Biodiversity in Production of Antibiotics and Other Bioactive Compounds

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 147)


Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which are isolated from common terrestrial ecological units. However, this situation can be partly overcome by exploring rarely exploited ecological niches as the source of microbes, which reduces the chances of isolating compounds similar to existing ones. The use of modern and advanced isolation techniques, modification of the existing fermentation methods, genetic modifications to induce expression of silent genes, analytical tools for the detection and identification of new chemical entities, use of polymers in fermentation to enhance yield of fermented compounds, and so on, have all aided in enhancing the frequency of acquiring novel compounds. These compounds are representative of numerous classes of diverse compounds. Thus, compounds of microbial origin and their analogues undergoing clinical trials continue to demonstrate the importance of compounds from microbial sources in modern drug discovery.

Graphical Abstract


Actinomycetes Fungi Myxobacteria Biodiversity Antibiotics Antitumor Anticancer 



The authors wish to thank the management of Piramal Enterprises Limited for their encouragement in the dissemination of science, which deals with the discovery of new drugs for alleviating disease on this planet. Very special thanks to Dr. P. D. Mishra, Head, Natural Product Chemistry Division-Piramal Enterprises Limited for his help in providing the necessary structures of requested compounds.


  1. 1.
    Newman DJ, Cragg GM (2009) Microbial anti tumor drugs: natural products of microbial origin as anticancer agents. Curr Opin Investig Drugs 10(12):1280–1296Google Scholar
  2. 2.
    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16CrossRefGoogle Scholar
  3. 3.
    Alan HL, Qiong Y, Karen AL, Susan AF, William FB III, Roger JS, Anthony JT (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 73:444–4451Google Scholar
  4. 4.
    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sulli-van MB, Ed-wards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503CrossRefGoogle Scholar
  5. 5.
    Simon C, Daniel R (2009) Achievements and new knowledge unravelled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276CrossRefGoogle Scholar
  6. 6.
    Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531CrossRefGoogle Scholar
  7. 7.
    Cragg GM, Newman DJ (2013) Natural products: a continuous source of novel drug leads. Biochem Biophys Acta 1830(6):3670–3695CrossRefGoogle Scholar
  8. 8.
    Molinari G (2009) Natural products in drug discovery: present status and perspectives. Adv Exp Med Biol 655:13–27CrossRefGoogle Scholar
  9. 9.
    Raiijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424CrossRefGoogle Scholar
  10. 10.
    Jimeno J, Faircloth G, Fernández Sousa-Faro JM, Scheuer P, Rinehart K (2004) New marine derived anticancer therapeutics a journey from the sea to clinical trials. Mar Drugs 1:14–29CrossRefGoogle Scholar
  11. 11.
    Donadio S, Brandi L, Monsiardini P, Sosio M, Gualerzi CO (2007) Novel assays and novel strains-promising routes to new antibiotics? Expert Opin Drug Discov 2(6):789–798CrossRefGoogle Scholar
  12. 12.
    Dondero NC, Scotti T (1957) Excretion by streptomycetes of factors causing formation of aerial hyphae by old cultures. J Bacteriol 73:584–585Google Scholar
  13. 13.
    Waksman SA (1940) On the classification of Actinomycetes. J Bacteriol 39(5):549–558Google Scholar
  14. 14.
    Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492Google Scholar
  15. 15.
    Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813Google Scholar
  16. 16.
    Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, vol 8. The Williams and Wilkins Co., Baltimore, pp 747–842Google Scholar
  17. 17.
    Korn-Wendisch F, Kutzner HJ (1992) The family Streptomycetaceae. In: Balows A, Trooper HG, Dworkin M,Harder W, Schleifer KH (eds) The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, application, vol 1, 2nd edn. Springer, New York, pp 921–995Google Scholar
  18. 18.
  19. 19.
    Mahajan GB, Balachandran L (2012) Antibacterial agents from actinomycetes—a review. Front Biosci (Elite Ed) 4:240–253CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Ketaki B, Majumdar SK (1973) Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus for kanamycin production. Antimicrob Agents Chemother 4(1):6–10CrossRefGoogle Scholar
  22. 22.
    Gonzalez R, Isla L, Obregon AAM, Escalante L, Sanchez S (1995) Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. J Antibiot 48(6):479–839CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Kupferberg AB, Styles H, Singher HO, Selman AW (1950) The production of Streptocin by different strains of Streptomyces griseus. J Bacteriol 59(4):523–526Google Scholar
  25. 25.
    Waksman SA (1952) Streptomycin: background, isolation, properties and utilization, nobel lecture. Elsevier, Amsterdam, pp 370–388Google Scholar
  26. 26.
    Wongtavatchai J, McLean JG, Ramos F, Arnold D (2004) Chloramphenicol.…/9241660538_chloramphenicol.pdf
  27. 27.
    Steffensky M, Mühlenweg A, Wang ZX, Li SM, Heide L (2000) Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob Agents Chemother 44(5):1214–1222CrossRefGoogle Scholar
  28. 28.
    From the Centers for Disease Control and Prevention (2001) Update on spectinomycin availability in the United States. JAMA 286(11):1308–1309Google Scholar
  29. 29.
    Donald MR, Selman AW (1948) Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J Bacteriol 55(5):739–752Google Scholar
  30. 30.
    Bryan A, Dorothy CH, Viswamitra MA (1970) The structure of thiostrepton. Nature 225:233–235CrossRefGoogle Scholar
  31. 31.
    Spizek J, Rezanka T (2004) Lincomycin, cultivation of producing strains and biosynthesis. Appl Microbiol Biotechnol 63(5):510–519CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD (2011) NMR Structures of thiostrepton derivatives for characterization of the ribosomal binding site. Angew Chem Int Ed 50:3308–3312CrossRefGoogle Scholar
  34. 34.
    Farver DK, Hedge DD, Lee SC (2005) Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother 39(5):863–868CrossRefGoogle Scholar
  35. 35.
    Levine D (2006) Vancomycin: a history. Clin Infect Dis 42:5–12CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Waksman SA (1943) Production and activity of streptothricin. J Bacteriol 46(3):299–310Google Scholar
  38. 38.
    Vivian M, Coëffet-LeGal Marie-Françoise, Paul B, Renee B, Julia P, Andrew W, Steven M, Robert F, Ian P, Mario B, Christopher JS, Stephen KW, Richard HB (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster revision of peptide stereochemistry. Microbiology 151:1507–1523CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
    Luis MQ, Jos AS (1995) Biosynthesis of macrolide oleandomycin by Streptomyces antibioticus: purification and kinetic characterisation of an oleandomycin glucosyltransferase. J Biol Chem 270:18234–18239CrossRefGoogle Scholar
  42. 42.
    Anise L, Ahmed L, Choke B, Gerard L, Pierre G (1995) Glycerol effect on spiramycin production and valine catabolism in Streptomyces ambofaciens. Curr Microbiol 31(5):304–311CrossRefGoogle Scholar
  43. 43.
    Hafizur R, Brian A, Wilfrid JM, Peter CM, Derek JJ, David RA, Andrew MS, Michael S (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 8(3):498–518CrossRefGoogle Scholar
  44. 44.
    Ogawara H, Maeda K, Umezawa H (1968) Biosynthesis of Pyridomycin I. Biochem 7(9):3296–3302CrossRefGoogle Scholar
  45. 45.
    Mahajan GB, George SD, Ranadive P, Mishra PD, Sreekumar E, Panshikar RM, Sawant SN, Krishna S, Sivakumar M, Pari K, Thomas B, Patel Z, Vishwakarma RA, Naik CG, D’Souza L, Devi P (Piramal Life Sciences Limited, Mumbai and NIO, Goa) (2007) PM181104 and related antibacterial compounds, production, pharmaceutical compositions, and therapeutic use. PCT Int Appl WO 2007119201Google Scholar
  46. 46.
    Mahajan GB, Shanbhag P, Sivaramakrishnan H (2011) Poster entitled “Mode of action of antibiotic PM181104 on bacteria” at 1st Global Forum on Bacterial Infections: balancing treatment access and antibiotic resistance, organised by Center for Disease Dynamics, Economics and Policy, USA at New DelhiGoogle Scholar
  47. 47.
  48. 48.
    Waksman SA, Geiger WB, Bugie E (1947) Micromonosporin, an antibiotic from a little known group of microorganisms. J Bacteriol 53(3):355–357Google Scholar
  49. 49.
    Biffi G, Boretti G, Di Marco A, Pennella P (1954, September issue) Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl Microbiol 2:288–293Google Scholar
  50. 50.
    Zygmunt WA (1961) Oxytetracycline formation by Streptomyces rimosus in chemically defined media. Appl Microbiol 9(6):502–507Google Scholar
  51. 51.
    Hiroshi S, Hideo O, Toshiaki H, Ikutoshi M, Kunio A, Mikio S (1982) Thiolactomycin, a new antibiotic. J Antibiot 35(4):396–400CrossRefGoogle Scholar
  52. 52.
    Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine-derived bacterium. J Nat Prod 66:1291–1293CrossRefGoogle Scholar
  53. 53.
    Lucas X, Senger C, Erxleben A, Grüning BA, Döring K, Mosch J, Flemming S, Günther S (2013) StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucl Acids Res 41(Database Issue):D1130–D1136Google Scholar
  54. 54.
    Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vincente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38(3):375–389CrossRefGoogle Scholar
  55. 55.
    Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M (2010) Novel anti-infective compounds from marine bacteria. Mar Drugs 5(3):498–518CrossRefGoogle Scholar
  56. 56.
    Hopp DC, Milanowski DJ, Rhea J, Jacobsen D, Rabenstein J, Smith C, Romari K, Clarke M, Francis L, Irigoyen M, Luche M, Carr GJ, Mocek U (2008) Citreamicins with potent gram-positive activity. J Nat Prod 71(12):2032–2035CrossRefGoogle Scholar
  57. 57.
    Pei G, Dai H, Ren B, Liu X, Zhang L (2010) Exploiting bioactive Enediynes from marine microbe based on activity and gene screening. Wei Sheng Wu Xue Bao 50(4):472–477Google Scholar
  58. 58.
    Yunt Z, Reinhardt K, Li A, Engeser M, Dahse HM, Gütschow M, Bruhn T, Bringmann G, Piel J (2009) Cleavage of 4 carbon- carbon bonds during biosynthesis of griseorhod in a spiroketal pharmacophore. J Am Chem Soc 131(6):2297–2305CrossRefGoogle Scholar
  59. 59.
    Singh SB, Zink DL, Dorso K, Motyl M, Salazar O, Basilio A, Vicente F, Byrne KM, Ha S, Genilloud O (2009) Isolation, structure and anti-bacterial activities of lucensimycins D-G, discovered from Streptomyces lucencis MA7349 using an antisense strategy. J Nat Prod 72(3):345–352CrossRefGoogle Scholar
  60. 60.
    Cai P, Kong F, Fink P, Ruppen ME, Williamson RT, Keiko T (2007) Polyene antibiotics from Streptomyces mediocidicus. J Nat Prod 70(2):215–219CrossRefGoogle Scholar
  61. 61.
    Nicolaou KC, Chen JS, Dalby SM (2009) From nature to the laboratory and into the clinic. Bioorg Med Chem 17(6):2290–2303CrossRefGoogle Scholar
  62. 62.
    Xi Y, Chen R, Si S, Sun C, Xu H (2007) A new nucleosidyl peptide antibiotic, sansanmycin. J Antibiot (Tokyo) 60(2):158–161CrossRefGoogle Scholar
  63. 63.
    Jose PA, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current antimicrobial discovery. Front Microbiol 4(240):1–3Google Scholar
  64. 64.
    Islam VI, Saravanan S, Ignacimuthu S (2014) Microbicidal and anti-inflammatory effects of Actinomadura spadix (EHA-2) active metabolites from Himalayan soils, India. World J Microbiol Biotechnol 30(1):9–18CrossRefGoogle Scholar
  65. 65.
    Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Fact 10:82CrossRefGoogle Scholar
  66. 66.
    Jeong H, Sim YM, Kim HJ, Lee DW, Lim SK, Lee SJ (2013) Genome sequence of the vancomycin producing Amycolatopsis orientalis subsp. orientalis strain KCTC 9412T. Genome Announc 1(3):pii e00408–13Google Scholar
  67. 67.
    Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Röttger S, Altmann KH, Cole ST (2012) Towards a new tuberculosis drug: pyridomycin—nature’s isoniazid. EMBO Mol Med 4:1032–1042CrossRefGoogle Scholar
  68. 68.
    Grappel SF, Giovenella AJ, Phillips L, Pitkin DH, Nisbet LJ (1985) Antimicrobial activity of aricidins, novel glycopeptides antibiotics with high and prolonged levels in blood. Antimicrob Agents Chemother 28(5):660–662CrossRefGoogle Scholar
  69. 69.
    Evans PA, Huang MH, Lawler MJ, Maroto S (2012) Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization. Nat Chem 4:680–684CrossRefGoogle Scholar
  70. 70.
    Cheng YB, Jensen PR, Fenical W (2013) Cytotoxic and antimicrobial napyradiomycins from two marine-derived streptomyces strains. Eur J Org Chem 18:3751–3757CrossRefGoogle Scholar
  71. 71.
    Thorsten B, Doreen F, John V, Sonja V, Christine K, Sebastian T, Marc M, Brigitte K, Wagner-D Irene, Rolf D, Meinhard S (2012) Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J 6:1260–1272CrossRefGoogle Scholar
  72. 72.
    Wenzel SC, Muller R (2009) Myxobacteria-microbial factories for the production of bioactive secondary metabolites. Mol BioSyst 5:567–574CrossRefGoogle Scholar
  73. 73.
    Reichenbach H, Gerth K, Irschik H, Brigitte K, Gerhard H (1988) Myxobacteria: a source of new antibiotics. Trends Biotechnol 6(6):115–121CrossRefGoogle Scholar
  74. 74.
    Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11:52CrossRefGoogle Scholar
  75. 75.
    Xiao Y, Wei X, Ebright R, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193(18):4626–4683CrossRefGoogle Scholar
  76. 76.
    Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2136CrossRefGoogle Scholar
  77. 77.
    Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70(6):1060–1063CrossRefGoogle Scholar
  78. 78.
    Menche D, Arikan F, Perlova O, Horstmann N, Ahlbrecht W, Wenzel SC, Jansen R, Irschik H, Müller R (2008) Stereochemical determination and complex biosynthetic assembly of etnangien, a highly potent RNA polymerase inhibitor from the myxobacterium Sorangium cellulosum. J Am Chem Soc 130(43):14234–14243CrossRefGoogle Scholar
  79. 79.
    Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G, Wright PR, Menche D, Schäberle TF, König GM (2013) Salimabromide: unexpected chemistry from the obligate marine Myxobacterium Enhygromxya salina. Chemistry 19(28):9319–9324CrossRefGoogle Scholar
  80. 80.
    Iizuka T, Fudou R, Jojima Y, Ogawa S, Yamanaka S, Inukai Y, Ojika M (2006) Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J Antibiot (Tokyo) 59(7):385–391CrossRefGoogle Scholar
  81. 81.
    Horstmann N, Essig S, Bockelmann S, Wieczorek H, Huss M, Sasse F, Menche D (2011) Arc-hazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra. J Nat Prod 74(5):1100–1105CrossRefGoogle Scholar
  82. 82.
    Menche D, Hassfeld J, Steinmetz H, Huss M, Wieczorek H, Sasse F (2007) The first hydrox-ylated archazolid from the myxobacterium Cystobacter violaceus: isolation, structural elucidation and V-ATPase inhibition. J Antibiot (Tokyo) 60(5):328–331CrossRefGoogle Scholar
  83. 83.
    Kunze B, Böhlendorf B, Reichenbach H, Höfle G (2008) Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J Antibiot (Tokyo) 61(1):18–26CrossRefGoogle Scholar
  84. 84.
    Desmond E, Gribaldo S (2009) Phylogenomics of sterol synthesis: insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol Evol 1:364–381CrossRefGoogle Scholar
  85. 85.
    Jansen R, Kunze B, Reichenbach H, Höfle G (2003) Chondrochloren A and B, new β-amino styrenes from Chondromyces crocatus (Myxobacteria). Eur J Org Chem 14:2684–2689CrossRefGoogle Scholar
  86. 86.
    Rachid S, Scharfe M, Blöcker H, Weissman KJ, Müller R (2009) Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem Biol 16(1):70–81CrossRefGoogle Scholar
  87. 87.
    Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S (2003) Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol 26(2):189–196CrossRefGoogle Scholar
  88. 88.
    Irma ESM, Gómez LJV, Rivas GG, Sánchez NEA (2012) Bioactive compounds from bacteria associated to marine algae. In: Sammour R (ed) Biotechnology—molecular studies and novel applications for improved quality of human life, pp 25–44Google Scholar
  89. 89.
    Avendaño-Herrera R, Lody M, Riquelme CE (2005) Producción de substancias inhibitorias en-tre bacterias de biopelículas en substratos marinos. Revista Biología Marina y Oceano-grafía 40(2):117–125Google Scholar
  90. 90.
    Ojika M, Inukai Y, Kito Y, Hirata M, Iizuka T, Fudou R (2008) Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem Asian J 3(1):126–133CrossRefGoogle Scholar
  91. 91.
    Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  92. 92.
    Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate re-visited. Mycol Res 105:1422–1431CrossRefGoogle Scholar
  93. 93.
  94. 94.
    Cotter PD, Hill C, Ross RP (2005) Bacterial lantibiotics: strategies to improve the therapeutic potential. Curr Protein Pept Sci 6(1):61–75CrossRefGoogle Scholar
  95. 95.
    Gray AI, Igoli JO, Edradebel R (2012) Natural products isolation in modern drug discovery programs. In: Sarkar SD, Nahar L (eds) Natural product isolation, pp 515–534Google Scholar
  96. 96.
    Yoon SY, Eo SK, Kim YS, Lee CK, Kan SS (1994) Antimicrobial activity of Ganoderma lucidum extract alone or in combination with some antibiotics. Arch Pharm Res 17(6):438–442CrossRefGoogle Scholar
  97. 97.
    Jung M, Liermann JC, OPatz T, Erkel G (2011) Ganodermycin, a novel inhibitor of CXCL 10 expression from Ganoderma applanatum. J Antibiot (Tokyo) 64(10):683–686CrossRefGoogle Scholar
  98. 98.
    Sun X, Zhou X, Cai M, Zhou J, Zhang Y (2010) Significant stimulation of o-phthalic acid in biosynthesis of Aspergiolide A by a marine fungus Aspergillus glaucus. Bioresour Technol 101(10):3609–3616CrossRefGoogle Scholar
  99. 99.
    Jaturapat A, Isaka M, Hywel-Jones NL, Lertwerawat Y, Kamchonwongpaisan S, Kirtikara K, Tan-ticharoen M, Thebtaranonth Y (2001) Bioxanthracenes from the insect pathogenic fungus. Cordyceps pseu-domilitaris BCC 1620. I: taxonomy, fermentation, isolation and antimalarial activity. J Antibiot (Tokyo) 54(1):29–35CrossRefGoogle Scholar
  100. 100.
    Jiao RH, Xu S, Liu JY, Ge HM, Ding H, Xu C, Zhu HL, Tan RX (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp IFB E015. Org Lett 8(25):5709–5712CrossRefGoogle Scholar
  101. 101.
    Kerzaon I, Pouchus YF, Monteau F, Le Bizec B, Nourrisson MR, Biard JF, Grovel O (2009) Structural investigation and elucidation of new communesins from a marine derived Penicillium expansum link by liquid chromatography/electrospray ionization mass spectroscopy. Rapid Commun Mass Spectrom 23(24):3928–3938CrossRefGoogle Scholar
  102. 102.
    Piplani H, Rana C, Vaish V, Vaiphei K (1830) Sanyal SN (2013) Dolastatin, along with Celecoxib, stimulates apoptosis by a mechanism involving oxidative stress, membrane potential change and P13 K/AKT pathway down regulation. Biochim Biophys Acta 11:5142–5156Google Scholar
  103. 103.
    Dong JY, He HP, Shen YM, Zhang KQ (2005) Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J Nat Prod 68(10):1510–1513CrossRefGoogle Scholar
  104. 104.
    Nasini G, Bava A, Fronza G, Giannini G (2007) Microbial transformation of spirolaxine, a bioactive undecaketide fungal metabolite from the basidiomycete Sporotrichum laxum. Chem Biodivers 4(12):2772–2779CrossRefGoogle Scholar
  105. 105.
    Kanai Y, Ishiyama D, Senda H, Iwatani W, Takahashi H, Konno H, Tokumasu S, Kanazawa S (2000) Novel human topoisomerase I inhibitors A, B, C and D. I: producing strain, fermentation, isolation, physico chemical properties and biological activity. J Antibiot (Tokyo) 53(9):863–872CrossRefGoogle Scholar
  106. 106.
    Abdessamad D, Amal HA, Wen HL, Peter P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563CrossRefGoogle Scholar
  107. 107.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):26CrossRefGoogle Scholar
  108. 108.
    Wang W, Zhu T, Tao H, Lu Z, Fang Y, Gu Q, Zhu W (2007) Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J Antibiot. (Tokyo) 60(10):603–607CrossRefGoogle Scholar
  109. 109.
    Ishibashi M (2007) Study on myxomycetes as a new source of bioactive natural products. Yakugaku Zasshi 127(9):1369–1381CrossRefGoogle Scholar
  110. 110.
    Dembitsky VM, Rezanka T, Spízek J, Hanus LO (2005) Secondary metabolites of slime molds (myxomycetes). Phytochemistry 66(7):747–769CrossRefGoogle Scholar
  111. 111.
    Mitsunori T, Harold WK (2013) Aquatic myxomycetes. FUNGI 6(3):18–25Google Scholar
  112. 112.
    Wang WL, Zhu TJ, Tao HW, Lu ZY, Fang YC, Gu QQ, Zhu WM (2007) Three novel, structurally unique spirocyclic alkaloids from the halotolerant B 17 fungal strain of Aspergillus variecolor. Chem Biodivers 4(12):2913–2919CrossRefGoogle Scholar
  113. 113.
    Schroeder HR, Mallette MF (1973) Isolation and purification of antibiotic material from Physarum gyrosum. Antimicrob Agents Chemother 4(2):160–166CrossRefGoogle Scholar
  114. 114.
  115. 115.
    Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21(6):780–786CrossRefGoogle Scholar
  116. 116.
  117. 117.
  118. 118.
  119. 119.
    Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19/20):894–901CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Piramal Enterprises LimitedMumbaiIndia
  2. 2.Karmic Lifesciences Inc.MumbaiIndia

Personalised recommendations