Skip to main content

Bioremediation via in situ Microbial Degradation of Organic Pollutants

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 142))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BSS:

Benzyl succinate synthase

BTEX:

Benzene-toluene-ethylbenzene-xylenes

cDCE:

cis-Dichloroethylene

CHC:

Chlorinated hydrocarbons

CSIA:

Compound-specific isotope analysis

2D-CSIA:

Two-dimensional compound specific isotope analysis

DNAPL:

Dense nonaqueous phase liquids

EEA:

European Environment Agency

ETBE:

Ethyl-tert-butyl ether

ENA:

Enhanced natural attenuation

HRC:

Hydrogen releasing compounds

IRMS:

Isotope ratio mass spectrometry

LC-IRMS:

Liquid chromatography-isotope ratio mass spectrometry

mg/L:

Milligram per liter

MNA:

Monitored natural attenuation

MTBE:

Methyl-tert-butyl ether

NAPL:

Nonaqueous phase liquids

NRC:

National Research Council

OSWER:

Office of Solid Waste and Emergency Response

PAHs:

Polycyclic aromatic hydrocarbons

PCE:

Tetrachloroethylene or perchloroethylene

POPs:

Persistent organic pollutants

TCE:

Trichloroethylene

USA:

United States of America

US-EPA:

U.S. Environmental Protection Agency

References

  1. Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583

    Article  CAS  Google Scholar 

  2. Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, California, USA

    Google Scholar 

  3. Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI (2012) Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol 46:2508–2522

    Article  CAS  Google Scholar 

  4. Anderson RT, Lovley DR (2000) Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ Sci Technol 34:2261–2266

    Article  CAS  Google Scholar 

  5. Aronson D, Howard PH (1997) Anaerobic biodegradation of organic chemicals in groundwater: a summary of field and laboratory studies. Final Report. Environmental Science Center. Syracus Research Corporation, TR-97-02237

    Google Scholar 

  6. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  7. Balcke GU, Paschke H, Vogt C, Schirmer M (2009) Pulsed gas injection: a minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater. Environ Pollut 157:2011–2018

    Article  CAS  Google Scholar 

  8. Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235

    Article  CAS  Google Scholar 

  9. Boll M, Fuchs G (2005) Unusual reactions involved in anaerobic metabolism of phenolic compounds. Biol Chem 386:989–997

    CAS  Google Scholar 

  10. Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852

    Article  CAS  Google Scholar 

  11. Boxall AB, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) When synthetic chemicals degrade in the environment. Environ Sci Technol 38:368A–375A

    Article  CAS  Google Scholar 

  12. Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360

    Article  CAS  Google Scholar 

  13. Corseuil HX, Monier AL, Fernandes M, Schneider MR, Nunes CC, do Rosario M, Alvarez PJ (2011) BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol 45:3422–3429

    Article  CAS  Google Scholar 

  14. Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35:1663–1670

    Article  CAS  Google Scholar 

  15. da Silva ML, Gomez DE, Alvarez PJ (2013) Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate. J Contam Hydrol 146:1–7

    Article  Google Scholar 

  16. Davidova IA, Gieg LM, Duncan KE, Suflita JM (2007) Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. ISME J 1:436–442

    Article  CAS  Google Scholar 

  17. Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe–a critical evaluation. Sci Total Environ 426:393–405

    Article  CAS  Google Scholar 

  18. EEA, European Environment Agency (2007) Progress in management of contaminated sites (CSI 015). http://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/. Accessed 11 June 2013

  19. EEA, European Environment Agency (2008) Overview of contaminants affecting soil and groundwater in Europe. http://www.eea.europa.eu/data-and-maps/figures/overview-of-contaminants-affecting-soil-and-groundwater-in-europe. Accessed 13 June 2013

  20. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  Google Scholar 

  21. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916

    Article  CAS  Google Scholar 

  22. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403:2471–2491

    Article  CAS  Google Scholar 

  23. Ellis DE, Lutz EJ, Odom JM (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260

    Article  CAS  Google Scholar 

  24. Escher BI, Fenner K (2011) Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 45:3835–3847

    Article  CAS  Google Scholar 

  25. European Commission (2008) Priority substances and certain other pollutants according to annex II of directive 2008/105/EC. http://ec.europa.eu/environment/water/water-framework/prioritysubstances.htm.11.06.2013. Accessed 13 June 2013

  26. Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758

    Article  CAS  Google Scholar 

  27. Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Google Scholar 

  28. Fetzner S (2012) Ring-cleaving dioxygenases with a cupin fold. Appl Environ Microbiol 78:2505–2514

    Article  CAS  Google Scholar 

  29. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow HH (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252

    Article  CAS  Google Scholar 

  30. Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41:3689–3696

    Article  CAS  Google Scholar 

  31. Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SA, Stams AJ, Schlömann M, Richnow HH, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363

    Article  CAS  Google Scholar 

  32. Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Commun Mass Spectrom 23:2439–2447

    Article  CAS  Google Scholar 

  33. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  Google Scholar 

  34. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    Article  CAS  Google Scholar 

  35. Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631

    Article  CAS  Google Scholar 

  36. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  Google Scholar 

  37. Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 1:188–194

    Article  Google Scholar 

  38. Hites RA (2011) Dioxins: an overview and history. Environ Sci Technol 45:16–20

    Article  CAS  Google Scholar 

  39. Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Anal Chem 30:618–627

    Article  CAS  Google Scholar 

  40. Hunkeler D, Morasch B (2010) Isotope fractionation during transformation processes. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton, USA

    Google Scholar 

  41. Illmann WA, Alvarez PJ (2009) Performance assessment of bioremediation and natural attenuation. Crit Rev Env Sci Tech 39:209–270

    Article  Google Scholar 

  42. Jiménez N, Morris BEL, Cai M, Yao J, Gründger F, Richnow HH, Krüger M (2012) Evidence for in situ methanogenic oil degradation in the Dagang oil field. Org Geochem 52:44–54

    Article  Google Scholar 

  43. Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542

    Article  CAS  Google Scholar 

  44. Johnson SJ, Woolhouse KJ, Prommer H, Barry DA, Christofi N (2003) Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Eng Geol 70:343–349

    Article  Google Scholar 

  45. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  Google Scholar 

  46. Jorgenson JL (2001) Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect 109:113–139

    Article  CAS  Google Scholar 

  47. Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78:488–496

    Article  CAS  Google Scholar 

  48. Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851–873

    Article  CAS  Google Scholar 

  49. Kniemeyer O, Heider J (2001) Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J Biol Chem 276:21381–21386

    Article  CAS  Google Scholar 

  50. Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768

    Article  CAS  Google Scholar 

  51. Kümmel S, Kuntze K, Vogt C, Boll M, Heider J, Richnow HH (2013) Evidence for benzylsuccinate synthase subtypes by stable isotope tools. J Bacteriol 195:4660–4667

    Google Scholar 

  52. LABO—Bund/Länder Arbeitsgemeinschaft Bodenschutz, Ständiger Ausschuss Altlasten (2012) Bericht des ALA über “Bundesweite Kennzahlen zur Altlastenstatistik” https://www.labo-deutschland.de/Veroeffentlichungen.html. Accessed 11 June 2013

  53. Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197

    Article  CAS  Google Scholar 

  54. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  Google Scholar 

  55. Lee MD, Thomas JM, Borden RC, Bedient PB, Ward CH, Wilson JT (1988) Biorestoration of aquifers contaminated with organic compounds. CRC Crit Rev Environ Control 18:29–87

    Article  CAS  Google Scholar 

  56. Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schaegger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628

    Article  CAS  Google Scholar 

  57. Lopes Ferreira N, Malandain C, Fayolle-Guichard F (2006) Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72:252–262

    Article  CAS  Google Scholar 

  58. Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol 17:274–284

    Article  Google Scholar 

  59. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    Article  CAS  Google Scholar 

  60. Maphosa F, Lieten SH, Dinkla I, Stams AJ, Smidt H, Fennell DE (2012) Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites. Front Microbiol 3:351. doi:10.3389/fmicb.2012.00351

    Article  Google Scholar 

  61. Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475

    CAS  Google Scholar 

  62. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255

    Article  CAS  Google Scholar 

  63. Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatic hydrocarbons. Curr Opin Biotechnol 22:406–414

    Article  CAS  Google Scholar 

  64. Michels J, Stuhrmann M, Frey C, Koschitzky HP (2008) Handlungsempfehlungen mit Methodensammlung— Natürliche Schadstoffminderung bei der Sanierung von Altlasten. DECHEMA e.V., Frankfurt, Germany http://www.natural-attenuation.de/media/document/15_6948kora-handlungsempfehlungen.pdf. Accessed 30 July 2013

  65. Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774

    Article  CAS  Google Scholar 

  66. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    Article  CAS  Google Scholar 

  67. National Research Council (1993) In situ bioremediation: when does it work? National Academies Press, Washington, USA

    Google Scholar 

  68. National Research Council (2000) Natural attenuation for groundwater remediation. National Academies Press, Washington, USA

    Google Scholar 

  69. Nijenhuis I, Schmidt M, Pellegatti E, Paramatti E, Richnow HH, Gargini A (2013) A combined stable isotope approach for source apportionment of chlorinated ethenes and related degradation processes at a complex multi-contamination event and plume field site. J Cont Hydrol (in press)

    Google Scholar 

  70. Novarino G, Warren A, Butler H, Lambourne G, Boxshall A, Bateman J, Kinner NE, Harvey RW, Mosse RA, Teltsch B (1997) Protistan communities in aquifers: a review. FEMS Microbiol Rev 20:261–275

    Article  CAS  Google Scholar 

  71. Philipp B, Schink B (2012) Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environ Microbiol Rep 4:469–478

    Article  CAS  Google Scholar 

  72. Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77:238–247

    Article  CAS  Google Scholar 

  73. Ramos DT, da Silva ML, Chiaranda HS, Alvarez PJ, Corseuil HX (2013) Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation 24:333–341

    Article  CAS  Google Scholar 

  74. Rico-Martínez R, Snell TW, Shearer TL (2013) Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A(®) to the Brachionus plicatilis species complex (Rotifera). Environ Pollut 173:5–10

    Article  Google Scholar 

  75. Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke FD, Richnow HH (2012) Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. Environ Sci Technol 46:4757–4766

    Article  CAS  Google Scholar 

  76. Safinowski M, Griebler C, Meckenstock RU (2006) Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies. Environ Sci Technol 40:4165–4173

    Article  CAS  Google Scholar 

  77. Schiedek T, Grathwohl P, Teutsch G (1997) Literature study regarding Natural Attenuation/biodegradation of pollutants in groundwater. University of Tübingen, Chair of Applied Geology

    Google Scholar 

  78. Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  CAS  Google Scholar 

  79. Schmidt TC, Jochmann MA (2012) Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. Annu Rev Anal Chem 5:133–155

    Article  CAS  Google Scholar 

  80. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300

    Article  CAS  Google Scholar 

  81. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  82. Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91

    Article  CAS  Google Scholar 

  83. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253

    Article  CAS  Google Scholar 

  84. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

    Article  CAS  Google Scholar 

  85. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  Google Scholar 

  86. Stelzer N, Buning C, Pfeifer F, Dohrmann AB, Tebbe CC, Nijenhuis I, Kästner M, Richnow HH (2006) In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Org Geochem 37:1394–1410

    Article  CAS  Google Scholar 

  87. Stockholm Convention (2013) The 12 Initial POPs, http://chm.pops.int/Convention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx; The New POPs, http://chm.pops.int/Convention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx. Accessed 14 June 2013

  88. Sun GD, Xu Y, Jin JH, Zhong ZP, Liu Y, Luo M, Liu ZP (2012) Pilot scale ex-situ bioremediation of heavily PAHs-contaminated soil by indigenous microorganisms and bioaugmentation by a PAHs-degrading and bioemulsifier-producing strain. J Hazard Mater 233–234:72–78

    Article  Google Scholar 

  89. Taş N, van Eekert MH, de Vos WM, Smidt H (2010) The little bacteria that can—diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb Biotechnol 3:389–402

    Google Scholar 

  90. Thullner M, Fischer A, Richnow HH, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 97:441–452

    Article  CAS  Google Scholar 

  91. Tyagi M, da Fonseca MM, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  Google Scholar 

  92. University of Minnesota (2013) Biocatalysis/Biodegradation database. http://umbbd.ethz.ch/tol/tdo.html. Accessed 27 June 2013

  93. United States Environmental Protection Agency (US-EPA) (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites—directive OSWER 9200, pp 4–17

    Google Scholar 

  94. United States Environmental Protection Agency (US-EPA) (2004) Cleaning up the nation’s waste sites: markets and technology trends. Office of Solid Waste and Emergency Response, Washington DC

    Google Scholar 

  95. United States Environmental Protection Agency (US-EPA) (2006) Evaluation of the role of Dehalococcoides in the natural attenuation of chlorinated ethylenes in ground water. Office of Research and Development, Ada, Oklahoma

    Google Scholar 

  96. United States Environmental Protection Agency (US-EPA) (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Office of Research and Development, Ada, Oklahoma

    Google Scholar 

  97. Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267

    Article  CAS  Google Scholar 

  98. van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42:2457–2463

    Article  Google Scholar 

  99. van Breukelen BM (2007) Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ Sci Technol 41:4004–4010

    Article  Google Scholar 

  100. van Breukelen BM (2007) Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system rayleigh equation. Environ Sci Technol 41:4980–4985

    Article  Google Scholar 

  101. van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193

    Google Scholar 

  102. Vogt C, Alfreider A, Griebler C (2003) Grundwasserverschmutzung und—sanierung. In: Griebler C, Mößlacher F (eds) Grundwasser-Ökologie. Eine Einführung. Uni-Taschenbücher (UTB) GmbH, vol 2111, pp 367–408

    Google Scholar 

  103. Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microb Biotechnol 4:710–724

    Article  Google Scholar 

  104. Vogt C, Cyrus E, Herklotz I, Herrmann S, Bahr A, Richnow HH, Fischer A (2008) Evaluation of aerobic and anaerobic toluene degradation pathways by two dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800

    Article  CAS  Google Scholar 

  105. Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9:359–385

    Article  CAS  Google Scholar 

  106. Weiner JM, Lovley DR (1998) Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl Environ Microbiol 64:775–778

    CAS  Google Scholar 

  107. Weissenfels WD, Klewer HJ, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    Article  CAS  Google Scholar 

  108. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  Google Scholar 

  109. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  Google Scholar 

  110. Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogt, C., Richnow, H.H. (2013). Bioremediation via in situ Microbial Degradation of Organic Pollutants. In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology II. Advances in Biochemical Engineering/Biotechnology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_266

Download citation

Publish with us

Policies and ethics