kuhlicke U, Lawrence JR (2002) Assessment of fluorochromes for two-photon laser scanning microscopy biofilms. Appl Environ Microbiol 68:901–909

    CAS  Google Scholar 

  248. Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24:11–25

    CAS  Google Scholar 

  249. Neu TR, Lawrence JR (1999) Lectin-binding-analysis in biofilm systems. Methods Enzymol 310:145–152

    CAS  Google Scholar 

  250. Neu TR, Lawrence JR (2002) Laser scanning microscopy in combination with fluorescence techniques for biofilm study. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 4. Wiley, New York, pp 1772–1788

    Google Scholar 

  251. Neu TR, Lawrence JR (2005) One-photon versus two-photon laser scanning microscopy and digital image analysis of microbial biofilms. Methods Microbiol 34:87–134

    Google Scholar 

  252. Neu TR, Lawrence JR (2010) Examination of microbial communities on hydrocarbons by means of laser scanning microscopy. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids and derived compounds. Springer, Heidelberg, pp 4073–4084

    Google Scholar 

  253. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21

    CAS  Google Scholar 

  254. Neu TR, Swerhone GDW, Böckelmann U, Lawrence JR (2005) Effect of CNP on composition and structure of lotic biofilms as detected with lectin-specific glycoconjugates. Aquat Microb Ecol 38:283–294

    Google Scholar 

  255. Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    CAS  Google Scholar 

  256. Neu TR, Woelfl S, Lawrence JR (2004) Three-dimensional differentiation of photo-autotrophic biofilm constituents by multi-channel laser scanning microscopy (single-photon and two-photon excitation). J Microbiol Methods 56:161–172

    CAS  Google Scholar 

  257. Niederberger TD, Perreault NN, Lawrence JR, Nadeau JL, Mielke RE, Greer CW, Anderson AB, Whyte LG (2009) Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic. Environ Microbiol 11:616–629

    CAS  Google Scholar 

  258. Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S (2000) Role of commensal retionships on the spatial structure of a surface—attached microbial consortium. Environ Microbiol 2:59–68

    CAS  Google Scholar 

  259. Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH (2003) Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211

    CAS  Google Scholar 

  260. Nielsen JL, de Muro MA, Nielsen PH (2003) Evaluation of the redox dye 5-cyano-2,3-tolyl-tetrazolium chloride for activity studies by simultaneous use of microautoradiography and fluorescence in situ hybridization. Appl Environ Microbiol 69:641–643

    CAS  Google Scholar 

  261. Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 68:4629–4636

    CAS  Google Scholar 

  262. Nielsen JL, Nielsen PH (2005) Advances in microscopy: Microautoradiography of single cells. Methods Enzymol 397:237–256

    CAS  Google Scholar 

  263. Nielsen JL, Wagner M, Nielsen PH (2003) Use of microautoradiography to study in situ physiology of bacteria in biofilms. Rev Environ Sci Bio/Technol 2:261–268

    Google Scholar 

  264. Nielsen PH, Daims H, Lemmer H (2009) FISH Handbook for biological wastewater treatment. IWA Publishing, London

    Google Scholar 

  265. Nielsen PH, de Muro MA, Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2:389–398

    CAS  Google Scholar 

  266. Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057

    CAS  Google Scholar 

  267. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Google Scholar 

  268. Nopharatana M, Mitchell DA, Howes T (2003) Use of cofocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface. Biotechnol Bioeng 84:71–77

    CAS  Google Scholar 

  269. Nopharatana M, Mitchell DA, Howes T (2003) Use of confocal microscopy to follow the development of penetrative hyphae during growth of Rhizopus oligosporus in an artificial solid-state fermentation system. Biotechnol Bioeng 81:438–447

    CAS  Google Scholar 

  270. Norton TA, Thompson RC, Pope J, Veltkamp CJ, Banks B, Howard CV, Hawkins SJ (1999) Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat Microb Ecol 16:199–204

    Google Scholar 

  271. Not F, Simon N, Biegala IC, Vaulot D (2002) Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eucaryotic picoplankton composition. Aquat Microb Ecol 28:157–166

    Google Scholar 

  272. Nour SM, Lawrence JR, Zhu H, Swerhone GDW, Welsh M, Welacky TW, Topp E (2003) Bacteria associated with cysts of the sowbean cyst nematode (Heterodera glycines). Appl Environ Microbiol 69:607–615

    CAS  Google Scholar 

  273. Okabe S, Ito T, Sugita K, Satoh H (2005) Succesion of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71:2520–2529

    CAS  Google Scholar 

  274. Okabe S, Itoh T, Satoh H, Watanabe Y (1999) Analysis of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl Environ Microbiol 65:5107–5116

    CAS  Google Scholar 

  275. Okabe S, Kindaichi T, Ito T (2004) MAR-FISH - An ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microbes Environ 19:83–98

    Google Scholar 

  276. Okabe S, Kindaichi T, Ito T (2005) Fate of C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol 71:3987–3994

    CAS  Google Scholar 

  277. Olofsson AC, Zita A, Hermansson M (1998) Floc stability and adhesion of green-fluorescent-protein-marked bacteria to flocs in activated sludge. Microbiology 144:519–528

    CAS  Google Scholar 

  278. Oren A (1987) On the use of tetrazolium salts for the measurement of microbial activity in sediments. FEMS Microbiol Ecol 45:127–133

    CAS  Google Scholar 

  279. Packroff G, Lawrence JR, Neu TR (2002) In situ confocal laser scanning microscopy of protozoans in culture and complex biofilm communities. Acta Protozoologica 41:245–253

    Google Scholar 

  280. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE (2003) Coaggregation-mediated interactions of Streptococci and Actinomyces detected in initial human dental plague. J Bacteriol 185:3400–3409

    CAS  Google Scholar 

  281. Palmer RJ Jr, Haagensen J, Neu TR, Sternberg C (2006) Confocal microscopy of biofilms—spatiotemporal approaches. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, pp 882–900

    Google Scholar 

  282. Palmer RJ Jr, Sternberg C (1999) Modern microcopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268

    CAS  Google Scholar 

  283. Parry JD (2004) Protozoan grazing of freshwater biofilms. Adv Appl Microbiol 54:167–196

    Google Scholar 

  284. Pascaud A, Amellal S, Soulas M-L, Soulas G (2009) A fluorescence-based assay for measuring the viable cell concentration of mixed microbial communities in soil. J Microbiol Methods 76:81–87

    CAS  Google Scholar 

  285. Pedersen AR, Möller S, Molin S, Arvin E (1997) Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol Bioeng 54:131–141

    CAS  Google Scholar 

  286. Peltola M, Neu TR, Kanto-Oqvist L, Raulio M, Kolari M, Salkinoja-Salonen MS (2008) Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study. Environ Microbiol 10:1752–1759

    CAS  Google Scholar 

  287. Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early and late colonizers of enamel. J Bacteriol 191:6804–6811

    CAS  Google Scholar 

  288. Periasamy S, Kolenbrander PE (2009) Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun 77:3542–3551

    CAS  Google Scholar 

  289. Periasamy S, Kolenbrander PE (2010) Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol 192:2965–2972

    CAS  Google Scholar 

  290. Pernthaler A, Amann R (2004) Simultaneous fluorescence in situ hybridisation of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70:5426–5433

    CAS  Google Scholar 

  291. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridisation and catalzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    CAS  Google Scholar 

  292. Phipps D, Rodriguez G, Ridgway H (1999) Deconvolution fluorescence microscopy for observation and analysis of membrane biofilm architecture. Methods Enzymol 310:178–194

    CAS  Google Scholar 

  293. Piao Z, Sze CC, Barysheva O, Iida K-I, Yoshida S-I (2006) Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 72:1613–1622

    CAS  Google Scholar 

  294. Pick U, Rachutin-Zalogin T (2012) Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods 88:189–196

    CAS  Google Scholar 

  295. Pierson BK, Parenteau MN (2000) Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol Ecol 32:181–196

    CAS  Google Scholar 

  296. Pironon J, Canals M, Dubessy J, Walgenwitz F, Laplace-Builhe C (1998) Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy. Eur J Mineral 10:1143–1150

    CAS  Google Scholar 

  297. Pittman KJ, Robbins CM, Osborn JL, Stubblefield BA, Gilbert ES (2010) Agarose stabilization of fragile biofilms for quantitative structure analysis. J Microbiol Methods 81:101–107

    CAS  Google Scholar 

  298. Podda F, Zuddas P, Minacci A, Pepi M, Baldi F (2000) Heavy metal coprecipitation with hydrozincite [Zn5(Co3)2(OH)6] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 66:5092–5098

    CAS  Google Scholar 

  299. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092

    CAS  Google Scholar 

  300. Queck SY, Weitere M, Moreno AM, Rice SA, Kjelleberg S (2006) The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. Environ Microbiol 8:1017–1025

    Google Scholar 

  301. Ramos C, Mölbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    CAS  Google Scholar 

  302. Reiche M, Lu S, Cibiota V, Neu TR, Nietzsche S, Rösch P, Popp J, Küsel K (2013) Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow)and their microbial communities. Limnol Oceanogr 56:1386–1398

    Google Scholar 

  303. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3:271–282

    CAS  Google Scholar 

  304. Robarts RD, Zohary T (1993) Fact or fiction—bacterial growth rates and production as determined by [methyl-3H]-thymidine. Adv Microb Ecol 13:371–425

    CAS  Google Scholar 

  305. Rocheleau S, Greer CW, Lawrence JR, Cantin Ch, Laramee L, Guiot SR (1999) Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy. Appl Environ Microbiol 65:2222–2229

    CAS  Google Scholar 

  306. Roldan M, Clavero E, Castel S, Hernandez-Marine M (2004) Biofilms fluorescence and image analysis in hypogean monuments research. Archiv für Hydrobiologie Supplement 150:127–143

    Google Scholar 

  307. Roldan M, Oliva F, Gonzalez del Valle MA, Saiz-Jimenez C, Hernandez-Marine M (2006) Does green light influence the fluorescence properties and structure of phototrophic biofilms? Appl Environ Microbiol 72:3026–3031

    CAS  Google Scholar 

  308. Roldan M, Thomas F, Castel S, Quesada A, Hernandez-Marine M (2004) Noninvasive pigment identification in single cells from living phototrophic biofilms by confocal imaging spectrofluorometry. Appl Environ Microbiol 70:3745–3750

    CAS  Google Scholar 

  309. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107:2230–2234

    CAS  Google Scholar 

  310. Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    CAS  Google Scholar 

  311. Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024

    CAS  Google Scholar 

  312. Ruffing AM, Jones HDT (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199

    CAS  Google Scholar 

  313. Saarima C, Peltola M, Raulio M, Neu TR, Salkinoja-Salonen MS, Neubauer P (2006) Characterisation of adhesion threads of Deinococcus geothermalis as type IV pili. J Bacteriol 188:7016–7021

    Google Scholar 

  314. Sabater S (2000) Structure and architecture of a stromatolite from a mediterranean stream. Aquat Microb Ecol 21:161–168

    Google Scholar 

  315. Saint-Ruf C, Cordier C, Megret J, Matic I (2010) Reliable detection of dead microbial cells by using fluorescent hydrazides. Appl Environ Microbiol 76:1674–1678

    CAS  Google Scholar 

  316. Sanford BA, de Feijter AW, Wade MH, Thomas VL (1996) A dual fluorescence technique for visualization of Staphylococcus epidermidis biofilm using scanning confocal laser microscopy. J Ind Microbiol 16:48–56

    CAS  Google Scholar 

  317. Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

    CAS  Google Scholar 

  318. Savichtcheva O, Okayama N, Ito T, Okabe S (2005) Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteriodes spp. in drinking water. Biotechnol Bioeng 92:356–363

    CAS  Google Scholar 

  319. Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Annu Rev Microbiol 44:625–648

    CAS  Google Scholar 

  320. Schlapp G, Scavone P, Zunino P, H + Härtel S (2011) Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms - a quantitative confocal microscopy approach. J Microbiol Methods 87:234–240

    Google Scholar 

  321. Schloter M, Borlinghaus R, Bode W, Hartmann A (1993) Direct identification, and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy. J Microsc 171:173–177

    Google Scholar 

  322. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    CAS  Google Scholar 

  323. Schönhuber M, Zarda B, Eix S, Rippka R, Herdmann M, Ludwig W, Amann R (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    Google Scholar 

  324. Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    Google Scholar 

  325. Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer K-H (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62:4641–4647

    CAS  Google Scholar 

  326. Schramm A, Santegoeds C, Nielsen H, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, DeBeer D (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65:4189–4196

    CAS  Google Scholar 

  327. Sekar R, Pernthaler A, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935

    CAS  Google Scholar 

  328. Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S (2011) Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82:1015–1037

    CAS  Google Scholar 

  329. Servais P, Agogue H, Courties C, Joux F, Lebaron P (2001) Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments? FEMS Microbiol Ecol 35:171–179

    CAS  Google Scholar 

  330. Sharp MD, Pogliano K (1999) An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci 96:14553–14558

    CAS  Google Scholar 

  331. Shimomura Y, Ohno R, Kawai F, Kimbara K (2006) Method for assessment of viability and morphological changes of bacteria in the early stage of colony formation on a simulated natural environment. Appl Environ Microbiol 72:5037–5042

    CAS  Google Scholar 

  332. Sibarita J-B (2005) Deconvolution microscopy. Adv Biochem Eng Biotechnol 85:201–243

    Google Scholar 

  333. Sieracki ME, Reichenbach SE, Webb KL (1989) Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol 55:2762–2772

    CAS  Google Scholar 

  334. Singer G, Besemer K, Hochedlinger G, Chlup AK, Battin TJ (2011) Monomeric carbohydrate uptake and structure-function coupling in stream biofilms. Aquat Microb Ecol 62:71–83

    Google Scholar 

  335. Singer G, Besemer K, Hödl I, Chlup A-K, Hochedlinger G, Stadler P, Battin T (2006) Microcosm design and evaluation to study stream microbial biofilms. Limnol Oceanogr Methods 4:436–447

    Google Scholar 

  336. Sintes E, Herndl GJ (2006) Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Appl Environ Microbiol 72:7022–7028

    CAS  Google Scholar 

  337. Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91:321–328

    CAS  Google Scholar 

  338. Siu SC, Boushaba R, Topoyassakul V, Graham A, Choudhury S, Moss G, Titchener-Hooker NJ (2006) Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy. Biotechnol Bioeng 95:714–723

    CAS  Google Scholar 

  339. Snaidr J, Fuchs B, Wallner G, Wagner M, Schleifer K-H, Amann R (1999) Phylogeny and in situ identification of a morphologically conspicuous bacterium, Candidatus Magnospira bakii, present at very low frequency in activated sludge. Environ Microbiol 1:125–135

    CAS  Google Scholar 

  340. Sole A, Diestra E, Esteve I (2009) Confocal laser scanning microscopy image analysis for cyanobacterial biomass determined at microscale level in different microbial mats. Microb Ecol 57:649–656

    CAS  Google Scholar 

  341. Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4:169–182

    Google Scholar 

  342. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    CAS  Google Scholar 

  343. Staudt C, Horn H, Hempel DC, Neu TR (2003) Screening of lectins for staining lectin-specific glycoconjugates in the EPS of biofilms. In: Lens P, Moran AP, Mahony T, Stoodley P, O’Flaherty V (eds) Biofilms in medicine, industry and environmental technology. IWA Publishing, UK, pp 308–327

    Google Scholar 

  344. Staudt C, Horn H, Hempel DC, Neu TR (2004) Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 88:585–592

    CAS  Google Scholar 

  345. Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    CAS  Google Scholar 

  346. Steward GF, Azam F (1999) Bromodeoxyuridine as an alternative to 3H-thymidine for measuring bacterial productivity in aquatic samples. Aquat Microb Ecol 19:57–66

    Google Scholar 

  347. Stewart PS, Camper AK, Handran SD, Huang C-T, Warnecke M (1997) Spatial distribution and coexistance of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10

    Google Scholar 

  348. Stocks SM (2004) Mechanism and use of the commercially available viability stain BacLight. Cytometry Part A 61A:189–195

    CAS  Google Scholar 

  349. Stoderegger KE, Herndl GJ (2004) Dynamics in bacterial cell surface properties assessed by fluorescent stains and confocal laser scanning microscopy. Aquat Microb Ecol 36:29–40

    Google Scholar 

  350. Stopa PJ, Mastromanolis SA (2001) The use of blue-excitable nucleic-acid dyes for the detection of bacteria in well water using a simple field fluorometer and a flow cytometer. J Microbiol Methods 45:143–153

    CAS  Google Scholar 

  351. Strand BL, Mörch YA, Espevik T, Skjak-Brak G (2003) Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394

    CAS  Google Scholar 

  352. Strathmann M, Wingender J, Flemming H-C (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods 50:237–248

    CAS  Google Scholar 

  353. Sträuber H, Müller S (2010) Viability states of bacteria—specific mechanisms of selected probes. Cytometry Part A 77A:623–634

    Google Scholar 

  354. Stretton S, Techkarnjanaruk S, McLennan AM, Goodman AE (1998) Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl Environ Microbiol 64:2554–2559

    CAS  Google Scholar 

  355. Sunamura M, Maruyama A, Tsuji T, Kurane R (2003) Spectral imaging detection and counting of microbial cells in marine sediment. J Microbiol Methods 53:57–65

    Google Scholar 

  356. Swope KL, Flickinger MC (1996) The use of confocal scanning microscopy and other tools to characterize Escherichia coli in a high-cell-density synthetic biofilm. Biotechnol Bioeng 52:340–356

    CAS  Google Scholar 

  357. Sytsma J, Vroom JM, Grauw dCJ, Gerritsen HC (1998) Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J Microsc 191:39–51

    Google Scholar 

  358. Tada Y, Taniguchi A, Hamasaki K (2010) Phylotype-specific growth rates of marine bacteria measured by bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridisation. Aquat Microb Ecol 59:229–238

    Google Scholar 

  359. Teal TK, Lies DP, Wold BJ, Newman DK (2006) Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol 72:7324–7330

    CAS  Google Scholar 

  360. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    CAS  Google Scholar 

  361. Thill A, Wagner M, Bottero JY (1999) Confocal scanning laser microscopy as a tool for the determination of 3D floc structure. J Colloid Interface Sci 220:465–467

    CAS  Google Scholar 

  362. Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. Appl Environ Microbiol 190:5690–5698

    CAS  Google Scholar 

  363. Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47

    CAS  Google Scholar 

  364. Thurnheer T, Gmür R, Shapiro S, Guggenheim B (2003) Mass transport of macromolecules within an invitro model of supragingival plaque. Appl Environ Microbiol 69:1702–1709

    CAS  Google Scholar 

  365. Tobin JM, Onstott TC, DeFlaun MF, Colwell FS, Fredricksen J (1999) In situ imaging of microorganisms in geologic material. J Microbiol Methods 37:201–213

    CAS  Google Scholar 

  366. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489

    CAS  Google Scholar 

  367. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    Google Scholar 

  368. Tranvik LJ (1997) Rapid fluorometric assay of bacterial density in lake water and seawater. Limnol Oceanogr 42:1629–1634

    CAS  Google Scholar 

  369. Troussellier M, Courties C, Lebaron P, Servais P (1999) Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acid. FEMS Microbiol Ecol 29:319–330

    CAS  Google Scholar 

  370. Truong VK, Rundell S, Lapovok R, Estrin Y, Wang JY, Berndt CC, Barnes DG, Fluke CJ, Crawford RJ, Ivanova EP (2009) Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol 83:925–937

    CAS  Google Scholar 

  371. Tsai M-W, Lee D-J, Lai J-Y (2008) Mass transfer limit of fluorescent dyes during multicolor staining of aerobic granules. Appl Microbiol Biotechnol 78:907–913

    CAS  Google Scholar 

  372. Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41:1623–1634

    CAS  Google Scholar 

  373. Tujula NA, Holmström C, Mußmann M, Amann R, Kjelleberg S, Crocetti GR (2006) A CARD—FISH protocol for the identification and enumeration of epiphytic bacteria on marine algae. J Microbiol Methods 65:604–607

    CAS  Google Scholar 

  374. Ullrich S, Karrasch B, Hoppe H-G, Jeksulke K, Mehrens M (1996) Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride. Appl Environ Microbiol 62:4587–4593

    CAS  Google Scholar 

  375. Unge A, Jansson J (2001) Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb Ecol 41:290–300

    CAS  Google Scholar 

  376. Urbach E, Vergin KL, Giovannoni SJ (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl Environ Microbiol 65:1207–1213

    CAS  Google Scholar 

  377. Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, Fercikova I, Kubinova L, Palkova Z (2009) Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 11:1866–1877

    CAS  Google Scholar 

  378. Valm AM, Welch JLM, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci 108:4152–4157

    CAS  Google Scholar 

  379. Van Dalen G (2002) Determination of the water droplet size distribution of fats spreads using confocal scanning laser microscopy. J Microsc 208:116–133

    Google Scholar 

  380. van de Velde F, Weinbreck F, Edelman MW, van der Linden E, Tromp RH (2003) Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids Surf, B 31:159–168

    Google Scholar 

  381. Venugopalan VP, Kuehn M, Hausner M, Springael D, Wilderer PA, Wuertz S (2005) Architecture of a nascent Sphingomonas sp. biofilm under varied hydrodynamic conditions. Appl Environ Microbiol 71:2677–2686

    CAS  Google Scholar 

  382. Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res 46:761–771

    CAS  Google Scholar 

  383. Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868

    CAS  Google Scholar 

  384. Virta M, Lineri S, Kankaanpää P, Karp M, Peltonen K, Nuutila J, Lilius EM (1998) Determination of complement-mediated killing of bacteria by viability staining and bioluminescence. Appl Environ Microbiol 64:515–519

    CAS  Google Scholar 

  385. Vives-Rego J, Lopez-Amoros R, Comas J (1994) Flow cytometric narrow-angle light scatter and cell size during starvation of Escherichia coli in artificial seawater. Lett Appl Microbiol 19:374–376

    Google Scholar 

  386. Wagner M, Assmus B, Hartmann A, Hutzler P, Amann R (1994) In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy. J Microsc 176:181–187

    CAS  Google Scholar 

  387. Wagner M, Manz B, Volke F, Neu TR, Horn H (2010) Online monitoring of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy. Biotechnol Bioeng 107:172–181

    CAS  Google Scholar 

  388. Wagner M, Rath G, Amann R, Koops H-P, Schleifer K-H (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    CAS  Google Scholar 

  389. Waite AM, Safi KA, Hall JA, Nodder SD (2000) Mass sedimentation of picoplankton embedded in organic aggregates. Limnol Oceanogr 45:87–97

    Google Scholar 

  390. Walters SP, Field KG (2006) Persistence and growth of fecal Bacteroidales assessed by bromodeoxyuridine immunocapture. Appl Environ Microbiol 72:4532–4539

    CAS  Google Scholar 

  391. Ward DM (1989) Molecular probes for analysis of microbial communities. In: Characklis WG, Wilderer P (eds) Structure and function of biofilms. Wiley, New York, pp 145–163

    Google Scholar 

  392. Weinbauer MG, Beckmann C, Höfle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64:5000–5003

    CAS  Google Scholar 

  393. Weissbrodt DG, Neu TR, Kuhlicke U, Rappaz Y, Holliger C (2013) Assessment of bacterial and structural dynamics in aerobic granular biofilms. Front Microbiol 4:175

    Google Scholar 

  394. Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601

    CAS  Google Scholar 

  395. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6184–6188

    Google Scholar 

  396. Wey JK, Scherwass A, Norf H, Arndt H, Weitere M (2008) Effects of protozoan grazing within river biofilms under semi-natural conditions. Aquat Microb Ecol 52:283–296

    Google Scholar 

  397. Wey JK, Jürgens K, Weitere M (2012) Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Appl Environ Microbiol 78:2013–2024

    Google Scholar 

  398. Whitchurch CB, Tolker-Nielsen T, Ragas P, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    CAS  Google Scholar 

  399. White DC, Arrage AA, Nivens DE, Palmer RJ Jr, Rice JF, Sayler GS (1996) Biofilm ecology: on-line methods bring new insights into mic and microbial biofouling. Biofouling 10:3–16

    CAS  Google Scholar 

  400. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968

    CAS  Google Scholar 

  401. Wierzchos J, de los Rios A, Sancho LG, Ascaso C (2004) Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valley of Antarctica established by confocal and fluorecence microscopy. J Microsc 216:57–61

    Google Scholar 

  402. Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell–cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435

    CAS  Google Scholar 

  403. Wiggli M, Smallcombe A, Bachofen R (1999) Reflectance spectroscopy and laser confocal microscopy as tools in an ecophysiological study of microbial mats in an alpine bog pond. J Microbiol Methods 34:173–182

    Google Scholar 

  404. Wijeyekoon S, Mino T, Satoh H, Matsuo T (2000) Growth and novel structural features of tubular biofilms produced under different hydrodynamic conditions. Water Sci Technol 41:129–138

    CAS  Google Scholar 

  405. Williams SC, Hong Y, Danavall DCA, Howard-Jones MH, Gibson D, Frischer ME, Verity PG (1998) Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J Microbiol Methods 32:225–236

    CAS  Google Scholar 

  406. Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205

    CAS  Google Scholar 

  407. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1995) Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilisation by a biofilm community during starvation. Appl Environ Microbiol 61:152–158

    CAS  Google Scholar 

  408. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223

    CAS  Google Scholar 

  409. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446

    CAS  Google Scholar 

  410. Wouters K, Maes E, Spitz JA, Roeffaers MBJ, Wattiau P, Hofkens J, Springael D (2010) A non-invasive fluorescent staining procedure allows Confocal laser scanning microscopy based imaging of Mycobacterium in multispecies biofilms colonizing and degrading polycyclic aromatic hydrocarbons. J Microbiol Methods 83:317–325

    CAS  Google Scholar 

  411. Wrede C, Heller C, Reitner J, Hoppert M (2008) Correlative light/electron microscopy for the investigation of microbial mats from Black Sea cold seeps. J Microbiol Methods 73:85–91

    CAS  Google Scholar 

  412. Xavier JB, Schnell A, Wuertz S, Palmer R, White DC, Almeida JS (2001) Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. J Microbiol Methods 47:169–180

    CAS  Google Scholar 

  413. Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153:1318–1328

    CAS  Google Scholar 

  414. Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–1717

    CAS  Google Scholar 

  415. Yang X, Beyenal H, Harkin G, Lewandowski Z (2001) Evaluation of biofilm image thresholding methods. Water Res 35:1149–1158

    CAS  Google Scholar 

  416. Yerly J, Hu Y, Jones SM, Martinuzzi RJ (2007) A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images. J Microbiol Methods 70:424–433

    CAS  Google Scholar 

  417. Yin B, Scupham AJ, Bent E, Borneman J (2007) BrdU substrate utilisation assay. In: Kowalchuk GA, Bruijn FJd, Head IM, Akkermans ADL, Elsas JDv (eds) Molecular microbial ecology manual, vol 2. Kluwer Academic Publisher, Dordrecht, pp 1651–1660

    Google Scholar 

  418. Yoshida A, Kuramitsu HK (2002) Streptococcus mutans biofilm formation: utilization of a gtfB promotor-green fluorescent protein (PgtfB:gfp) construct to monitor development. Microbiology 148:3385–3394

    CAS  Google Scholar 

  419. Yu GH, Tang Z, Xu YC, Shen QR (2011) Multiple fluorescence labeling and two dimensional ftir-13C NMR heterospectral correlation spectroscopy to characterize extracellular polymeric substances in biofilms produced during composting. Environ Sci Technol 45:9224–9231

    CAS  Google Scholar 

  420. Zachow C, Fatehi J, Cardinale M, Tilcher R, Berg G (2010) Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol Ecol 74:124–135

    CAS  Google Scholar 

  421. Zhang Z-P, Adav SS, Show K-Y, Tay J-H, Liang DT, Lee D-J, Su A (2008) Characteristics of rapidly formed hydrogen-producing granules and biofilms. Biotechnol Bioeng 101:926–936

    CAS  Google Scholar 

  422. Zippel B, Neu TR (2012) Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl Environ Microbiol 77:505–516

    Google Scholar 

  423. Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Methods 70:336–345

    CAS  Google Scholar 

  424. Zoghlami K, Gomez-Gras D, Corbella M, Darragi F (2008) Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network. Microsc Res Tech 71:816–821

    Google Scholar 

  425. Zubkov MV, Fuchs BM, Eilers H, Burkill PH, Amann R (1999) Determination of total protein content of bacterial cells by SYPRO staining and flow cytometry. Appl Environ Microbiol 65:3251–3257

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Neu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neu, T.R., Lawrence, J.R. (2014). Investigation of Microbial Biofilm Structure by Laser Scanning Microscopy. In: Muffler, K., Ulber, R. (eds) Productive Biofilms. Advances in Biochemical Engineering/Biotechnology, vol 146. Springer, Cham. https://doi.org/10.1007/10_2014_272

Download citation

Publish with us

Policies and ethics