Advertisement

Current Issues in Cereal Crop Biodiversity

Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 147)

Abstract

The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.

Graphical Abstract

Keywords

Biotechnology Climate change Crop improvement Food security Genetic resources 

List of Abbreviations

AVRDC

The World Vegetable Center

BNI

Biological Nitrification Inhibition

CIAT

International Center for Tropical Agriculture

CGIAR

Consultative Group on International Agricultural Research

CGRP

Canadian Genetic Resources Programme

DNA

Deoxyribonucleic acid

FAO

Food and Agriculture Organization of the United Nations

GBIF

Global Biodiversity Information Facility

GCDT

Global Crop Diversity Trust

GEF

Global Environment Facility

GHG

Greenhouse gas

GM

Genetically modified

GMO

Genetically modified organism

IBPGR

International Board for Plant Genetic Resources

ICRISAT

International Crops Research Institute for the Semi-Arid Tropics

IFAD

International Fund for Agricultural Development

ILRI

International Livestock Research Institute

IRD

Institut de Recherche pour le Développement

ITPGRFA

International Treaty on Plant Genetic Resources for Food and Agriculture

IUCN

International Union for Conservation of Nature

JIRCAS

Japan International Research Center for Agricultural Sciences

MLS

Multilateral system

NBPGR

National Bureau of Plant Genetic Resources (India)

NUS

Neglected and underutilized species

ORSTOM

Office de la Recherche Scientifique et Technique d’Outre-Mer

SINGER

System-wide Information Network for Genetic Resources

SMTA

Standard Material Transfer Agreement

T-DNA

Transfer-deoxyribonucleic acid

TALENs

Transcription activator-like effector nucleases

UNEP

United Nations Environment Programme

UNU

United Nations University

USDA-ARS

United States Department of Agriculture, Agricultural Research Service

WEMA

Water Efficient Maize for Africa

WHO

World Health Organization

References

  1. 1.
    CBD (2000) Agricultural biological diversity: review of phase I of the programme of work and adoption of a multi-year programme. http://www.cbd.int/decision/cop/?id=7147. Accessed 25 Feb 2013
  2. 2.
    Bioversity International (2009) Learning agrobiodiversity the importance of agricultural biodiversity and the role of universities. http://www.bioversityinternational.org/fileadmin/bioversityDocs/Training/Agrobiodiversity_Education/Learning_agrobiodiversity.pdf. Accessed 20 Feb 2013
  3. 3.
    FAO (1999) What is agrobiodiversity? http://www.fao.org/docrep/007/y5609e/y5609e01.htm#TopOfPage. Accessed 25 Feb 2013
  4. 4.
    Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253. doi: 10.3390/su3010238 Google Scholar
  5. 5.
    van de Wouw M, Kik C, van Hintum T et al (2009) Genetic erosion in crops: concept, results and challenges. Plant Genet Res: Charact Utilization 8:1–15. doi: 10.1017/S1479262109990062 Google Scholar
  6. 6.
    Singh A, Singh HN, Singh J (2008) Rice biodiversity and its social implication. Int J Rural Stud 15(2)Google Scholar
  7. 7.
    Pistorius R (1997) Scientists, plants and politics—A history of the plant genetic resources movement. International Plant Genetic Resources Institute, RomeGoogle Scholar
  8. 8.
    Thormann I, Gaisberger H, Mattei F et al (2012) Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genet Resour Crop Evol 59:635–644Google Scholar
  9. 9.
    FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. http://www.fao.org/agriculture/seed/sow2/en/. Accessed 17 Apr 2013
  10. 10.
    Altieri MA, Merrick LC (1987) In situ conservation of crop genetic resources through maintenance of traditional farming. Econ Bot 41:86–96Google Scholar
  11. 11.
    Jensen HR, Dreiseitl A, Sadiki M et al (2012) The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley. Evol Appl 5:353–367Google Scholar
  12. 12.
    Dulloo ME, Hunter D, Borelli T (2010) Ex situ and in situ conservation of agricultural biodiversity: major advances and research needs. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:123–135Google Scholar
  13. 13.
    FAO (2011a) Draft updated global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. In: Fifth session of the Intergovernmental Technical Working Group on Plant Genetic Resources for Food and Agriculture, Rome, 27–29 Apr 2011Google Scholar
  14. 14.
    Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:227–278Google Scholar
  15. 15.
    Cleveland DA, Soleri D (2007) Extending Darwin’s analogy: bridging differences in concepts of selection between farmers, biologists, and plant breeders. Econ Bot 61:121–136Google Scholar
  16. 16.
    Thomas M, Dawson JC, Goldringer I et al (2011) Seed exchanges, a key to analyze crop diversity dynamics in farmer-led on-farm conservation. Genet Resour Crop Evol 58:321–338Google Scholar
  17. 17.
    Briggs D, Walters M (1999) Evolution: some general considerations. Plant variation and evolution. 3rd edn. Cambridge University Press, Cambridge, pp 367–398Google Scholar
  18. 18.
    Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493Google Scholar
  19. 19.
    Zeven AC (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110:181–191Google Scholar
  20. 20.
    Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosyst Environ 123:261–270Google Scholar
  21. 21.
    Bezançon G, Pham JL, Deu M et al (2009) Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genet Resour Crop Evol 56:223–236Google Scholar
  22. 22.
    Vigouroux Y, Glaubitz JC, Matsuoka Y et al (2008) Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253Google Scholar
  23. 23.
    Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 59:523–537Google Scholar
  24. 24.
    Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148Google Scholar
  25. 25.
    van Zonneveld M, Dawson I, Thomas E, et al (2013) Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In: Tuberosa. R, Adler A, Frison E (eds) Advances in genomics of plant genetic resources. Springer, New YorkGoogle Scholar
  26. 26.
    Guarino L, Jarvis A, Hijmans RJ et al (2002) Geographic information systems (GIS) and the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. International Plant Genetic Resources Institute (IPGRI), Rome, pp 387–404Google Scholar
  27. 27.
    Kiambi DK, Newbury HJ, Maxted N et al (2008) Molecular genetic variation in the African wild rice Oryza longistaminata A. Chev. et Roehr. and its association with environmental variables. Afr J Biotechnol 7:1446–1460Google Scholar
  28. 28.
    van Zonneveld M, Scheldeman X, Escribano P et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PloS ONE 7:e29845Google Scholar
  29. 29.
    Hijmans RJ, van Etten J (2012) Geographic analysis and modelling with raster data. R package “Raster”. http://cran.r-project.org/web/packages/raster/raster.pdf. Accessed 17 Apr 2013
  30. 30.
    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405Google Scholar
  31. 31.
    Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449Google Scholar
  32. 32.
    Thomas E, van Zonneveld M, Loo J et al (2012) Present spatial diversity patterns of Theobroma cacao L. in the Neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7:e47676Google Scholar
  33. 33.
    van Heerwaarden J, Doebley J, Briggs WH et al (2010) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci. doi: 10.1073/pnas.1013011108 Google Scholar
  34. 34.
    Hufford MB, Lubinksy P, Pyhäjärvi T et al (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9:e1003477Google Scholar
  35. 35.
    Russell J, Dawson IK, Flavell AJ et al (2011) Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578Google Scholar
  36. 36.
    Dvorak J, Luo M-Ch, Akhunov ED (2011) N.I. Vavilov’s theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J Genet Plant Breed 47:S20–S27Google Scholar
  37. 37.
    Barry MB, Pham JL, Courtois B et al (2007) Rice genetic diversity at farm and village levels and genetic structure of local varieties reveal need for in situ conservation. Genet Resour Crop Evol 54:1675–1690Google Scholar
  38. 38.
    Jarvis D, Hodgkin T, Sthapit BR et al (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit Rev Plant Sci 30:125–176Google Scholar
  39. 39.
    Pusadee T, Jamjoda S, Chiang Y-C et al (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Nat Acad Sci 106:13880–13885Google Scholar
  40. 40.
    Rice EB, Smith ME, Mitchell SE et al (2006) Conservation and change: a comparison of in situ and ex situ conservation of Jala maize germplasm. Crop Sci 46:428–436Google Scholar
  41. 41.
    Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437Google Scholar
  42. 42.
    Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 227:1063–1066Google Scholar
  43. 43.
    Ishii T, Hiraoka T, Kanzaki T et al (2011) Evaluation of genetic variation among wild populations and local varieties of rice. Rice 4:170–177Google Scholar
  44. 44.
    Russell J, van Zonneveld M, Dawson IK, et al (2013) Genetic diversity and ecological niche modeling of wild barley: refugia, large-scale post-LGM range expansion and limited mid-future climate threats? PloS ONE (accepted)Google Scholar
  45. 45.
    National Research Council (NRC) (1996) Pearl millet. Lost Crops of Africa, vol 1, Grains. National Academy Press, Washington, pp 77–126Google Scholar
  46. 46.
    Yadav OP (2011) Project Coordinator’s Review (2010-11) on Pearl Millet Research. http://www.aicpmip.res.in/pcr2011.pdf. Accessed 02 May 2013
  47. 47.
    Brunken JN, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Botan 31:163–174Google Scholar
  48. 48.
    Rai KN, AppaRao S, Reddy KN (1997) Pearl Millet In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in Trust. Cambridge University Press, Cambridge, pp 243–258Google Scholar
  49. 49.
    The Syngenta Foundation for Sustainable Agriculture (2006) Harnessing Modern Science in Africa to Sustain Sorghum and Pearl Millet Production for Resource poor Farmers. www.syngentafoundation.com/millet.html. Accessed 02 May 2013
  50. 50.
    Linnaeus C (1753) Species plantarum. Laurentius Salvius, StockholmGoogle Scholar
  51. 51.
    Linnaeus C (1759) Systema naturae, 10th edn, vol 2. Laurentius Salvius, StockholmGoogle Scholar
  52. 52.
    Rechard L (1805) Pennisetum. In: Person CH (ed) Synopsis plantarum,vol l. Cotta, TubingenGoogle Scholar
  53. 53.
    Willdenow KL (1809) Enumeratio plantarum horti regni botanici Berolinensis. Berolini, BerlinGoogle Scholar
  54. 54.
    Steudel EG (1855) Synopsis plantarum glumaceum. Stuttgart. B65.10.01. M. inscription vol. 1: Ferd Muller, M.D., Ph.D. 1987Google Scholar
  55. 55.
    Leeke P (1907) Untersuchunguber Abstammung and Heimat der Negerhirse (Pennisetum americanum (L.)L schum.). Z Naturwissenchaften 79:1–108Google Scholar
  56. 56.
    Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, Part 9. Crown Agents, LondonGoogle Scholar
  57. 57.
    Clayton WD, Renvoize SA (1982) Gramineae. In: Polhill RM (ed) Flora of tropical East Africa, Part 3. Balkema, RotterdamGoogle Scholar
  58. 58.
    Gari JA (2002) Review of the African millet diversity. In: Paper for the International workshop on fonio, food security and livelihood among the rural poor in West Africa, IPGRI/IFAD, Bamako, Mali. Programme for Neglected and Underutilized Species. IPGRI, Rome, Italy, 19–22 Nov 2001Google Scholar
  59. 59.
    Hanna WW (1987) Utilization of wild relatives of pearl millet. In: Proceedings of the international pearl millet wokshop, ICRISAT Center, India. ICRISAT, Patancheru, Andhra Pradesh, India, 7–11 Apr 1986Google Scholar
  60. 60.
    Oumar I, Mariac C, Pham JL et al (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497Google Scholar
  61. 61.
    Amblard S, Pernes J (1989) The identification of the cultivated pearl millet (Pennisetum) amongst plant impressions on pottery from Oued Chebbi (Dhar Oualata, Mauritania). Afr Archaeol Rev 7:117–126Google Scholar
  62. 62.
    D’Andrea AC, Casey J (2002) Pearl millet and kintampo subsistence. Afr Archaeol Rev 19:147–173Google Scholar
  63. 63.
    D’Andrea AC, Klee M, Casey J (2001) Archaeological evidence for pearl millet (Pennisetum glaucum) in sub-saharan West Africa. Antiquity 75:341–348Google Scholar
  64. 64.
    Clark JD (1962) The spread of food production in sub-Saharan Africa. J Afr Hist III 2:211–228Google Scholar
  65. 65.
    Harlan JR (1971) Agricultural origins: centres and non-centres. Science 174:468–474Google Scholar
  66. 66.
    Marchais L (1994) Wild pearl millet population (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. An example from Keita (Niger). Plant Syst Evol 189:233–245Google Scholar
  67. 67.
    Portères R (1962) Berceaux agricolos primaries sur le continent africain. J Afr Hist III 2:195–210Google Scholar
  68. 68.
    Tostain S, Marchais L (1993) Wild pearl millet population (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. Plant Syst Evol 189:233–245Google Scholar
  69. 69.
    Khairwal IS, Rai KN, Diwakar B et al (2007) Pearl millet: crop management and seed production manual. ICRISAT, Patancheru, Andhra Pradesh, India, pp 108Google Scholar
  70. 70.
    Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum L.). Theor Appl Genet 83:736–742Google Scholar
  71. 71.
    Tostain S (1998) Le mil, une longue histoire: hypothèses sur sa domestication et ses migrations. In: Chastenet M (ed) Plantes et Paysages d’Afrique: Une Histoire à Explorer. Karthala and Centre de Recherches Africaines, Paris, pp 461–490Google Scholar
  72. 72.
    Klee M, Zach B, Stika HP (2004) Four thousand years of plant exploitation in the Lake Chad basin (Nigeria), part III: plant impressions in postherds from the final stone age Gajiganna culture. Veg Hist Archaeobotony 13:131–142Google Scholar
  73. 73.
    Tostain S, Riandey MF, Marchais L (1987) Enzyme diversity in pearl millet (Pennisetum glaucum) I. West Africa. Theor Appl Genet 74:188–193Google Scholar
  74. 74.
    Upadhyaya HD, Reddy KN, Gowda CLL (2007) Pearl millet germplasm at ICRISAT genebank—status and impact. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, IndiaGoogle Scholar
  75. 75.
    IBPGR and ICRISAT (1993) Descriptors for Pearl Millet. International Plant genetic resources Institute, RomeGoogle Scholar
  76. 76.
    Mathur PN, Rana RS, Aggarwal RC (1993) Evaluation of pearl millet germplasm part I. National Bureau of Plant Genetic Resources, New DelhiGoogle Scholar
  77. 77.
    Mathur PN, Rana RS, Aggarwal RC (1993) Evaluation of pearl millet germplasm part II. National Bureau of Plant Genetic Resources, New DelhiGoogle Scholar
  78. 78.
    Andrews DJ, Anand Kumar K (1996) Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Genet Resour Newsl 105:15–22Google Scholar
  79. 79.
    Bioversity International (2010) Key access and utilization descriptors for pearl millet genetic resources. Bioversity International, Rome, Italy. http://www.bioversityinternational.org/index.php?id=19&user_bioversitypublications_pi1%5BshowUid%5D=3376. Accessed 02 May 2013
  80. 80.
    Maxted N, Kell SP (2009) Establishment of a global network for the In Situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, p 266Google Scholar
  81. 81.
    Mujica A (1992) Granos y leguminosas andinas. In: Hernandez J, Bermejo J, Leon J (eds) Cultivos marginados: otra perspectiva de 1492. Organización de la Naciones Unidas para la Agricultura y la Alimentación (FAO), RomaGoogle Scholar
  82. 82.
    Rojas W, Pinto M, Soto JL (2010a) Distribución geográfica y variabilidad genética de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  83. 83.
    Aroni G, Pinto M, Rojas W (2012) Small-scale quinoa processing technology in the southernAltiplano of Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, RomeGoogle Scholar
  84. 84.
    Carrasco E, Soto JL (2010) Importancia de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S(eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  85. 85.
    Pinto M, Alarcón V, Soto JL, Rojas W (2010a) Usos tradicionales, no tradicionales e innovaciones agroindustriales de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  86. 86.
    FAO (2011b) La Quinua: cultivo milenario para contribuir a la seguridad alimentaria mundial. FAO, Oficina Regional para América Latina y el Caribe, La PazGoogle Scholar
  87. 87.
    Rojas W, Pinto M, Soto JL, Alcocer E (2010b) Valor nutricional, agroindustrial y funcional de los granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  88. 88.
    FAO, WHO, UNU (1985) Necesidades de energía y proteínas. Informes Técnicos. OMS, GinebraGoogle Scholar
  89. 89.
    Astudillo D (2012) Livelihoods of quinoa producers in southern Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, ItalyGoogle Scholar
  90. 90.
    Hunter D, Heywood V (eds) (2011) Crop wild relatives: a manual of in situ conservation, 1st edn. Earthscan, LondonGoogle Scholar
  91. 91.
    Jacobsen SE (2003) The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177Google Scholar
  92. 92.
    Apaza V, Estrada R, Quispe MG (2010b) Identificación y selección participativa de material genético promisorio. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, RomaGoogle Scholar
  93. 93.
    Mujica A, Izquierdo J, Marathee JP (2001) Origen y Descripción de la Quinua. In: Mujica A, Jacobsen SE, Izquierdo J, Marathee JP. Quinua (Chenopodium quinoa Willd.). Ancestral Cultivo Andino, Alimento del Presente y Futuro. FAO. SantiagoGoogle Scholar
  94. 94.
    Bonifacio A, Aroni G, Villca M (2012) Catálogo Etnobotánico de la Quinua Real. PROINPA, CochabambaGoogle Scholar
  95. 95.
    Ministerio de Medio Ambiente y Agua (MMAyA), Viceministerio de Medio Ambiente, Biodiversidad y Cambios Climáticos (VMABCC), Bioversity International (2009) Libro Rojo de Parientes Silvestres de Cultivos de Bolivia. VMABCC-Bioversity International, La PazGoogle Scholar
  96. 96.
    Apaza V, Catacora P, Quispe MG (2010a) Distribución geográfica y variabilidad genética de los granos andinos. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds). Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, RomaGoogle Scholar
  97. 97.
    Rojas W, Pinto M (2010) Colecta de germoplasma. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  98. 98.
    Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) (2010) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, RomaGoogle Scholar
  99. 99.
    Jaeger M (2012) Novel products, markets and partnerships in value chains for Andean grains in Peru and Bolivia. In: Giuliani A, Hintermann F, Rojas W, Padulosi S (eds) Biodiversity of Andean grains: balancing market potential and sustainable livelihoods. Bioversity International, RomeGoogle Scholar
  100. 100.
    Bravo R, Catacora P (2010) Situación actual de los bancos nacionales de germoplasma. In: Bravo R, Valdivia R, Andrade K, Padulosi S, Jäger M (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, RomaGoogle Scholar
  101. 101.
    Reay SD, Davidson EA, Smith KA et al (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416. doi: 10.1038/nclimate1458 Google Scholar
  102. 102.
    Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125Google Scholar
  103. 103.
    Wuebbles DJ (2009) Nitrous oxide: no laughing matter. Science 326:56–57Google Scholar
  104. 104.
    Philippot L, Hallin S (2011) Towards food, feed and energy crops mitigating climate change. Trends Plant Sci 16:476–480Google Scholar
  105. 105.
    Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196Google Scholar
  106. 106.
    Subbarao GV, Nakahara K, Hurtado MP et al (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–17307Google Scholar
  107. 107.
    Subbarao GV, Sahrawat KL, Nakahara K et al (2012) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot. doi: 10.1093/aob/mcs230 Google Scholar
  108. 108.
    Subbarao GV, Rondon M, Ito O et al (2007) Biological nitrification inhibition (BNI)—Is it a widespread phenomenon? Plant Soil 294:5–18Google Scholar
  109. 109.
    Tanaka JP, Nardi P, Wissuwa M (2010) Nitrification inhibition activity, a novel trait in root exudates of rice. AoB Plants 2010:1–11Google Scholar
  110. 110.
    Subbarao GV, Ban T, Masahiro K et al (2007) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64Google Scholar
  111. 111.
    Zahn LM (2007) A boost from wild wheat. Science 318:171. doi: 10.1126/science.318.5848.171c Google Scholar
  112. 112.
    Hossain AKMZ, Subbarao GV, Pearse SJ et al (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451Google Scholar
  113. 113.
    Subbarao GV, Nakahara K, Ishikawa T et al (2013) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259Google Scholar
  114. 114.
    Nimbal CI, Pedersen JF, Yerkes CN et al (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum. J Agric Food Chem 44:1343–1347Google Scholar
  115. 115.
    Dobermann A, Cassman KG (2005) Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Sci China Life Sci 48:745–758Google Scholar
  116. 116.
    Phoenix GK, Hicks WK, Cinderby S et al (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–476Google Scholar
  117. 117.
    Sala OE, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774Google Scholar
  118. 118.
    Zhou Z, Sun OJ, Huang J et al (2006) Land-use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct Ecol 20:753–762Google Scholar
  119. 119.
    Cox RM (1992) Air pollution effects on plant reproductive processes and possible consequences to their population ecology. In: Barker JR, Tingey DT (eds) Air pollution effects on biodiversity. Springer, New York, pp 131–158Google Scholar
  120. 120.
    Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715Google Scholar
  121. 121.
    Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 41:167–174Google Scholar
  122. 122.
    Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J Ecol 90:61–67Google Scholar
  123. 123.
    Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multi-model evaluation. Glob Biogeochem Cycles 20:GB4003. doi:  10.1029/2005GB002672 Google Scholar
  124. 124.
    Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  125. 125.
    Lu X, Mo J, Gilliam FS, Zhou G et al (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Glob Chang Biol 16:2688–2700Google Scholar
  126. 126.
    Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738Google Scholar
  127. 127.
    Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59Google Scholar
  128. 128.
    Gilliam FS, Hockenberry AW, Adams MB (2006) Effects of atmospheric nitrogen deposition on the herbaceouslayer of a central Appalachian hardwood forest. J Torrey Bot Soc 133:240–254Google Scholar
  129. 129.
    Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic-resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187Google Scholar
  130. 130.
    Fraley RT, Rogers SG, Horsch RB et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80:4803–4807Google Scholar
  131. 131.
    Herrera-Estrella L, Depicker A, Van Montagu M et al (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213Google Scholar
  132. 132.
    Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231Google Scholar
  133. 133.
    Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721Google Scholar
  134. 134.
    Hoekema A, Hirsch PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180Google Scholar
  135. 135.
    Chilton MD, Tepfer DA, Petit A et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434Google Scholar
  136. 136.
    Draper J, Davey MR, Freeman JP et al (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid transformed petunia protoplasts. Plant Cell Physiol 23:451–458Google Scholar
  137. 137.
    Krens FA, Molendijk L, Wullems GJ et al (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74Google Scholar
  138. 138.
    Paszkowski J, Shillito RD, Saul M et al (1984) Direct gene transfer to plants. EMBO J 3:2717–2722Google Scholar
  139. 139.
    Sanford JC, Klein TM, Wolf ED et al (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37Google Scholar
  140. 140.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  141. 141.
    Bajaj YPS (1991) Biotechnology in rice improvement. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 14. Rice. Springer, Berlin, pp 1–15Google Scholar
  142. 142.
    Shimammoto K, Tareda R, Izawa H (1989) Fertile transgenic rice plants regenerated from transformed protoplast. Nature 338:274–276Google Scholar
  143. 143.
    Bajaj YPS (1994) Biotechnology in maize improvement. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry vol. 25. Maize. Springer, Berlin, pp 1–17Google Scholar
  144. 144.
    Gordon-Kamm WJ, Spencer TM, Mangano ML et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618Google Scholar
  145. 145.
    Bajaj YPS (ed) (1990) Biotechnology in agriculture and forestry, vol. 13. Wheat. Springer, BerlinGoogle Scholar
  146. 146.
    Vasil V, Castillo AM, From ME et al (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectil bombardment of regenerable embryogenic callus. Biotechnol 10:667–674Google Scholar
  147. 147.
    Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282Google Scholar
  148. 148.
    Ishida V, Saito H, Ohta O et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 6:745–750Google Scholar
  149. 149.
    Cheng M, Fry JE, Pang S et al (1997) Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980Google Scholar
  150. 150.
    Afolabi AS, Worland B, Snape JW et al (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet 109:815–826Google Scholar
  151. 151.
    Ingham DJ, Beer S, Money S et al (2001) Quantitative Real-Time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140Google Scholar
  152. 152.
    Vain P, Afolabi AS, Worland B et al (2003) Transgene behavior in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107:210–217Google Scholar
  153. 153.
    Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 83:8447–8451Google Scholar
  154. 154.
    Carrer H, Hockenberry TN, Svab Z et al (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56Google Scholar
  155. 155.
    Waldron C, Murphy EB, Roberts JL et al (1985) Resistance to hygromycin B. Plant Mol Biol 5:103–108Google Scholar
  156. 156.
    Miki B, McHugh S (2003) Selectable marker genes in transgenic plants: application, alternatives and biosafety. J Biotechnol 107:193–232Google Scholar
  157. 157.
    Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213Google Scholar
  158. 158.
    Sundar IK, Sakthitel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698–1716Google Scholar
  159. 159.
    Komari T, Hiei Y, Saito Y et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174Google Scholar
  160. 160.
    Miller M, Tagliani L, Wang N et al (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396Google Scholar
  161. 161.
    Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98Google Scholar
  162. 162.
    Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154Google Scholar
  163. 163.
    Zambryski P (1992) Chronicles from the Agrobacterium–plant cell DNA transfer story. Ann Rev Plant Physiol Mol Biol 43:4645–4690Google Scholar
  164. 164.
    Gelvin SB (2010) Plant proteins involved in Agrobacterium mediated genetic transformation. Ann Rev Phytopatol 48:45–68Google Scholar
  165. 165.
    Gelvin SB (2010b) Finding the way to the nucleus.Curr Opin Microbiol 13:53–58Google Scholar
  166. 166.
    Vain P (2005) Plant transgenic science knowledge. Nat Biotechnol 23:1348–1349Google Scholar
  167. 167.
    Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229Google Scholar
  168. 168.
    Areal FJ, Riesgo L, Rodríguez-Cerezo E (2011) Attitudes of European farmers towards GM crop adoption. Plant Biotechnol J 9:945–957Google Scholar
  169. 169.
    EU Commission (2010) A decade of EU funded GMO research (2001–2010). ftp://cordis.europa.eu/pub/fp7/kbbe/docs/a-decade-of-eu-funded-gmo-research_en.pdf. Accessed 02 May 2013
  170. 170.
    European Policy Evaluation Consortium (EPEC) (2011) The Evaluation of the EU legislative framework in the field of cultivation of GMOs under Directive 2001/18/EC. http://ec.europa.eu/food/food/biotechnology/evaluation/docs/gmo_cultivation_report_en.pdf. Accessed 02 May 2013
  171. 171.
    Lusser M, Rodríguez-Cerezo E (2012) Comparative regulatory approaches for new plant breeding techniques. Workshop proceedings European Commission, JRC Technical Report EUR 25237 EN (2012)Google Scholar
  172. 172.
    Phillips PWB (2002) Biotechnology in the global agri-food systems. Trends Biotechnol 20:376–381Google Scholar
  173. 173.
    Park JR, McFarlane I, Phipps RH et al (2011) The role of transgenic crops in sustainable development. Plant Biotechol J 9:2–21Google Scholar
  174. 174.
    Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263Google Scholar
  175. 175.
    Shaked H, Melamed-Bessudo C, Levy AA (2005) High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci 12:265–269Google Scholar
  176. 176.
    Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913Google Scholar
  177. 177.
    Reynolds A, Leake D, Boese Q et al (2004) Rational sRNAi design for RNA interterference. Nat Biotechnol 22:326–330Google Scholar
  178. 178.
    Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782Google Scholar
  179. 179.
    Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441Google Scholar
  180. 180.
    Boch J, Scholze H, Schornack S (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512Google Scholar
  181. 181.
    Bogdanove AJ, Voytas JF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846Google Scholar
  182. 182.
    Podevin N, Davies HV, Hartung F (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol. doi: 10.1016/j.tibtech.2013.03.004 Google Scholar
  183. 183.
    Chen H, Lin Y, Zhang Q (2010) Rice. In: Kempker F, Jung Ch (eds) Genetic modification of plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, p 423–451Google Scholar
  184. 184.
    Hirano HY, Hirai A, Sano Y, Sasaki T (eds) (2008) Rice Biology in the Genomics era. Biotechnol in Agriculture and Forestry, vol 62. Springer, BerlinGoogle Scholar
  185. 185.
    Serraj R, Bennett J, Hardy B (eds) (2008) Drought frontiers in rice: crop improvement for increased rainfed production. World Scientific Publishing, SingaporeGoogle Scholar
  186. 186.
    Sheehy JE, Mitchell PL, Hardy B (eds) (2007) Charting new pathways to C4 rice. IRRI, World Scientific, Los BanosGoogle Scholar
  187. 187.
    FAOSTAT (2013) http://faostat.fao.org. Accessed 05 Mar 2013
  188. 188.
    Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci 16:16402–16409Google Scholar
  189. 189.
    James C (2012) Global status of commercialized Biotech/GMO crops: 2012. ISAAA Briefs No. 44. ISAAA, Ithaca, NYGoogle Scholar
  190. 190.
    Datta SK, Datta K, Parkhi V et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278Google Scholar
  191. 191.
    D’Halluin K, Vanderstraeten Ch, Stals E et al (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol J 6:93–102Google Scholar
  192. 192.
    Duan Y, Zhai Ch, Li H (2012) An efficient and high-throughput protocol for Agrobacterium mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep 31:1611–1624Google Scholar
  193. 193.
    Water Efficient Maize for Africa (2011) Water efficient maize for Africa: pushing GMO crops onto Africa. The African Center for Biosafety. http://www.monsanto.com/improvingagriculture/Pages/water-efficient-maize-for-africa.aspx. Accessed 10 May 2013
  194. 194.
    Carpenter JE (2011) Impact of GM crops on biodiversity. GM Crops 2:7–23Google Scholar
  195. 195.
    Aroni J, Aroni G, Quispe R, Bonifacio A (2003) Catálogo de Quinoa Real. Fundación PROINPA, La PazGoogle Scholar
  196. 196.
    Pinto M, Marin W, Rojas W (2010b) Estrategias para la conservación y promoción de los granos andinos: ferias y concursos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  197. 197.
    Soto JL (2010) Tecnología del cultivo de granos andinos. In: Rojas W, Soto JL, Pinto M, Jäger M, Padulosi S (eds) Granos Andinos. Avances, logros y experiencias desarrolladas en quinua, cañahua y amaranto en Bolivia. Bioversity International, RomaGoogle Scholar
  198. 198.
    Knudsen H (ed) (2000) Directorio de Colecciones de Germoplasma en América Latina y el Caribe, 1st edn. International Plant Genetic Resources Institute (IPGRI), RomaGoogle Scholar
  199. 199.
    Mazón N, Rivera M, Peralta E, Estrella J, Tapia C (2002) Catálogo del banco de germoplasma de quinua (Chenopodium quinoa Willd.) del INIAP—Ecuador. Programa Nacional de Leguminosas y Granos Andinos, Departamento Nacional de Recursos Fitogenéticos y Biotecnología, Estación Experimental Santa Catalina. QuitoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.International Center for Tropical Agriculture (CIAT)CaliColombia
  2. 2.Bioversity International (Office for South Asia)New DelhiIndia
  3. 3.Bioversity International (Americas Office)CaliColombia

Personalised recommendations