Skip to main content

Acidic Organic Compounds in Beverage, Food, and Feed Production

  • Chapter
  • First Online:
Biotechnology of Food and Feed Additives

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 143))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association of American Feed Control Officials (2008) Pet food and specialty pet food labeling guide

    Google Scholar 

  2. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988

    CAS  Google Scholar 

  3. He H, Wang H, Fang C, Wu H, Guo X, Liu C, Lin Z, Lin W (2012) Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol 169:1747–1753. doi:10.1016/j.jplph.2012.06.018

    CAS  Google Scholar 

  4. Thakur BR, Singh RK, Handa AK, Rao MA (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37:47–73

    CAS  Google Scholar 

  5. Ames WM (1952) The conversion of collagen to gelatin and their molecular structures. J Sci Food Agric 3:454–463. doi:10.1002/jsfa.2740031004

    CAS  Google Scholar 

  6. Wienen WJ, Shallenberger RS (1988) Influence of acid and temperature on the rate of inversion of sucrose. Food Chem 29:51–55. doi:10.1016/0308-8146(88)90075-1

    CAS  Google Scholar 

  7. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44:141

    CAS  Google Scholar 

  8. Buck DF (1991) Antioxidants. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 1–46

    Google Scholar 

  9. Pokorny J, Yanishlieva N, Gordon M (2001) Antioxidants in food. CRC press, Florida

    Google Scholar 

  10. Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885. doi:10.1021/jf00035a014

    CAS  Google Scholar 

  11. Yen GC, Duh PD, Tsai HL (2002) Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem 79:307–313. doi:10.1016/S0308-8146(02)00145-0

    CAS  Google Scholar 

  12. Graf E (1992) Antioxidant potential of ferulic acid. Free Radical Biol Med 13:435–448. doi:10.1016/0891-5849(92)90184-I

    CAS  Google Scholar 

  13. Biebaut D (1991) Flour improvers and raising agents. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 242–256

    Google Scholar 

  14. Grosch W, Wieser H (1999) Redox reactions in wheat dough as affected by ascorbic acid. J Cereal Sci 29:1–16. doi:10.1006/jcrs.1998.0218

    CAS  Google Scholar 

  15. Wehrle K, Grau H, Arendt EK (1997) Effects of lactic acid, acetic acid, and table salt on fundamental rheological properties of wheat dough. Cereal Chem J 74:739–744. doi:10.1094/cchem.1997.74.6.739

    CAS  Google Scholar 

  16. Nakamura M, Kurata T (1997) Effect of l-ascorbic acid on the rheological properties of wheat flour-water dough. Cereal Chem J 74:647–650. doi:10.1094/cchem.1997.74.5.647

    CAS  Google Scholar 

  17. McGraw-Hill PSP (2002) McGraw-Hill dictionary of scientific and technical terms. The McGraw-Hill Companies Inc, New York

    Google Scholar 

  18. Codex Alimentarius Commission (1989) Class names and the international numbering system for food additives. CAC/GL (36-1989)

    Google Scholar 

  19. Smith J, Hong-Shum L (2011) Food additives data book. Wiley, Oxford

    Google Scholar 

  20. Gordon RJ (1991) Flavourings. In: Smith J (ed) Food additive user’s handbook. Springer, New York, p 75–88

    Google Scholar 

  21. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9. doi:10.1016/S0304-4165(01)00235-5

    CAS  Google Scholar 

  22. Roig MG, Rivera ZS, Kennedy JF (1993) L-ascorbic acid: an overview. Int J Food Sci Nutr 44:59–72. doi:10.3109/09637489309017424

    CAS  Google Scholar 

  23. Alonso S, Rendueles M, Díaz M (2013) Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.04.010

    Google Scholar 

  24. Gutiérrez LF, Hamoudi S, Belkacemi K (2012) Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26:103–111. doi:10.1016/j.idairyj.2012.05.003

    Google Scholar 

  25. Schaafsma G (2008) Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int Dairy J 18:458–465. doi:10.1016/j.idairyj.2007.11.013

    CAS  Google Scholar 

  26. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. doi:10.1002/jsfa.1873

    CAS  Google Scholar 

  27. Wee YJ, Kim JN, Ryu HW (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  28. Sloan AE, Labuza TP (1976) Prediction of water activity lowering ability of food humectants at high aw. J Food Sci 41:532–535. doi:10.1111/j.1365-2621.1976.tb00664.x

    CAS  Google Scholar 

  29. Lück E, Jager M (1997) Antimicrobial action of preservatives. In: Antimicrobial food additives. Springer, Berlin, p 36–57

    Google Scholar 

  30. Leavening agent (2013) Encyclopædia britannica online. Accessed 24 Jun 2013 http://www.britannica.com/EBchecked/topic/334116/leavening-agent

  31. Nitin K (2008) Longman Science Chemistry 10. Pearson Education. Delhi, India

    Google Scholar 

  32. Bender DA (2009) A dictionary of food and nutrition. Oxford University Press, Oxford

    Google Scholar 

  33. Giménez B, Turnay J, Lizarbe MA, Montero P, Gómez-Guillén MC (2005) Use of lactic acid for extraction of fish skin gelatin. Food Hydrocolloids 19:941–950. doi:10.1016/j.foodhyd.2004.09.011

    Google Scholar 

  34. Nauta T (1991) Chelating agents. In: Smith J (ed) Food additive user’s handbook. Springer, Oxford, p 273–279

    Google Scholar 

  35. Phadungath (2005) The mechanism and properties of acid-coagulated milk gels. Songklanakarin. J Sci Technol 27:433–448

    Google Scholar 

  36. Revis C, Payne GA (1907) The acid coagulation of milk. J Hyg 7:216–231

    CAS  Google Scholar 

  37. Guyomarc’h F, Renan M, Chatriot M, Gamerre V, Famelart MH (2007) Acid gelation properties of heated skim milk as a result of enzymatically induced changes in the micelle/serum distribution of the whey protein/κ-casein aggregates. J Agric Food Chem 55:10986–10993. doi:10.1021/jf0722304

    Google Scholar 

  38. Donato L, Alexander M, Dalgleish DG (2007) Acid gelation in heated and unheated milks: interactions between serum protein complexes and the surfaces of casein micelles. J Agric Food Chem 55:4160–4168. doi:10.1021/jf063242c

    CAS  Google Scholar 

  39. Sahul JK, Das H (2010) A continuous heat-acid coagulation unit for continuous production of chhana. Assam Univ J Sci Technol 4:40–45

    Google Scholar 

  40. Liu Z, Chang SK (2004) Effect of soy milk characteristics and cooking conditions on coagulant requirements for making filled tofu. J Agric Food Chem 52:3405–3411. doi:10.1021/jf035139i

    CAS  Google Scholar 

  41. Puppo MC, Añón MC (1998) Effect of pH and protein concentration on rheological behavior of acidic soybean protein gels. J Agric Food Chem 46:3039–3046. doi:10.1021/jf971092n

    CAS  Google Scholar 

  42. Theron MM, Lues JFR (2010) Application of organic acids in food preservation. In: Organic acids and food preservation, CRC PressI Llc, p 51–95, Bosa Roca, USA

    Google Scholar 

  43. Lückstädt C (2008) The use of acidifiers in fish nutrition. CAB Rev 3:1–8

    Google Scholar 

  44. Sauli I, Danuser J, Geeraerd AH, Van Impe JF, Rüfenacht J, Bissig-Choisat B, Wenk C, Stärk KDC (2005) Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland—the impact of the production pathway. Int J Food Microbiol 100:289–310. doi:10.1016/j.ijfoodmicro.2004.10.026

    CAS  Google Scholar 

  45. Freitag M (2007) Organic acids and salts promote performance and health in animal husbandry. In: Lückstädt C (ed) Acidifiers in animal nutrition: a guide for feed preservation and acidification to promote animal performance. p 1–11, Packington, GB

    Google Scholar 

  46. Papatsiros VG, Cristodoulopoulos C, Filippopoulos LC (2012) The use of organic acids in monogastric animals (swine and rabbits). J Cell Anim Biol 6:154–159

    CAS  Google Scholar 

  47. Suryanarayana MVAN, Suresh J, Rajasekhar MV (2012) Organic acids in swine feeding—a review. Agric Sci Res J 2:523–533

    Google Scholar 

  48. Tung CM, Pettigrew JE (2008) Critical review of acidifiers. Report NPB:05-169

    Google Scholar 

  49. Kim YY, Kil DY, Oh HK, Han IK (2005) Acidifier as an alternative material to antibiotics in animal feed. Asian-Australas J Anim Sci 18:1048

    CAS  Google Scholar 

  50. Desai DN, Patwardhan DS, Ranade AS, Lückstädt C (2007) Acidifiers in poultry diets and poultry production. In: Lückstädt C (ed) Acidifiers in animal nutrition: a guide for feed preservation and acidification to promote animal performance. Nottingham University Press, Nottingham, pp 63–69

    Google Scholar 

  51. Haque MN, Chowdhury R, Islam KMS, Akbar MA (2009) Propionic acid is an alternative to antibiotics in poultry diet. Bangladesh J Anim Sci 38:115–122

    Google Scholar 

  52. Menconi A, Reginatto AR, Londero A, Pumford NR, Morgan M, Hargis BM, Tellez G (2013) Effect of organic acids on salmonella typhimurium infection in broiler chickens. Int J Poult Sci 12:72–75

    CAS  Google Scholar 

  53. Rosyidah MR, Loh TC, Foo HL, Cheng XF, Bejo MH (2011) Effect of feeding metabolites and acidifier on growth performance, faecal characteristics and microflora in broiler chickens. J Anim Vet Adv 10:2758–2764. doi:10.3923/javaa.2011 2758.2764

    CAS  Google Scholar 

  54. Lückstädt C, Kühlmann KJ (2011) The use of diaformates in tilapia - ways to improve performance sustainably: a short review. In: Lückstädt C (ed) Standards for acidifiers. Nottingham, GB

    Google Scholar 

  55. Ganguly S, Dora KC, Sarkar S, Chowdhury S (2013) Supplementation of prebiotics in fish feed: a review. Rev in Fish Biol and Fisheries 23:195–199. doi:10.1007/s11160-012-9291-5

    Google Scholar 

  56. Mine S, Boopathy R (2011) Effect of organic acids on shrimp pathogen, vibrio harveyi. Curr Microbiol 63:1–7. doi:10.1007/s00284-011-9932-2

    CAS  Google Scholar 

  57. Ajiboye OO, Yakubu AF, Adams TE (2012) A perspective on the ingestion and nutritional effects of feed additives in farmed fish species. World J Fish Mar Sci 4:87–101. doi:10.5829/idosi.wjfms.2012.04.01.56264

    CAS  Google Scholar 

  58. Papatsiros VG, Christodoulopoulos G (2011) The use of organic acids in rabbit farming. Online J Anim Feed Res 1:434–438

    Google Scholar 

  59. Falcão-e-Cunha L, Castro-Solla L, Maertens L, Marounek M, Pinheiro V, Freire J (2010) Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Sci 15:127–140

    Google Scholar 

  60. Ribeiro MD, Pereira JC, Queiroz AC, Cecon PR, Detmann E, Azevêdo JAG (2009) Performance of dairy calves fed milk, milk replacer or post-weaning concentrate with acidifiers. Rev Bras Zootec 38:956–963

    Google Scholar 

  61. Alibaba.com (2013) http://www.alibaba.com. Accessed 18 Sept 2013

  62. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. doi:10.1016/j.tibtech.2007.11.006

    CAS  Google Scholar 

  63. Burdock GA (2004) In: Fenaroli’s handbook of flavor ingredients. CRC press, Boca Raton

    Google Scholar 

  64. IHS chemical (2013) Formic acid

    Google Scholar 

  65. Xu Z, Shi Z, Jiang L (2011) 3.18 - Acetic and Propionic Acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 189–199

    Google Scholar 

  66. Lück E, Jager M, Raczek N (2000) Sorbic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  67. Sengun IY, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22:647–656. doi:http://dx.doi.org/10.1016/j.foodcont.2010.11.008

  68. Kocher GS, Dhillon HK (2013) Fermentative production of sugarcane vinegar by immobilized cells of acetobacter aceti under packed bed conditions. Sugar Tech 15:71–76. doi:10.1007/s12355-012-0179-4

    CAS  Google Scholar 

  69. Jiménez-Hornero JE, Santos-Dueñas IM, García-García I (2009) Optimization of biotechnological processes. The acetic acid fermentation. Part I: the proposed model. Biochem Eng J 45:1–6. doi:10.1016/j.bej.2009.01.009

    Google Scholar 

  70. Awad HM, Malek RA, Othman NZ, Aziz RA, El Enshasy HA (2012) Efficient production process for food grade acetic acid by acetobacter aceti in shake flask and in bioreactor cultures. E-J Chem 9:2275–2286. doi:10.1155/2012/965432

    Google Scholar 

  71. Wang Z, Yan M, Chen X, Li D, Qin L, Li Z, Yao J, Liang X (2013) Mixed culture of saccharomyces cerevisiae and acetobacter pasteurianus for acetic acid production. Biochem Eng J 79:41–45. doi:10.1016/j.bej.2013.06.019

    CAS  Google Scholar 

  72. Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K (2013) Adaptive mutation of acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 165:109–119. doi:10.1016/j.jbiotec.2013.03.006

    CAS  Google Scholar 

  73. Reutemann W, Kieczka H (2000) Formic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  74. Eguchi SY, Nishio N, Nagai S (1985) Formic acid production from H2 and bicarbonate by a formateutilizing methanogen. Appl Microbiol Biotechnol 22:148–151. doi:10.1007/bf00250036

    CAS  Google Scholar 

  75. Shams Yazdani S, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351. doi:10.1016/j.ymben.2008.08.005

    Google Scholar 

  76. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi:10.1128/AEM.02192-07

    CAS  Google Scholar 

  77. Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381. doi:10.3109/07388551.2011.651428

    CAS  Google Scholar 

  78. Zhu Y, Li J, Tan M, Liu L, Jiang L, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906. doi:10.1016/j.biortech.2010.06.070

    CAS  Google Scholar 

  79. Jin Z, Yang S (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol Prog 14:457–465. doi:10.1021/bp980026i

    CAS  Google Scholar 

  80. Kagliwal LD, Survase SA, Singhal RS, Granström T (2013) Wheat flour based propionic acid fermentation: an economic approach. Bioresour Technol 129:694–699. doi:10.1016/j.biortech.2012.12.154

    CAS  Google Scholar 

  81. Wang Z, Yang ST (2013) Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 137:116–123. doi:10.1016/j.biortech.2013.03.012

    CAS  Google Scholar 

  82. Zhang A, Yang S (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44:1346–1351. doi:10.1016/j.procbio.2009.07.013

    CAS  Google Scholar 

  83. Suwannakham S, Huang Y, Yang S (2006) Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng 94:383–395. doi:10.1002/bit.20866

    CAS  Google Scholar 

  84. Zhang A, Yang S (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773. doi:10.1002/bit.22437

    CAS  Google Scholar 

  85. Claypool JT, Raman DR (2012) A coarse techno-economic model of a combined fermentation-catalysis route to sorbic acid. In: Agricultural and biosystems engineering presentations, posters and proceedings, Dallas

    Google Scholar 

  86. Xie D, Shao Z, Achkar J, Zha W, Frost JW, Zhao H (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93:727–736. doi:10.1002/bit.20759

    CAS  Google Scholar 

  87. Tang S, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135:10099–10103. doi:10.1021/ja402654z

    CAS  Google Scholar 

  88. Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. doi:10.1016/j.jbiotec.2012.07.008

    Google Scholar 

  89. Merchant Research and Consulting LTD (2013) Adipic Acid (ADPA): 2013 World market outlook and forecast up to 2017

    Google Scholar 

  90. Yang ST, Zhang K, Zhang B, Huang H (2011) 3.16 - Fumaric acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive Biotechnology, 2nd edn. Academic Press, Burlington, p 163–177

    Google Scholar 

  91. Roa Engel CA, van Gulik WM, Marang L, van der Wielen LAM, Straathof AJJ (2011) Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb Technol 48:39–47. doi:10.1016/j.enzmictec.2010.09.001

    CAS  Google Scholar 

  92. Cukalovic A, Stevens CV (2008) Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels, Bioprod Biorefin 2:505–529. doi:10.1002/bbb.105

    CAS  Google Scholar 

  93. Musser MT (2000) Adipic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  94. van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VAP, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28:85–92. doi:10.1002/btpr.709

    Google Scholar 

  95. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211. doi:10.1021/bp010179x

    CAS  Google Scholar 

  96. Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595. doi:10.1128/AEM.00973-08

    CAS  Google Scholar 

  97. Moon TS, Dueber JE, Shiue E, Prather KLJ (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305. doi:10.1016/j.ymben.2010.01.003

    CAS  Google Scholar 

  98. Lippow SM, Moon TS, Basu S, Yoon S, Li X, Chapman BA, Robison K, Lipovšek D, Prather KLJ (2010) Engineering enzyme specificity using computational design of a defined-sequence library. Chem Biol 17:1306–1315. doi:10.1016/j.chembiol.2010.10.012

    CAS  Google Scholar 

  99. Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem Commun 10:1126–1127. doi:10.1039/b300203a

    Google Scholar 

  100. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic Engineering of Candida Tropicalis for the Production of Long-Chain Dicarboxylic Acids. Nat Biotechnol 10:894–898

    CAS  Google Scholar 

  101. Hara A, Ueda M, Matsui T, Arie M, Saeki H, Matsuda H, Furuhashi K, Kanai T, Tanaka A (2001) Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determinant of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis. Appl Microbiol Biotechnol 56:478–485. doi:10.1007/s002530000543

    CAS  Google Scholar 

  102. Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696. doi:10.1016/j.biotechadv.2012.08.007

    CAS  Google Scholar 

  103. Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034. doi:10.1002/bit.24868

    CAS  Google Scholar 

  104. Nakajima-Kambe T, Nozue T, Mukouyama M, Nakahara T (1997) Bioconversion of maleic acid to fumaric acid by Pseudomonas alcaligenes strain XD-1. J Ferment Bioeng 84:165–168. doi:10.1016/S0922-338X(97)82549-4

    CAS  Google Scholar 

  105. Ichikawa S, Iino T, Sato S, Nakahara T, Mukataka S (2003) Improvement of production rate and yield of fumaric acid from maleic acid by heat treatment of Pseudomonas alcaligenes strain XD-1. Biochem Eng J 13:7–13. doi:10.1016/S1369-703X(02)00080-3

    CAS  Google Scholar 

  106. Lee JW, Han MS, Choi S, Yi J, Lee TW, Lee SY (2011) 3.15 - Organic acids: succinic and malic acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 149–161

    Google Scholar 

  107. Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135. doi:10.1002/bit.21521

    CAS  Google Scholar 

  108. Cheng K, Wang G, Zeng J, Zhang J (2013) Improved succinate production by metabolic engineering. BioMed Res Int 2013:12. doi:10.1155/2013/538790

    Google Scholar 

  109. Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol. doi:10.1016/j.copbio.2013.03.008

  110. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464. doi:10.1007/s00253-008-1668-y

    CAS  Google Scholar 

  111. Kirimura K, Honda Y, Hattori T (2011) 3.13 - Citric acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 135–142

    Google Scholar 

  112. Singh Dhillon G, Kaur Brar S, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4:505–529. doi:10.1007/s11947-010-0399-0

  113. Global Industry Analysts (2012) Lactic acid: a global strategic business report. MCP-2089

    Google Scholar 

  114. Mujtaba IM, Edreder EA, Emtir M (2012) Significant thermal energy reduction in lactic acid production process. Appl Energy 89:74–80. doi:10.1016/j.apenergy.2010.11.031

    CAS  Google Scholar 

  115. Verhoff FH (2000) Citric acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  116. Ikram-ul H, Ali S, Qadeer MA, Iqbal J (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour technol 93:125–130. doi:http://dx.doi.org/10.1016/j.biortech.2003.10.018

  117. Buque-Taboada EM, Straathof AJJ, Heijnen JJ, Wielen LAM (2006) In situ product recovery (ISPR) by crystallization: basic principles, design, and potential applications in whole-cell biocatalysis. Appl Microbiol Biotechnol 71:1–12. doi:10.1007/s00253-006-0378-6

    CAS  Google Scholar 

  118. Chibata I, Tosa T, Takata I (1983) Continuous production of L-malic acid by immobilized cells. Trends Biotechnol 1:9–11. doi:10.1016/0167-7799(83)90019-7

    CAS  Google Scholar 

  119. Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I (1991) l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 13:991–996. doi:10.1016/0141-0229(91)90122-Q

    CAS  Google Scholar 

  120. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777. doi:10.1128/AEM.02591-07

    CAS  Google Scholar 

  121. Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722. doi:10.1007/s00253-007-0851-x

    CAS  Google Scholar 

  122. Kirimura K, Honda Y, Hattori T (2011) 3.14 - Gluconic and itaconic acids. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 143–147

    Google Scholar 

  123. Global Industry Analysts (2008) Tartaric acid - a global strategic business report. MCP-2151

    Google Scholar 

  124. Oster B, Fechtel U (2000) Vitamins, 7. Vitamin C (l-ascorbic acid). In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  125. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  126. Anastassiadis S, Rehm H (2006) Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol 73:541–548. doi:10.1007/s00253-006-0499-y

    CAS  Google Scholar 

  127. Anastassiadis S, Rehm H (2006) Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electron J Biotechnol 9. doi:10.2225/vol9-issue5-fulltext-18

  128. Sankpal NV, Joshi AP, Sutar II, Kulkarni BD (1999) Continuous production of gluconic acid by Aspergillus niger immobilized on a cellulosic support: study of low pH fermentative behaviour of Aspergillus niger. Process Biochem 35:317–325. doi:10.1016/S0032-9592(99)00074-6

    CAS  Google Scholar 

  129. van Hecke W, Bhagwat A, Ludwig R, Dewulf J, Haltrich D, van Langenhove H (2009) Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnol Bioeng 102:1475–1482. doi:10.1002/bit.22165

    Google Scholar 

  130. Murakami H, Seko A, Azumi M, Ueshima N, Yoshizumi H, Nakano H, Kitahata S (2003) Fermentative production of lactobionic acid by Burkholderia cepacia. J Appl Glycosc 50:117–120

    CAS  Google Scholar 

  131. Alonso S, Rendueles M, Díaz M (2013) Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol 134:134–142. doi:http://dx.doi.org/10.1016/j.biortech.2013.01.145

  132. Malvessi E, Carra S, Pasquali FC, Kern DB, Silveira MM, Ayub MAZ (2013) Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 40:1–10. doi:10.1007/s10295-012-1198-6

    CAS  Google Scholar 

  133. Kassaian JM (2000) Tartaric acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  134. Klasen R, Bringer-Meyer S, Sahm H (1992) Incapability of Gluconobacter oxydans to produce tartaric acid. Biotechnol Bioeng 40:183–186. doi:10.1002/bit.260400126

    CAS  Google Scholar 

  135. Chandrashekar K, Felse P, Panda T (1999) Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioprocess Eng 20:203–207. doi:10.1007/pl00009044

    CAS  Google Scholar 

  136. Mantha D, Aslam Basha Z, Panda T (1998) Optimization of medium composition by response surface methodology for the production of tartaric acid by Gluconobacter suboxydans. Bioprocess Eng 19:285–288. doi:10.1007/pl00009020

    CAS  Google Scholar 

  137. Matzerath I, Kläui W, Klasen R, Sahm H (1995) Vanadate catalysed oxidation of 5-keto-d-gluconic acid to tartaric acid: the unexpected effect of phosphate and carbonate on rate and selectivity. Inorg Chim Acta 237:203–205. doi:http://dx.doi.org/10.1016/0020-1693(95)04665-V

  138. Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem 47:1453–1459. doi:10.1021/jf980737w

    CAS  Google Scholar 

  139. World Health Organization (2005) Benzoic acid and sodium benzoate. Organization WH, Geneva

    Google Scholar 

  140. Maki T, Takeda K (2000) Benzoic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  141. Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H (2002) Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 50:2161–2168. doi:10.1021/jf011348w

    CAS  Google Scholar 

  142. Figueroa-Espinoza MC, Morel MH, Surget A, Asther M, Moukha S, Sigoillot JC, Rouau X (1999) Attempt to cross-link feruloylated arabinoxylans and proteins with a fungal laccase. Food Hydrocolloids 13:65–71. doi:http://dx.doi.org/10.1016/S0268-005X(98)00072-1

    Google Scholar 

  143. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi:10.1007/s002530100687

    CAS  Google Scholar 

  144. Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    Google Scholar 

  145. Noda S, Kitazono E, Tanaka T, Ogino C, Kondo A (2012) Benzoic acid fermentation from starch and cellulose via a plant-like beta-oxidation pathway in Streptomyces maritimus. Microb Cell Fact 11:49

    CAS  Google Scholar 

  146. Taniguchi H, Hosoda A, Tsuno T, Maruta Y, Nomura E (1999) Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Res 19:3757–3761

    CAS  Google Scholar 

  147. Couteau D, Mathaly P (1997) Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract. Ind Crops Prod 6:237–252. doi:10.1016/S0926-6690(97)00014-9

    CAS  Google Scholar 

  148. Couteau D, Mathaly P (1998) Fixed-bed purification of ferulic acid from sugar-beet pulp using activated carbon: optimization studies. Bioresour Technol 64:17–25. doi:http://dx.doi.org/10.1016/S0960-8524(97)00152-1

  149. Madhavi DL, Smith MAL, Linas AC, Mitiku G (1997) Accumulation of ferulic acid in cell cultures of Ajuga pyramidalis metallica crispa. J Agric Food Chem 45:1506–1508. doi:10.1021/jf9607831

    CAS  Google Scholar 

  150. Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177. doi:10.1038/sj.jim.2900713

    CAS  Google Scholar 

  151. Banerjee D, Mahapatra S, Pati BR (2007) Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Res J Microbiol 2:462–468

    CAS  Google Scholar 

  152. Chávez-González M, Rodríguez-Durán L, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras J, Aguilar C (2012) Biotechnological Advances and Challenges of Tannase: An Overview. Food Bioprocess Technol 5:445–459. doi:10.1007/s11947-011-0608-5

    Google Scholar 

  153. Gonçalves HB, Jorge JA, Pessela BC, Lorente GF, Guisán JM, Guimarães LHS (2013) Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnol Lett 35:591–598. doi:10.1007/s10529-012-1111-4

    Google Scholar 

  154. Gao T, Wong Y, Ng C, Ho K (2012) L-lactic acid production by Bacillus subtilis MUR1. Bioresour Technol 121:105–110. doi:10.1016/j.biortech.2012.06.108

    CAS  Google Scholar 

  155. Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83. doi:10.1016/j.tifs.2012.11.007

    Google Scholar 

  156. Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suominen P (2011) 3.17—Industrial production of lactic acid. In: Editor-in-Chief:  Murray M-Y (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, p 179–188

    Google Scholar 

  157. Holten CH (1971) Lactic acid: properties and chemistry of lactic acid and derivatives. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  158. U.S. Food and Drug Administration (FAO) (2012) Code of federal regulations—lactic acid. 21CFR184.1061

    Google Scholar 

  159. Hazards EPoB, EFSA Panel on Food Contact Materials E, Flavourings and Processing Aids (2011) Scientific opinion on the evaluation of the safety and efficacy of lactic acid for the removal of microbial surface contamination of beef carcasses, cuts and trimmings. In: Opinion of the scientific committee/scientific panel. European Food Safety Authority (EFSA), Parma, p 33

    Google Scholar 

  160. Scientific Committee on Food (1991) First series of food additives of various technological functions. Communities CotE, Luxembourg. CD-NA13416-EN-C

    Google Scholar 

  161. FAO (1974) Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. FAO nutrition meetings report series, p 1–520

    Google Scholar 

  162. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482. doi:10.1016/j.progpolymsci.2007.01.005

    CAS  Google Scholar 

  163. Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107. doi:10.1016/S0141-0229(99)00155-6

  164. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, p 1–66

    Google Scholar 

  165. Moon SK, Wee YJ, Choi GW (2012) A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J Biosci Bioeng 114:155–159. doi:10.1016/j.jbiosc.2012.03.016

    CAS  Google Scholar 

  166. Meng Y, Xue Y, Yu B, Gao C, Ma Y (2012) Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol 116:334–339. doi:10.1016/j.biortech.2012.03.103

    CAS  Google Scholar 

  167. Ye L, Zhou X, Hudari MSB, Li Z, Wu JC (2013) Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol 132:38–44. doi:10.1016/j.biortech.2013.01.011

    CAS  Google Scholar 

  168. Osawa F, Fujii T, Nishida T, Tada N, Ohnishi T, Kobayashi O, Komeda T, Yoshida S (2009) Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast 26:485–496. doi:10.1002/yea.1702

    CAS  Google Scholar 

  169. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies — a review. J Chem Technol Biotechnol 81:1119–1129. doi:10.1002/jctb.1486

    CAS  Google Scholar 

  170. Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95. doi:10.1016/S0065-2164(08)70372-1

    CAS  Google Scholar 

  171. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. doi:10.1007/s00253-006-0779-6

    CAS  Google Scholar 

  172. Tay A, Yang ST (2002) Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12. doi:10.1002/bit.10340

    CAS  Google Scholar 

  173. Xu G, Chu J, Wang Y, Zhuang Y, Zhang S, Peng H (2006) Development of a continuous cell-recycle fermentation system for production of lactic acid by Lactobacillus paracasei. Process Biochem 41:2458–2463. doi:10.1016/j.procbio.2006.05.022

    CAS  Google Scholar 

  174. Wee YJ, Ryu HW (2009) Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 100:4262–4270. doi:10.1016/j.biortech.2009.03.074

    CAS  Google Scholar 

  175. Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52:1–17. doi:10.1016/j.seppur.2006.03.015

    CAS  Google Scholar 

  176. Pal P, Sikder J, Roy S, Giorno L (2009) Process intensification in lactic acid production: a review of membrane based processes. Chem Eng Process 48:1549–1559. doi:10.1016/j.cep.2009.09.003

    CAS  Google Scholar 

  177. Jiang S, Zheng Z, Zhu Y, Wu X, Pan L, Luo S, Du W (2008) Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae. Chinese J Biotechnol 24:1729–1733

    CAS  Google Scholar 

  178. Ning SY, Li SZ (2006) Primary study on fermentation of L(+)-lactic acid in fungal immobilized-bed bioreactor. Food Ferment Ind 32:22–25

    CAS  Google Scholar 

  179. Park EY, Kosakai Y, Okabe M (1998) Efficient production of l-(+) -lactic acid using mycelial cotton-like flocs of Rhizopusoryzae in an air-lift bioreactor. Biotechnol Prog 14:699–704. doi:10.1021/bp9800642

    CAS  Google Scholar 

  180. Hujanen M, Linko YY (1996) Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45:307–313. doi:10.1007/s002530050688

    CAS  Google Scholar 

  181. Audet P, Paquin C, Lacroix C (1989) Sugar utilization and acid production by free and entrapped cells of streptococcus salivarius subsp. thermophilus, lactobacillus delbrueckii subsp. bulgaricus, and lactococcus lactis subsp. lactis in a whey permeate medium. Appl Environ Microbiol 55:185–189

    CAS  Google Scholar 

  182. Tiwari KP, Pandey A, Mishra N (1979) Lactic acid production from molasses by mixed population of lactobacilli. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite naturwissenschaftliche Abteilung: Mikrobiologie der Landwirtschaft der Technologie und des Umweltschutzes 134:544–546

    CAS  Google Scholar 

  183. Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215

    CAS  Google Scholar 

  184. Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2006) Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 72:5492–5499. doi:10.1128/AEM.00683-06

    CAS  Google Scholar 

  185. Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123. doi:10.1128/AEM.01311-06

    CAS  Google Scholar 

  186. Michelson T, Kask K, Jõgi E, Talpsep E, Suitso I, Nurk A (2006) l(+)-Lactic acid producer bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073. Enzyme Microb Technol 39:861–867. doi:10.1016/j.enzmictec.2006.01.015

    CAS  Google Scholar 

  187. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29. doi:10.1016/S0168-1605(96)01233-0

    CAS  Google Scholar 

  188. Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 12:21–37. doi:10.1016/0168-6445(93)90056-F

    CAS  Google Scholar 

  189. Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34

    CAS  Google Scholar 

  190. M G, Michiteru K, Rie G, Hirokazu T, Makoto H, Tadashi H (2005) Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochem 40:1033–1036. doi:10.1016/j.procbio.2004.02.028

    Google Scholar 

  191. Cotton J, Pometto A, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57:626–630. doi:10.1007/s002530100820

    CAS  Google Scholar 

  192. Iyer PV, Lee YY (1999) Simultaneous saccharification and extractive fermentation of lignocellulosic materials into lactic acid in a two-zone fermentor-extractor system. In: Davison B, Finkelstein M (eds) Twentieth symposium on biotechnology for fuels and chemicals, Humana Press, p 409–419

    Google Scholar 

  193. Monteagudo JM, Aldavero M (1999) Production of L-lactic acid by Lactobacillus delbrueckii in chemostat culture using an ion exchange resins system. J Chem Technol Biotechnol 74:627–634. doi:10.1002/(sici)1097-4660(199907)74:7<627:aid-jctb84>3.0.co;2-k

    CAS  Google Scholar 

  194. Dey P, Pal P (2012) Direct production of l (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. J Membr Sci 389:355–362. doi:10.1016/j.memsci.2011.10.051

    CAS  Google Scholar 

  195. Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—an overview. Crit Rev Environ Sci Technol 35:429–467. doi:10.1080/10643380590966181

    CAS  Google Scholar 

  196. Wasewar KL (2005) Separation of lactic acid: recent advances. Chem Biochem Eng Q 19:159–172

    CAS  Google Scholar 

  197. Gao M, Shimamura T, Ishida N, Nagamori E, Takahashi H, Umemoto S, Omasa T, Ohtake H (2009) Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme Microb Technol 44:350–354. doi:10.1016/j.enzmictec.2008.12.001

    CAS  Google Scholar 

  198. Wang Y, Huang C, Xu T (2011) Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes? J Membr Sci 374:150–156. doi:10.1016/j.memsci.2011.03.026

    CAS  Google Scholar 

  199. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288. doi:10.1016/j.desal.2010.04.069

    CAS  Google Scholar 

  200. Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membr Sci 288:1–12. doi:10.1016/j.memsci.2006.11.026

    CAS  Google Scholar 

  201. Eurodia production of organic or amino acids by bipolar membrane electrodialysis. http://www.eurodia.com/html/ebc.html. Accessed 19 Jun 2013

  202. Fernandes P, Prazeres DF, Cabral JS (2003) Membrane-Assisted Extractive Bioconversions. In: Stockar U, Wielen LAM (eds) Process integration in biochemical engineering. Springer, Berlin, pp 115–148

    Google Scholar 

  203. Sanchez Marcano JG, Tsotsis TT (2000) Membrane reactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  204. Melin T, Rautenbach R (2007) Membranverfahren grundlagen der modul- und anlagenauslegung. Springer, Berlin

    Google Scholar 

  205. Carstensen F, Apel A, Wessling M (2012) In situ product recovery: submerged membranes versus external loop membranes. J Membr Sci 394–395:1–36. doi:10.1016/j.memsci.2011.11.029

    Google Scholar 

  206. Sondhi R, Bhave R (2001) Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J Membr Sci 186:41–52. doi:10.1016/S0376-7388(00)00663-3

    CAS  Google Scholar 

  207. Heran M, Eimaleh S (2000) Cross-flow microfiltration with high frequency reverse flow. In: International conference on membrane technology in environmental management. International Water Association, Tokyo, p 337–343

    Google Scholar 

  208. Silalahi SH, Leiknes T (2011) High frequency back-pulsing for fouling development control in ceramic microfiltration for treatment of produced water. Desalin Water Treat 28:137–152. doi:10.5004/dwt.2011.2482

    CAS  Google Scholar 

  209. Lu Z, Wei M, Yu L (2012) Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 47:410–415. doi:10.1016/j.procbio.2011.11.022

    CAS  Google Scholar 

  210. Singh N, Cheryan M (1998) Membrane technology in corn refining and bioproduct-processing. Starch/Staerke 50:16–23. doi:10.1002/(sici)1521-379x(199801)50:1<16:aid-star16>3.0.co;2-d

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Czermak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quitmann, H., Fan, R., Czermak, P. (2013). Acidic Organic Compounds in Beverage, Food, and Feed Production. In: Zorn, H., Czermak, P. (eds) Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_262

Download citation

Publish with us

Policies and ethics