Organisms for Biofuel Production: Natural Bioresources and Methodologies for Improving Their Biosynthetic Potentials

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 147)


In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

Graphical Abstract


Biofuels Biosynthetic potential Methodologies Natural bioresources 



acetyl-CoA carboxylase


acyl carrier


coenzyme A


diacylglycerol acyltransferase


dihydroxyacetone phosphate


enoyl-ACP reductase


fatty acyl-ACP thioesterase


gycerol-3-phosphate dehydrogenase


glycerol-3-phosphate acyltransferase


3-hydroxyacyl-ACP dehydratase


3-ketoacyl-ACP reductase


3-ketoacyl-ACP synthase


lyso-phosphatidic acid acyltransferase


lyso-phosphatidylcholine acyltransferase


malonyl-CoA:ACP transacylase


pyruvate dehydrogenase complex



This work was supported by the National Basic Research Program of China (2011CB707404), the National Key Technology R&D Research Programs (2011BAD22B02-01, 2009AA10Z101), the Natural Science Foundation of China (U1232126), and the Key Research Program of Shandong Province (2012GGF01023).


  1. 1.
    Dudley B ed (2012) BP statistical review of world energy. June 2012, BPGoogle Scholar
  2. 2.
    Conti J (2011) International energy outlook 2011. IEA, ParisGoogle Scholar
  3. 3.
    Snow N (2013) BP: shale gas, tight oil to reshape global markets by 2030. Oil Gas J 111(2B):25−25Google Scholar
  4. 4.
    Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–189Google Scholar
  5. 5.
    Sorrell S, Speirs J, Bentley R et al (2012) Shaping the global oil peak: a review of the evidence on field sizes, reserve growth, decline rates and depletion rates. Energy 37(1):709–724Google Scholar
  6. 6.
    Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288(5473):1997–2002Google Scholar
  7. 7.
    Zhang Q, Guan Y, Yang H (2008) ENSO amplitude change in observation and coupled models. Adv Atmos Sci 25(3):361–366Google Scholar
  8. 8.
    Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271Google Scholar
  9. 9.
    Radakovits R, Jinkerson RE, Darzins A et al (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9(4):486–501Google Scholar
  10. 10.
    Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573Google Scholar
  11. 11.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306Google Scholar
  12. 12.
    Elmoraghy M, Farag IH (2012) Bio-jet fuel from microalgae: reducing water and energy requirements for algae growth. Res Inventy 1(2):22–30Google Scholar
  13. 13.
    Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748Google Scholar
  14. 14.
    Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18Google Scholar
  15. 15.
    Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639Google Scholar
  16. 16.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131Google Scholar
  17. 17.
    Sheehan J, Dunahay T, Benemann J et al (1998) US department of energy’s office of fuels development, July 1998. A look back at the US department of energy’s aquatic species program. Biodiesel from algae, close out report TP-580-24190. National Renewable Energy Laboratory, GoldenGoogle Scholar
  18. 18.
    Riekhof WR, Benning C (2009) Glycerolipid biosynthesis in the Chlamydomonas sourecebook. In: Harris EH (ed). Elsevier Inc., Oxford, UK.41-61Google Scholar
  19. 19.
    Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty-acid profile changes in chlorella (chlorophyta) during high ph-induced cell-cycle inhibition. J Phycol 26(1):72–79Google Scholar
  20. 20.
    Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66(5):486–496Google Scholar
  21. 21.
    Banerjee A, Sharma R, Chisti Y et al (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279Google Scholar
  22. 22.
    Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(7):957–970Google Scholar
  23. 23.
    Cobelas MA, Lechado JZ (1989) Lipids in microalgae—a review.1. biochemistry. Grasas Y Aceites 40(2):118–145Google Scholar
  24. 24.
    Basova MM (2005) Fatty acid composition of lipids in microalgae. Int J Algae 7(1):33–57Google Scholar
  25. 25.
    Yuan C, Liu J, Fan Y et al (2011) Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol Biofuels 4:47Google Scholar
  26. 26.
    Bigogno C, Khozin-Goldberg I, Boussiba S et al (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503Google Scholar
  27. 27.
    de Swaaf ME, de Rijk TC, Eggink G et al (1999) Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotechnol 70(1–3):185–192Google Scholar
  28. 28.
    Cohen Z, Khozin-Goldberg I, Adlerstein D et al (2000) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743Google Scholar
  29. 29.
    Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-coenzyme a carboxylase in plants. Plant Physiol 108:445Google Scholar
  30. 30.
    Dahlqvist A, Stahl U, Lenman M et al (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97(12):6487–6492Google Scholar
  31. 31.
    Yoon K, Han D, Li Y et al (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724Google Scholar
  32. 32.
    Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607Google Scholar
  33. 33.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070Google Scholar
  34. 34.
    Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14(9):1101–1103Google Scholar
  35. 35.
    Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300Google Scholar
  36. 36.
    Gaffron H (1939) Reduction of carbon dioxide with molecular hydrogen in green algae. Nature 143:204–205Google Scholar
  37. 37.
    Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino-acid-sequence of hydrogenase from the green-alga Chlamydomonas-reinhardtii. Eur J Biochem 214(2):475–481Google Scholar
  38. 38.
    Voordouw G, Strang JD, Wilson FR (1989) Organization of the genes encoding fe hydrogenase in Desulfovibrio vulgaris subsp oxamicus monticello. J Bacteriol 171(7):3881–3889Google Scholar
  39. 39.
    Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochimica Et Biophysica Acta 1020(2):115–145Google Scholar
  40. 40.
    Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green-alga Chlamydomonas-reinhardtii. Eur J Biochem 222(3):769–774Google Scholar
  41. 41.
    Ghirardi ML, Posewitz MC, Maness P-C et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Ann Rev Plant Biol 58(1):71–91Google Scholar
  42. 42.
    Ghirardi ML, Zhang JP, Lee JW et al (2000) Microalgae: a green source of renewable H-2. Trends Biotechnol 18(12):506–511Google Scholar
  43. 43.
    Melis A, Zhang LP, Forestier M et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–135Google Scholar
  44. 44.
    Wykoff DD, Davies JP, Melis A et al (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117(1):129–139Google Scholar
  45. 45.
    Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4):552–561Google Scholar
  46. 46.
    Scoma A, Krawietz D, Faraloni C et al (2012) Sustained H-2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157(4):613–619Google Scholar
  47. 47.
    Show KY, Lee DJ, Tay JH et al (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37(20):15616–15631Google Scholar
  48. 48.
    Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132Google Scholar
  49. 49.
    Juantorena AU, Lastres O, Hernandez G et al (2012) Hydrogen production by microorganisms and its application in a PEMFC. Int J Energy Res 36(8):902–910Google Scholar
  50. 50.
    Papazi A, Andronis E, Ioannidis NE et al (2012) High yields of hydrogen production induced by meta-substituted dichlorophenols biodegradation from the green alga scenedesmus obliquus. Plos One 7(11):e49037Google Scholar
  51. 51.
    Song W, Rashid N, Choi W et al (2011) Biohydrogen production by immobilized Chlorella sp using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102(18):8676–8681Google Scholar
  52. 52.
    Chader S, Hacene H, Agathos SN (2009) Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int J Hydrogen Energy 34(11):4941–4946Google Scholar
  53. 53.
    Amutha KB, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102(1):194–199Google Scholar
  54. 54.
    He M, Li L, Zhang L et al (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation. Int J Hydrogen Energy 37(22):16903–16915Google Scholar
  55. 55.
    Guan YF, Deng MC, Yu XJ et al (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19(1):69–73Google Scholar
  56. 56.
    Ran CQ, Yu XJ, Jin MF et al (2006) Role of carbonyl cyanide m-chlorophenylhydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis. Biotechnol Prog 22(2):438–443Google Scholar
  57. 57.
    Weare NM, Benemann JR (1974) Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol 119(1):258–265Google Scholar
  58. 58.
    Weare NM, Benemann JR (1973) Nitrogen-fixation by Anabaena cylindrica.1. localization of nitrogen-fixation in heterocysts. Archiv Fur Mikrobiologie 90(4):323–332Google Scholar
  59. 59.
    Dutta D, De D, Chaudhuri S et al (2005) Hydrogen production by Cyanobacteria. Microbiol Cell Fact 4(1):36Google Scholar
  60. 60.
    Bergman B, Gallon J, Rai A et al (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185Google Scholar
  61. 61.
    Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373Google Scholar
  62. 62.
    Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33(1):123–131Google Scholar
  63. 63.
    Hallenbeck P, Kochian L, Weissmann J et al (1978) Solar energy conversion with Hydrogen producing cultures of the blue green alga, Anabaena cylindrica. Biotechnol Bioeng Symp 8:283–297Google Scholar
  64. 64.
    Yu J, Takahashi P (2007) Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Badajoz, Spain pp 79−89Google Scholar
  65. 65.
    Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. Strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76(13):4293–4301Google Scholar
  66. 66.
    Bandyopadhyay A, Stöckel J, Min H et al (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1(9):139Google Scholar
  67. 67.
    Rashid N, Song W, Park J et al (2009) Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15(4):498–503Google Scholar
  68. 68.
    Schutz K, Happe T, Troshina O et al (2004) Cyanobacterial H-2 production—a comparative analysis. Planta 218(3):350–359Google Scholar
  69. 69.
    Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98(1):114–120Google Scholar
  70. 70.
    Bernat G, Waschewski N, Roegner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Res 99(3):205–216Google Scholar
  71. 71.
    Happe T, Schütz K, Böhme H (2000) Transcriptional and mutational analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182(6):1624–1631Google Scholar
  72. 72.
    Marques AE, Barbosa AT, Jotta J et al (2011) Biohydrogen production by Anabaena sp PCC 7120 wild-type and mutants under different conditions: light, nickel, propane, carbon dioxide and nitrogen. Biomass Bioenergy 35(10):4426–4434Google Scholar
  73. 73.
    Abdel-Basset R, Bader KP (2008) Hydrogen evolution in relation to PSI-reducible substrates in the cyanobacterium Oscillatoria chalybea assayed by means of mass spectrometry. Int J Hydrogen Energy 33(11):2653–2659Google Scholar
  74. 74.
    Huesemann MH, Hausmann TS, Carter BM et al (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium plectonema boryanum. Appl Biochem Biotechnol 162(1):208–220Google Scholar
  75. 75.
    Aoyama K, Uemura I, Miyake J et al (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Fermentat Bioeng 83(1):17–20Google Scholar
  76. 76.
    Anderson RA Kawacbi M (2005) Traditional microalgae isolation techniques in Algal culturing techniques. In: Anderson RA (ed). Elsevier Academic Press, Amsterdam, pp 83−101Google Scholar
  77. 77.
    Crosbie ND, Pöckl M, Weisse T (2003) Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J Microbiol Methods 55(2):361–370Google Scholar
  78. 78.
    Sinigalliano CD, Winshell J, Guerrero MA et al (2009) Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia 48(4):249–257Google Scholar
  79. 79.
    Cellamare M, Rolland A, Jacquet S (2010) Flow cytometry sorting of freshwater phytoplankton. J Appl Phycol 22(1):87–100Google Scholar
  80. 80.
    Day JG, Brand JJ (2005) Cryopreservation methods for maintaining microalgal cultures. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 165−188Google Scholar
  81. 81.
    Chen W, Zhang C, Song L et al (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77(1):41–47Google Scholar
  82. 82.
    Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102(1):135–141Google Scholar
  83. 83.
    Govender T, Ramanna L, Rawat I et al (2012) BODIPY staining, an alternative to the Nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511Google Scholar
  84. 84.
    Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A 106(7):2089–2090Google Scholar
  85. 85.
    Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895Google Scholar
  86. 86.
    Wu H, Volponi JV, Oliver AE et al (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814Google Scholar
  87. 87.
    Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18(3):284–291Google Scholar
  88. 88.
    Hu G, Fan Y, Zhang L et al (2013) Enhanced lipid productivity and photosynthesis efficiency in a desmodesmus sp. mutant induced by heavy carbon ions. Plos One 8(4):e60700Google Scholar
  89. 89.
    Ghirardi ML, Dubini A, Yu J et al (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61Google Scholar
  90. 90.
    Harris EH (2009) The Chalmydomonas sourcebook. Academic Press, San Diego, CAGoogle Scholar
  91. 91.
    Li Y, Han D, Hu G et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Eng 12(4):387–391Google Scholar
  92. 92.
    Work VH, Radakovits R, Jinkerson RE et al (2010) Increased lipid accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9(8):1251–1261Google Scholar
  93. 93.
    Wang ZT, Ullrich N, Joo S et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8(12):1856–1868Google Scholar
  94. 94.
    Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–251Google Scholar
  95. 95.
    Nguyen AV, Thomas-Hall SR, Malnoe A et al (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga chlamydomonas reinhardtii. Eukaryotic Cell 7(11):1965–1979Google Scholar
  96. 96.
    Guarnieri MT, Nag A, Smolinski SL et al (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. Plos One 6(10):e25851Google Scholar
  97. 97.
    Rismani-Yazdi H, Haznedaroglu BZ, Bibby K et al (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148Google Scholar
  98. 98.
    Rismani-Yazdi H, Haznedaroglu BZ, Hsin C et al (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74Google Scholar
  99. 99.
    Wan L, Han J, Sang M et al (2012) De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels. Plos One 7(4):e35142Google Scholar
  100. 100.
    Blanc G, Duncan G, Agarkova I et al (2010) The chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955Google Scholar
  101. 101.
    Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657Google Scholar
  102. 102.
    Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427):59–65Google Scholar
  103. 103.
    Worden AZ, Lee J-H, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324(5924):268–272Google Scholar
  104. 104.
    Radakovits R, Jinkerson RE, Fuerstenberg SI et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686Google Scholar
  105. 105.
    Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104(18):7705–7710Google Scholar
  106. 106.
    Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103(31):11647–11652Google Scholar
  107. 107.
    Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244Google Scholar
  108. 108.
    Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306(5693):79–86Google Scholar
  109. 109.
    Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga volvox carteri. Science 329(5988):223–226Google Scholar
  110. 110.
    Liolios K, Mavromatis K, Tavernarakis N et al (2008) The genomes on line database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucl Acids Res 36:D475–D479Google Scholar
  111. 111.
    León-Bañares R, González-Ballester D, Galván A et al (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52Google Scholar
  112. 112.
    Sizova I, Fuhrmann M, Hegemann P (2001) A streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229Google Scholar
  113. 113.
    Kovar JL, Zhang J, Funke RP et al (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29(1):109–117Google Scholar
  114. 114.
    Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31(3):264–271Google Scholar
  115. 115.
    Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447Google Scholar
  116. 116.
    Tang DKH, Qiao SY, Wu M (1995) Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int 36(5):1025–1035Google Scholar
  117. 117.
    Fischer H, Robl I, Sumper M et al (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 35(1):113–120Google Scholar
  118. 118.
    Nelson JA, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15(10):5762–5769Google Scholar
  119. 119.
    Zaslavskaia LA, Lippmeier JC, Shih C et al (2001) Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 292(5524):2073–2075Google Scholar
  120. 120.
    Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant 19(3):353–361Google Scholar
  121. 121.
    Te, Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13(3):427–435Google Scholar
  122. 122.
    Teng CY, Qin S, Liu JG et al (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14(6):497–500Google Scholar
  123. 123.
    Falciatore A, Casotti R, Leblanc C et al (1999) Transformation of nonselectable reporter genes in marine diatoms. Marine Biotechnol 1(3):239–251Google Scholar
  124. 124.
    Zaslavskaia LA, Lippmeier JC, Kroth PG et al (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36(2):379–386Google Scholar
  125. 125.
    Hall LM, Taylor KB, Jones DD (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124(1):75–81Google Scholar
  126. 126.
    Chang M, Li F, Odom OW et al (2003) A cosmid vector containing a dominant selectable marker for cloning Chlamydomonas genes by complementation. Plasmid 49(1):75–78Google Scholar
  127. 127.
    Marin-Navarro J, Manuell AL, Wu J et al (2007) Chloroplast translation regulation. Photosynthesis Res 94(2–3):359–374Google Scholar
  128. 128.
    Casas-Mollano JA, Rohr J, Kim E-J et al (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 179(1):69–81Google Scholar
  129. 129.
    Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell 9(1):97–106Google Scholar
  130. 130.
    Cerutti H, Ma X, Msanne J et al (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryotic Cell 10(9):1164–1172Google Scholar
  131. 131.
    Molnar A, Bassett A, Thuenemann E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174Google Scholar
  132. 132.
    Zhao T, Wang W, Bai X et al (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164Google Scholar
  133. 133.
    Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Ann Rev Plant Physiol Plant Mol Biol 48:109–136Google Scholar
  134. 134.
    Roesler K, Shintani D, Savage L et al (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiol 113(1):75–81Google Scholar
  135. 135.
    Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012Google Scholar
  136. 136.
    Dunahay TG, Jarvis EE, Dais SS et al (1996) Manipulation of microalgal lipid production using genetic engineering. Biotechnol Appl Biochem 57–8:223–231Google Scholar
  137. 137.
    Vigeolas H, Waldeck P, Zank T et al (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5(3):431–441Google Scholar
  138. 138.
    Jain RK, Coffey M, Hi AKK et al (2000) Enhancement of seed oil content by expression of glycerol-3-phosphate acyI transferase genes. Biochem Soc Trans 28(6):959–960Google Scholar
  139. 139.
    Taylor DC, Katavic V, Zou JT et al (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8(4):317–322Google Scholar
  140. 140.
    Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40(3):367–372Google Scholar
  141. 141.
    Wang ZT, Ullrich N, Joo S et al (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless chlamydomonas reinhardtii. Eukaryotic Cell 8(12):1856–1868Google Scholar
  142. 142.
    Voelker TA, Worrell AC, Anderson L et al (1992) Fatty-acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257(5066):72–74Google Scholar
  143. 143.
    Yuan L, Voelker TA, Hawkins DJ (1995) Modification of the substrate-specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proc Natl Acad Sci U S A 92(23):10639–10643Google Scholar
  144. 144.
    Melis A (2009) Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280Google Scholar
  145. 145.
    Work VH, D’Adamo S, Radakovits R et al (2012) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr Opinion Biotechnol 23(3):290–297Google Scholar
  146. 146.
    Mussgnug JH, Thomas-Hall S, Rupprecht J et al (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814Google Scholar
  147. 147.
    Li Y, Han D, Hu G et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Eng 12(4):387–391Google Scholar
  148. 148.
    Li Y, Zhang X, Hu Q et al (2011) A type-2 acyl-coa:diacylglycerol acyltransferase gene is essential for endoplasmic reticulum-based triacylglycerol synthesis in Chlamydomonas reinhardtii. J Phycol 47:S59–S59Google Scholar
  149. 149.
    Kilian O, Benemann CSE, Niyogi KK et al (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269Google Scholar
  150. 150.
    Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40(4):575–585Google Scholar
  151. 151.
    Ohto, M-a, Fischer RL, Goldberg RB et al (2005) Control of seed mass by APETALA2. Proc Natl Acad Sci U S A 102(8):3123–3128Google Scholar
  152. 152.
    Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26(11):1301–1308Google Scholar
  153. 153.
    Tuck G, Glendining MJ, Smith P et al (2006) The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30(3):183–197Google Scholar
  154. 154.
    Wilcox HA (1976) The Ocean Food and Energy Farm Project. J Marine Edu 16(19):76Google Scholar
  155. 155.
    Benemann J (1980) Proalcohol: the Brazilian alcohol program. Biosour Dig 2(3):156−179Google Scholar
  156. 156.
    Sangyōshō T (1979) Sunshine Project : new energy research and development in Japan. Tokyo : Ministry of International Trade and Industry, pp:1−54Google Scholar
  157. 157.
    Dasgupta B (1977) India’s green revolution. Economic and political weekly, pp 241−260Google Scholar
  158. 158.
    Calvin M (1986) Renewable Fuels and Materials. Cell Biochem Biophys 9(1–2):189–210Google Scholar
  159. 159.
    Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76Google Scholar
  160. 160.
    Hertel TW, Golub AA, Jones AD et al (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60(3):223–231Google Scholar
  161. 161.
    Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810Google Scholar
  162. 162.
    Sissell K (2013) Brazil’s BNDES invests $293 million in cellulosic ethanol producer. Chemical WeekGoogle Scholar
  163. 163.
    Panella L (2010) Sugar Beet as an Energy Crop. Sugar Tech 12(3):288–293Google Scholar
  164. 164.
    PRANKL H (2000) Standardisation of biodiesel. Final report of NTB-net Phase IV/Topic 1Google Scholar
  165. 165.
    Rahman M, Niimi M, Ishii Y et al (2006) Effects of season, variety and botanical fractions on oxalate content of napiergrass (Pennisetum purpureum Schumach). Grassland Sci 52(4):161–166Google Scholar
  166. 166.
    Stewart J, Toma Y, FERNÁNDEZ FG et al (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Global Change Biol Bioenergy 1(2):126–153Google Scholar
  167. 167.
    Sumathi S, Chai S, Mohamed A (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421Google Scholar
  168. 168.
    Brosse N, Dufour A, Meng XZ et al (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts Biorefining-Biofpr 6(5):580–598Google Scholar
  169. 169.
    Chung J-H, Kim D-S (2012) Miscanthus as a potential bioenergy crop in East Asia. J Crop Sci Biotechnol 15(2):65–77Google Scholar
  170. 170.
    Greef JM, Deuter M, Jung C et al (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol 44(2):185–195Google Scholar
  171. 171.
    Atienza SG, Satovic Z, Petersen KK et al (2003) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theoret Appl Genet 107(5):857–863Google Scholar
  172. 172.
    Atienza SG, Satovic Z, Petersen KK et al (2003) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theoret Appl Genet 107(1):123–129Google Scholar
  173. 173.
    Swaminathan K, Alabady MS, Varala K et al (2010) Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11(2):R12Google Scholar
  174. 174.
    Hu N, Yuan B, Sun J et al (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368Google Scholar
  175. 175.
    Yuangsaard N, Yongmanitchai W, Yamada M et al (2013) Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie Van Leeuwenhoek Int J General Mol Microbiol 103(3):577–588Google Scholar
  176. 176.
    Khambhaty Y, Upadhyay D, Kriplani Y et al (2013) Bioethanol from Macroalgal Biomass: Utilization of Marine Yeast for Production of the Same. Bioenergy Res 6(1):188–195Google Scholar
  177. 177.
    Liu XY, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour Technol 104:579–586Google Scholar
  178. 178.
    Ageitos JM, Vallejo JA, Veiga-Crespo P et al (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227Google Scholar
  179. 179.
    Beopoulos A, Cescut J, Haddouche R et al (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387Google Scholar
  180. 180.
    Wang JJ, Zhang BR, Chen SL (2011) Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem 46(7):1436–1441Google Scholar
  181. 181.
    Sabirova JS, Haddouche R, Van Bogaert IN et al (2011) The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microbial Biotechnol 4(1):47–54Google Scholar
  182. 182.
    Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Eng 15:1–9Google Scholar
  183. 183.
    Hu C, Wu S, Wang Q et al (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels 4(1):25Google Scholar
  184. 184.
    Gong Z, Wang Q, Shen H et al (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24Google Scholar
  185. 185.
    Gujjari P, Suh SO, Coumes K et al (2011) Characterization of oleaginous yeasts revealed two novel species: Trichosporon cacaoliposimilis sp nov and Trichosporon oleaginosus sp nov. Mycologia 103(5):1110–1118Google Scholar
  186. 186.
    Kumar S, Kushwaha H, Bachhawat AK et al (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryotic Cell 11(8):1083–1084Google Scholar
  187. 187.
    Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482Google Scholar
  188. 188.
    Franks AE, Nevin KP (2010) Microbial Fuel Cells. Curr Rev Energies 3(5):899–919Google Scholar
  189. 189.
    Gunawardena A, Fernando S, To F (2008) Performance of a yeast-mediated biological fuel cell. Int J Mol Sci 9(10):1893–1907Google Scholar
  190. 190.
    Favre MF, Carrard D, Ducommun R et al (2009) Online monitoring of yeast cultivation using a fuel-cell-type activity sensor. J Ind Microbiol Biotechnol 36(10):1307–1314Google Scholar
  191. 191.
    Sayed ET, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell. Bioelectrochemistry 86:97–101Google Scholar
  192. 192.
    Hubenova YV, Rashkov RS, Buchvarov VD et al (2011) Improvement of yeast-biofuel cell output by electrode modifications. Ind Eng Chem Res 50(2):557–564Google Scholar
  193. 193.
    Prasad D, Arun S, Murugesan A et al (2007) Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosensors Bioelectronics 22(11):2604–2610Google Scholar
  194. 194.
    Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112(4):379–387Google Scholar
  195. 195.
    Haslett ND, Rawson FJ, Barriere F et al (2011) Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors Bioelectronics 26(9):3742–3747Google Scholar
  196. 196.
    Jarboe LR, Shanmugam KT, Ingram LO (2009) Ethanol. In: Schaechter M (ed) The desk encyclopedia of Microbiology, 2nd edn. Elsevier, Oxford and San Diego, pp 428–437Google Scholar
  197. 197.
    Sveinsdottir M, Sigurbjornsdottir MA, Orlygsson J (2011) Ethanol and hydrogen production with thermophilic bacteria from sugars and complex biomass. In: Shaukat S (ed) Progress in biomass and bioenergy production, In Tech, pp 359–394Google Scholar
  198. 198.
    Carere CR, Rydzak T, Verbeke TJ et al (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295Google Scholar
  199. 199.
    Liu S, Dien BS, Cotta MA (2005) Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis. Curr Microbiol 50(6):324–328Google Scholar
  200. 200.
    Kaczowka SJ, Reuter CJ, Talarico LA et al (2005) Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. Archaea 1(5):327–334Google Scholar
  201. 201.
    Chandra Raj K, Ingram LO, Maupin-Furlow JA (2001) Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol 176(6):443–451Google Scholar
  202. 202.
    Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44(5):1309–1314Google Scholar
  203. 203.
    Ohta K, Beall DS, Mejia JP et al (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  204. 204.
    Taylor MP, Eley KL, Martin S et al (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27(7):398–405Google Scholar
  205. 205.
    Balusu R, Paduru RR, Kuravi SK et al (2005) Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem 40(9):3025–3030Google Scholar
  206. 206.
    Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49(6):639–648Google Scholar
  207. 207.
    Sveinsdottir M, Baldursson SRB, Orlygsson J (2009) Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Icelandic Agricul Sci 22:45–58Google Scholar
  208. 208.
    Tenenbaum DJ (2008) Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect 116(6):A254–A257Google Scholar
  209. 209.
    Ji SQ, Wang SA, Tan Y et al (2012) An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. Fems Microbiol Lett 335(1):39–46Google Scholar
  210. 210.
    Kopke M, Mihalcea C, Bromley JC et al (2011) Fermentative production of ethanol from carbon monoxide. Curr Opinion Biotechnol 22(3):320–325Google Scholar
  211. 211.
    Choi WJ, Hartono MR, Chan WH et al (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89(4):1255–1264Google Scholar
  212. 212.
    Xiao Z, Wang X, Huang Y et al (2012) Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5(1):88Google Scholar
  213. 213.
    Gupta A, Murarka A, Campbell P et al (2009) Anaerobic fermentation of glycerol in paenibacillus macerans: metabolic pathways and environmental determinants. Appl Environ Microbiol 75(18):5871–5883Google Scholar
  214. 214.
    Jessen JE, Orlygsson J (2012) Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J Biomed Biotechnol 2012:186982Google Scholar
  215. 215.
    Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145(1–3):99–110Google Scholar
  216. 216.
    Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77(1):61–68Google Scholar
  217. 217.
    Zambare VP, Bhalla A, Muthukumarappan K et al (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15(5):611–618Google Scholar
  218. 218.
    Qi X, Zhang Y, Tu R et al (2011) High-throughput screening and characterization of xylose-utilizing, ethanol-tolerant thermophilic bacteria for bioethanol production. J Appl Microbiol 110(6):1584–1591Google Scholar
  219. 219.
    Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534Google Scholar
  220. 220.
    Zheng YN, Li LZ, Xian M et al (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36(9):1127–1138Google Scholar
  221. 221.
    Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28(5):651–657Google Scholar
  222. 222.
    Chua TK, Liang DW, Qi C et al (2012) Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. Bioresour Technol 135:372–378Google Scholar
  223. 223.
    Bramono SE, Lam YS, Ong SL et al (2011) A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol 102(20):9558–9563Google Scholar
  224. 224.
    Montoya D, Spitia S, Silva E et al (2000) Isolation of mesophilic solvent-producing clostridia from Colombian sources: physiological characterization, solvent production and polysaccharide hydrolysis. J Biotechnol 79(2):117–126Google Scholar
  225. 225.
    Montoya D, Arevalo C, Gonzales S et al (2001) New solvent-producing Clostridium sp strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27(5):329–335Google Scholar
  226. 226.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opinion Biotechnol 18(3):220–227Google Scholar
  227. 227.
    Virunanon C, Chantaroopamai S, Denduangbaripant J et al (2008) Solventogenic-cellulolytic clostridia from 4-step-screening process in agricultural waste and cow intestinal tract. Anaerobe 14(2):109–117Google Scholar
  228. 228.
    Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metabolic Eng 10(6):295–304Google Scholar
  229. 229.
    Ting CNW, Wu JC, Takahashi K et al (2012) Screened butanol-tolerant enterococcus faecium capable of butanol production. Appl Biochem Biotechnol 168(6):1672–1680Google Scholar
  230. 230.
    Peralta-Yahya PP, Zhang F, del Cardayre SB et al (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328Google Scholar
  231. 231.
    Lamsen EN, Atsumi S (2012) Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 3:196Google Scholar
  232. 232.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89Google Scholar
  233. 233.
    Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111Google Scholar
  234. 234.
    Tabatabaei M, Tohidfar M, Jouzani GS et al (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15(4):1918–1927Google Scholar
  235. 235.
    Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297Google Scholar
  236. 236.
    Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593Google Scholar
  237. 237.
    Chen WM, Tseng ZJ, Lee KS et al (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30(10):1063–1070Google Scholar
  238. 238.
    Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41(3):682–688Google Scholar
  239. 239.
    van Niel EWJ, Budde MAW, de Haas GG et al (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27(11–12):1391–1398Google Scholar
  240. 240.
    van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81(3):255–262Google Scholar
  241. 241.
    Munro SA, Zinder SH, Walker LP (2009) The Fermentation Stoichiometry of Thermotoga neapolitana and Influence of Temperature, Oxygen, and pH on Hydrogen Production. Biotechnol Prog 25(4):1035–1042Google Scholar
  242. 242.
    D’Ippolito G, Dipasquale L, Vella FM et al (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrogen Energy 35(6):2290–2295Google Scholar
  243. 243.
    de Vrije T, Mars AE, Budde MAW et al (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367Google Scholar
  244. 244.
    de Vrije T, Bakker RR, Budde MAW et al (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12Google Scholar
  245. 245.
    Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrogen Energy 35(3):1128–1137Google Scholar
  246. 246.
    Almarsdottir AR, Taraceviz A, Gunnarsson I et al (2010) Hydrogen production from sugars and complex biomass by Clostridium species, AK(14), isolated from Icelandic hot spring. Icelandic Agricul Sci 23:61–71Google Scholar
  247. 247.
    Cao GL, Ren NQ, Wang AJ et al (2010) Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Bioresour Technol 101(6):2053–2058Google Scholar
  248. 248.
    Ren NQ, Chua H, Chan SY et al (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780Google Scholar
  249. 249.
    Cheong DY, Hansen CL, Stevens DK (2007) Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnol Bioeng 96(3):421–432Google Scholar
  250. 250.
    Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908Google Scholar
  251. 251.
    Koskinen PEP, Beck SR, Orlygsson J et al (2008) Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from icelandic geothermal areas. Biotechnol Bioeng 101(4):679–690Google Scholar
  252. 252.
    Koskinen PEP, Lay CH, Puhakka JA et al (2008) High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an icelandic hot spring. Biotechnol Bioeng 101(4):665–678Google Scholar
  253. 253.
    Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Water Res 43(5):1414–1424Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Bioenergy and Bioprocess TechnologyCASQingdaoChina
  2. 2.Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina

Personalised recommendations