Skip to main content

Novel Materials for Biofilm Reactors and their Characterization

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 146))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anselme K et al (2010) The interaction of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater 6:3824–3846

    Article  CAS  Google Scholar 

  2. Demirci A et al (2007) Application of biofilm reactors for production of value-added products by microbial fermentation. Biofilms in the food environment. Blackwell Publishing Ltd, Oxford, pp 167–189

    Google Scholar 

  3. Bazaka K et al (2011) Do Bacteria Differentiate Between Degrees of Nanoscale Surface Roughness? Biotechnol J 6(9):1103–1114

    Article  CAS  Google Scholar 

  4. Diaz C et al (2008) Influence of Surface Sub-Micropattern on the Adhesion of Pioneer Bacteria on Metals. Artif Organ 32(4):292–298

    Article  Google Scholar 

  5. Diaz C et al (2010) Organization of Pseudomans fluorescens on Chemically Different Nano/Microstrucutred Surfaces. Appl Mater Interfaces 2(9):2530–2539

    Article  CAS  Google Scholar 

  6. Hochbaum AI et al (2010) Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett 10:3717–3721

    Article  CAS  Google Scholar 

  7. Bhushan B (2010) Springer Handbook of Nanotechnology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  8. Anselme K et al (2010) Cell/Material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol 24:831–852

    Article  CAS  Google Scholar 

  9. Binnig G et al (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  10. Lower SK et al (2000) Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy. Geochim Cosmochim Acta 64(18):3133–3139

    Article  CAS  Google Scholar 

  11. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  12. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117

    Article  CAS  Google Scholar 

  13. Vogler EA (1999) Water and the acute biological response to surfaces. J Biomater Sci Polym Ed 10:1015–1045

    Article  CAS  Google Scholar 

  14. Berg JM et al (1994) Three-component Langmuir-Blodgett film with a controllable degree of polarity. Langmuir 10:1225–1234

    Article  CAS  Google Scholar 

  15. Marmur A et al (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20:3517–3519

    Article  CAS  Google Scholar 

  16. Cheng YT et al (2005) Is the lotus leaf superhydrophobic? Appl Phys Lett 86:144101

    Article  Google Scholar 

  17. Martines E et al (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103

    Article  CAS  Google Scholar 

  18. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  19. Cassie ABD et al (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  20. Müller C et al (2010) Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability and isoelectric point. Langmuir 26(6):4136–4141

    Article  Google Scholar 

  21. Finlay JA et al (2010) Barnacle settlement and the adhesion of protein and diatom microfouling to xergogel films with varying surface energy and water wettability. Biofouling: J Bioadhesion Biofilm Res 26(6):657–666

    Article  CAS  Google Scholar 

  22. Dûfrene YF (2003) Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6(3):317–323

    Article  Google Scholar 

  23. Mazumder S et al (2010) Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling: J Bioadhesion Biofilm Res 26(3):333–339

    Article  Google Scholar 

  24. Teixeira P et al (1999) Influence of surface characteristics on the adhesion of Alcaligenes Denitrificans to polymeric substrates. J Adhes Sci Technol 13(11):1287–1294

    Article  CAS  Google Scholar 

  25. Pereira MA et al (2000) Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium. J Ind Microbiol Biotechnol 24(3):181–186

    Article  CAS  Google Scholar 

  26. Ho KLG et al (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus Casei Subsp. Rhamnosus. Appl Environ Microbiol 63(7):2516–2523

    CAS  Google Scholar 

  27. Hartvig RA et al (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27(6):2634–2643

    Article  CAS  Google Scholar 

  28. Müller C et al (2013) The Scanning Force Microscope in Bacterial Cell Investigations. Phys Status Solidi A 210(5):846–852

    Article  Google Scholar 

  29. Touhami A et al (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543

    Article  CAS  Google Scholar 

  30. Webb HK et al (2011) Physico-chemical characterization of cells using atomic force microscopy—current research and methodologies. J Microbiol Methods 86(2):131–139

    Article  Google Scholar 

  31. Cappella B et al (1997) Force–Distance curves by AFM. IEEE Eng Med Biol 16(2):58–65

    Article  CAS  Google Scholar 

  32. Chao Y et al (2011) Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 92:381–392

    Article  CAS  Google Scholar 

  33. Stroh C et al (2004) Single molecule recognition imaging microscopy. PNAS 101(34):12503–12507

    Article  CAS  Google Scholar 

  34. Dupres V et al (2007) Probing molecular recognition sites on biosurfaces using AFM. Biomaterials 28:2393–2402

    Article  CAS  Google Scholar 

  35. Dorobantu LS et al (2008) Atomic force microscopy measurement of heterogeinity in bacterial surface hydrophobicity. Lanmguir 24:4944–4951

    Article  CAS  Google Scholar 

  36. Ebner A et al (2005) Localization of single Avidin–Biotin interactions using simultaneous topography and molecular recognition imaging. Chem Phys Chem 6(5):897–900

    CAS  Google Scholar 

  37. Ebner A et al (2007) A new simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18(4):1176–1184

    Article  CAS  Google Scholar 

  38. Dûfrene YF et al (2002) Atomic force microscopy, a powerful tool in microbiologiy. J Bacteriol 184(19):5205–5213

    Article  Google Scholar 

  39. Dûfrene YF (2011) Life at the nanoscale—atomic force microscopy of live cells, pan stanford publishing, Singapore

    Google Scholar 

  40. Hinterdorfer P et al (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  CAS  Google Scholar 

  41. Helenius J et al (2008) Single cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  CAS  Google Scholar 

  42. Lee H et al (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434

    Article  CAS  Google Scholar 

  43. Kang S et al (2009) Bioinspired single bacterial cell force spectroscopy. Langmuir 25(2009):9656–9659

    Article  CAS  Google Scholar 

  44. Lower SK et al (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292:1360–1363

    Article  CAS  Google Scholar 

  45. Neal AL et al (2005) Cell adhesion of Shewanella oneidensis to iron oxide minerals: effect of different single crystal faces. Geochem Trans 6:77–84

    Article  CAS  Google Scholar 

  46. Wojcikiewiewicz EP et al (2004) Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol Proced Online 6(1):1–9

    Article  Google Scholar 

  47. Buck AW et al (2010) Bonds between fibronectin and fibronectin-binding proteins on Staphylococcus aureus and Lactococcus Lactis. Langmuir 26:10764–10770

    Article  CAS  Google Scholar 

  48. Müller DJ et al (2011) Force nanoscopy of living cells. Curr Biol 21(6):R212–R216

    Article  Google Scholar 

  49. Verran J et al (2010) Use of the atomic force microscope to determine the strength of bacterial attachment to grooved surface features. J Adhes Sci Technol 24(13–14):2271–2285

    Article  CAS  Google Scholar 

  50. Boks NP et al (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154:3122–3133

    Article  CAS  Google Scholar 

  51. Scheuermann TR et al (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208:23–33

    Article  Google Scholar 

  52. Xu LC et al (2012) Submicron-textured surface reduces Staphylococcal bacterial adhesion and biofilm formation. Acta Biomater 8:72–81

    Article  CAS  Google Scholar 

  53. Geisse NA (2009) AFM and combined optical techniques. Mater Today 12(7–8):40–45

    Article  CAS  Google Scholar 

  54. Casuso I et al (2011) Biological AFM: where we come from—where we are—where we may go. J Mol Recognit 24(3):406–413

    Article  CAS  Google Scholar 

  55. Rösch c. et al (2013) Influence of Protein Immobilization on Protein-Protein Interaction Measured by Scanning Force Spectroscopy. Physica Status Solidi A 210 (5): 945 – 951

    Google Scholar 

  56. Puech PH et al (2006) A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy 106:637–644

    Article  CAS  Google Scholar 

  57. Ho KLG et al (1997) Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol 63(7):2524–2532

    CAS  Google Scholar 

  58. Demirci A et al (1993) Evaluation of biofilm reactor solid support for mixed-culture lactic-acid production. Appl Microbiol Biotechnol 38(6):728–733

    Article  CAS  Google Scholar 

  59. Demirci A et al (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite suports for lactic-acid production. Appl Microbiol Biotechnol 43(4):585–589

    Article  CAS  Google Scholar 

  60. van Loosdrecht MCM et al (1987) The role of bacterial-cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897

    Google Scholar 

  61. Asther M et al (1990) A thermodynmic model to predict phanerochaete-chrysosporium Ina-12 adhesion to various solid carriers in relation to lignin peroxidase production. Biotechnol Bioeng 35(5):477–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Deutsche Forschungsgemeinschaft (SFB926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Müller-Renno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller-Renno, C. et al. (2013). Novel Materials for Biofilm Reactors and their Characterization. In: Muffler, K., Ulber, R. (eds) Productive Biofilms. Advances in Biochemical Engineering/Biotechnology, vol 146. Springer, Cham. https://doi.org/10.1007/10_2013_264

Download citation

Publish with us

Policies and ethics