Skip to main content

Directed Multistep Biocatalysis Using Tailored Permeabilized Cells

  • Chapter
  • First Online:
Fundamentals and Application of New Bioproduction Systems

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 137))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14(2):174–183

    CAS  Google Scholar 

  2. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313. doi:10.1126/science.1190239

    CAS  Google Scholar 

  3. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi:10.1038/Nature11117

    CAS  Google Scholar 

  4. Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, New York

    Google Scholar 

  5. Wohlgemuth R (2011) Molecular and engineering perspectives of the biocatalysis interface to chemical synthesis. Chem Biochem Eng Q 25(1):125–134

    CAS  Google Scholar 

  6. Wohlgemuth R (2010) Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 21(6):713–724. doi:10.1016/j.copbio.2010.09.016

    CAS  Google Scholar 

  7. Heinzle E, Biwer AP, Cooney CL (2006) Development of sustainable bioprocesses. Wiley-VCH, New York

    Google Scholar 

  8. Drauz K, Waldmann H (2012) Enzyme catalysis in organic synthesis. Wiley-VCH, New York

    Google Scholar 

  9. Aehle W (2004) Enzymes in industry. Wiley-VCH, New York

    Google Scholar 

  10. Schneider K, Dorscheid S, Witte K, Giffhorn F, Heinzle E (2012) Controlled feeding of hydrogen peroxide as oxygen source improves production of 5-ketofructose From L-sorbose using engineered pyranose 2-oxidase from Peniophora gigantea. Biotechnol Bioeng 109(11):2941–2945. doi:10.1002/bit.24572

    CAS  Google Scholar 

  11. Kuhn D, Kholiq MA, Heinzle E, Buehler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12(5):815–827. doi:10.1039/b921896c

    CAS  Google Scholar 

  12. You C, Zhang YH (2013) Cell-free biosystems for biomanufacturing. Adv Biochem Eng Biotechnol 131:89–119. doi:10.1007/10_2012_159

    Google Scholar 

  13. Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol. doi:10.1111/nph.12325

    Google Scholar 

  14. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(14):2863–2869. doi:10.1242/Jcs.03063

    CAS  Google Scholar 

  15. Monti D, Ferrandi EE, Zanellato I, Hua L, Polentini F, Carrea G, Riva S (2009) One-pot multienzymatic synthesis of 12-ketoursodeoxycholic acid: subtle cofactor specificities rule the reaction equilibria of five biocatalysts working in a row. Adv Synth Catal 351(9):1303–1311. doi:10.1002/adsc.200800727

    CAS  Google Scholar 

  16. Krauser S, Kiefer P, Heinzle E (2012) Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli. ChemCatChem 4(6):786–788. doi:10.1002/cctc.201100351

    CAS  Google Scholar 

  17. Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120. doi:10.1186/1475-2859-11-120

    CAS  Google Scholar 

  18. Felix H (1982) Permeabilized cells. Anal Biochem 120(2):211–234. doi:10.1016/0003-2697(82)90340-2

    CAS  Google Scholar 

  19. Ma HW, Zeng AP (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11):1423–1430

    CAS  Google Scholar 

  20. Vaara M (1992) Agents that increase the permeability of the outer-membrane. Microbiol Rev 56(3):395–411

    CAS  Google Scholar 

  21. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. doi:10.1101/cshperspect.a000414

    Google Scholar 

  22. Cánovas M, Torroglosa T, Iborra JL (2005) Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzyme and Microbial Technology 37(3):300–308

    Google Scholar 

  23. Yuan YB, Heinzle E (2009) Permeabilization of Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity measurement. C R Chim 12(10–11):1154–1162. doi:10.1016/j.crci.2009.09.006

    CAS  Google Scholar 

  24. Abraham J, Bhat S (2008) Permeabilization of baker’s yeast with N-lauroyl sarcosine. J Ind Microbiol Biotechnol 35(8):799–804. doi:10.1007/s10295-008-0350-9

    CAS  Google Scholar 

  25. Zhang J, Witholt B, Li Z (2006) Coupling of permeabilized microorganisms for efficient enantioselective reduction of ketone with cofactor recycling. Chem Commun 4:398–400. doi:10.1039/b515721h

    Google Scholar 

  26. Malik M, Ganguli A, Ghosh M (2012) Modeling of permeabilization process in Pseudomonas putida G7 for enhanced limonin bioconversion. Appl Microbiol Biotechnol 95(1):223–231. doi:10.1007/s00253-012-3880-z

    CAS  Google Scholar 

  27. Tryfona T, Bustard MT (2008) Impact of pulsed electric fields on Corynebacterium glutamicum cell membrane permeabilization. J Biosci Bioeng 105(4):375–382. doi:10.1263/jbb.105.375

    CAS  Google Scholar 

  28. Sestak S, Farkas V (2001) In situ assays of fungal enzymes in cells permeabilized by osmotic shock. Anal Biochem 292(1):34–39

    CAS  Google Scholar 

  29. Kaur G, Panesar PS, Bera MB, Kumar H (2009) Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioprocess Biosyst Eng 32(1):63–67. doi:10.1007/s00449-008-0221-9

    CAS  Google Scholar 

  30. Ding Y, Lu H, Shi G, Liu J, Shen G, Yu R (2008) Cell-based immobilization strategy for sensitive piezoelectric immunoassay of total prostate specific antigen. Biosens Bioelectron 24(2):228–232. doi:10.1016/j.bios.2008.03.020

    CAS  Google Scholar 

  31. Niklas J, Melnyk A, Yuan YB, Heinzle E (2011) Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. Anal Biochem 416(2):218–227. doi:10.1016/j.ab.2011.05.039

    CAS  Google Scholar 

  32. Cook GA, Gattone VH, Evan AP, Harris RA (1983) Structural-changes of isolated hepatocytes during treatment with digitonin. Biochim Biophys Acta 763(4):356–367. doi:10.1016/0167-4889(83)90097-6

    CAS  Google Scholar 

  33. Aragon JJ, Feliu JE, Frenkel RA, Sols A (1980) Permeabilization of animal-cells for kinetic studies of intracellular enzymes—insitu behavior of the glycolytic-enzymes of erythrocytes. Proc Natl Acad Sci U S A (Biol Sci) 77(11):6324–6328. doi:10.1073/pnas.77.11.6324

  34. Zhang W, O’Connor K, Wang DIC, Li Z (2009) Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol 75(3):687–694. doi:10.1128/aem.01506-08

    CAS  Google Scholar 

  35. Zhang H, Witholt B, Li Z (2006) Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase. Adv Synth Catal 348(4–5):429–433. doi:10.1002/adsc.200505439

    CAS  Google Scholar 

  36. Owen DM, Williamson DJ, Magenau A, Gaus K (2012) Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat Commun 3:1256. doi:10.1038/ncomms2273

    Google Scholar 

  37. Daines AM, Maltman BA, Flitsch SL (2004) Synthesis and modifications of carbohydrates, using biotransformations. Curr Opin Chem Biol 8(2):106–113. doi:10.1016/j.cbpa.2001.02.003

    CAS  Google Scholar 

  38. Datsenko KA (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    CAS  Google Scholar 

  39. Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A (2009) Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp. Langmuir 25(14):7892–7898. doi:10.1021/la900480q

    CAS  Google Scholar 

  40. Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol (Clifton, NJ) 588:63–66. doi:10.1007/978-1-59745-324-0_9

    Google Scholar 

  41. Womack MD, Kendall DA, Macdonald RC (1983) Detergent effects on enzyme-activity and solubilization of lipid bilayer-membranes. Biochim Biophys Acta 733(2):210–215. doi:10.1016/0005-2736(83)90524-2

    CAS  Google Scholar 

  42. Tandon S, Horowitz PM (1987) Detergent-assisted refolding of guanidinium chloride-denatured rhodanese—the effects of the concentration and type of detergent. J Biol Chem 262(10):4486–4491

    CAS  Google Scholar 

  43. Weber K, Kuter DJ (1971) Reversible denaturation of enzymes by sodium dodecyl sulfate. J Biol Chem 246(14):4504–4509

    Google Scholar 

  44. Galabova D, Tuleva B, Spasova D (1996) Permeabilization of Yarrowia lipolytica cells by Triton X-100. Enzyme Microb Technol 18(1):18–22. doi:10.1016/0141-0229(96)00063-4

    CAS  Google Scholar 

  45. Fiskum G, Craig SW, Decker GL, Lehninger AL (1980) The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A (Biol Sci) 77(6):3430–3434. doi:10.1073/pnas.77.6.3430

  46. Sperry WM, Webb M (1950) A revision of the Schoenheimer-Sperry method for cholesterol determination. J Biol Chem 187(1):97–106

    CAS  Google Scholar 

  47. Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophy Acta 249(2):462–492. doi:10.1016/0005-2736(71)90123-4

    Google Scholar 

  48. Cheng Q, Xiang L, Izumikawa M, Meluzzi D, Moore BS (2007) Enzymatic total synthesis of enterocin polyketides. Nat Chem Biol 3(9):557–558. doi:10.1038/nchembio.2007.22

    CAS  Google Scholar 

  49. Gowda LR, Bachhawat N, Bhat SG (1991) Permeabilization of Bakers’ yeast by cetyltrimethylammonium bromide for intracellular enzyme catalysis. Enzyme Microb Technol 13(2):154–157

    CAS  Google Scholar 

  50. Upadhya R, Nagajyothi HBhat SG, Bhat SG (2000) Stabilization of D-amino acid oxidase and catalase in permeabilized Rhodotorula gracilis cells and its application for the preparation of alpha-ketoacids. Biotechnol Bioeng 68(4):430–436. doi:10.1002/(sici)1097-0290(20000520)68:4<430:aid-bit8>3.0.co;2-3

    CAS  Google Scholar 

  51. McCord JM, Day ED (1978) Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett 86(1):139–142. doi:10.1016/0014-5793(78)80116-1

    CAS  Google Scholar 

  52. Rundback F, Fidanoska M, Adlercreutz P (2012) Coupling of permeabilized cells of Gluconobacter oxydans and Ralstonia eutropha for asymmetric ketone reduction using H-2 as reductant. J Biotechnol 157(1):154–158. doi:10.1016/j.jbiotec.2011.09.029

    Google Scholar 

  53. Lehrer RI, Barton A, Daher KA, Harwig SSL, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia-coli—mechanism of bactericidal activity. J Clin Invest 84(2):553–561. doi:10.1172/jci114198

    CAS  Google Scholar 

  54. Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal-structure of defensin HNP-3, an amphiphilic dimer—mechanisms of membrane permeabilization. Science 251(5000):1481–1485. doi:10.1126/science.2006422

    CAS  Google Scholar 

  55. Lichtenstein A (1991) Mechanism of mammalian-cell lysis mediated by peptide defensins—evidence for an initial alteration of the plasma-membrane. J Clin Invest 88(1):93–100. doi:10.1172/jci115310

    CAS  Google Scholar 

  56. White SH, Wimley WC, Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5(4):521–527. doi:10.1016/0959-440X(95)80038-7

  57. van Kan EJM, Demel RA, Breukink E, van der Bent A, de Kruijff B (2002) Clavanin permeabilizes target membranes via two distinctly different ph-dependent mechanisms. Biochemistry 41(24):7529–7539. doi:10.1021/bi012162t

    Google Scholar 

  58. Powers J-PS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. doi:10.1016/j.peptides.2003.08.023

    Google Scholar 

  59. Michalek M, Gelhaus C, Hecht O, Podschun R, Schroder JM, Leippe M, Grotzinger J (2009) The human antimicrobial protein psoriasin acts by permeabilization of bacterial membranes. Dev Comp Immunol 33(6):740–746. doi:10.1016/j.dci.2008.12.005

    CAS  Google Scholar 

  60. Aidemark M, Andersson CJ, Rasmusson AG, Widell S (2009) Regulation of callose synthase activity in situ in alamethicin-permeabilized Arabidopsis and tobacco suspension cells. BMC Plant Biol 9:27. doi:2710.1186/1471-2229-9-27

    Google Scholar 

  61. Alonso MA, Carrasco L (1982) Molecular basis of the permeabilization of mammalian cells by ionophores. Eur J Biochem 127(3):567–569. doi:10.1111/j.1432-1033.1982.tb06909.x

    CAS  Google Scholar 

  62. Kearsey SE, Brimage L, Namdar M, Ralph E, Yang X (2005) In situ assay for analyzing the chromatin binding of proteins in fission yeast. Methods Mol Biol (Clifton, NJ) 296:181–188

    Google Scholar 

  63. Ferrer P, Hedegaard L, Halkier T, Diers I, Savva D, Asenjo JA (1996) Molecular cloning of a lytic beta-1,3-glucanase gene from Oerskovia xanthineolytica LLG109—a beta-1,3-glucanase able to selectively permeabilize the yeast cell wall. In: Asenjo JA, Andrews BA (eds) Recombinant DNA biotechnology III: The integration of biological and engineering sciences, vol 782. Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 555–565. doi:10.1111/j.1749-6632.1996.tb40593.x

  64. Dower WJ, Miller JF, Ragsdale CW (1988) High-efficiency transformation of Escherichia-coli by high-voltage electroporation. Nucleic Acids Res 16(13):6127–6145. doi:10.1093/nar/16.13.6127

    CAS  Google Scholar 

  65. Fromm M, Callis J, Taylor LP, Walbot V (1987) Electroporation of DNA and RNA into plant-protoplasts. Methods Enzymol 153:351–366

    CAS  Google Scholar 

  66. Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    CAS  Google Scholar 

  67. Tryfona T, Bustard MT (2006) Enhancement of biomolecule transport by electroporation: a review of theory and practical application to transformation of Corynebacterium glutamicum. Biotechnol Bioeng 93(3):413–423. doi:10.1002/bit.20725

    CAS  Google Scholar 

  68. Escoffre JM, Dean DS, Hubert M, Rols MP, Favard C (2007) Membrane perturbation by an external electric field: a mechanism to permit molecular uptake. Eur Biophys J Biophys Lett 36(8):973–983. doi:10.1007/s00249-007-0194-7

    CAS  Google Scholar 

  69. Pliquett U, Joshi RP, Sridhara V, Schoenbach KH (2007) High electrical field effects on cell membranes. Bioelectrochemistry 70(2):275–282. doi:10.1016/j.bioelechem.2006.10.004

    Google Scholar 

  70. Crotti LB, Drgon T, Cabib E (2001) Yeast cell permeabilization by osmotic shock allows determination of enzymatic activities in situ. Anal Biochem 292(1):8–16. doi:10.1006/abio.2001.5051

    CAS  Google Scholar 

  71. Bernal V, Sevilla A, Canovas M, Iborra JL (2007) Production of L-carnitine by secondary metabolism of bacteria. Microb Cell Fact 6:1–17. doi:3110.1186/1475-2859-6-31

    Google Scholar 

  72. Miozzari GF, Niederberger P, Hütter R (1978) Permeabilization of microorganisms by Triton X-100. Anal Biochem 90(1):220–233

    CAS  Google Scholar 

  73. Jackson RW, Demoss JA (1965) Effects of toluene on Escherichia coli. J Bacteriol 90(5):1420–1425

    Google Scholar 

  74. Flores MV, Voget CE, Ertola RJJ (1994) Permeabilization of yeast-cells (Kluyveromyces) with organic-solvents. Enzyme Microb Technol 16(4):340–346. doi:10.1016/0141-0229(94)90177-5

    CAS  Google Scholar 

  75. Thedei G, Leitao DPS, Bolean M, Paulino TP, Spadaro ACC, Ciancaglini P (2008) Toluene permeabilization differentially affects F- and P-type ATPase activities present in the plasma membrane of Streptococcus mutans. Braz J Med Biol Res 41(12):1047–1053

    CAS  Google Scholar 

  76. Martin LM, Ruiz CA, Andres M, Catalan J (2011) Permeabilization of Trigonopsis variabilis for enhanced D-amino acid oxidase activity. Chem Eng Commun 198(4):516–529. doi:10.1080/00986445.2010.512530

    CAS  Google Scholar 

  77. Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E-coli. Biochim Biophys Acta (Mol Cell Res) 1693(1):5–13. doi:10.1016/j.bbamer.2004.02.005

    CAS  Google Scholar 

  78. De Groeve M, Depreitere V, Desmet T, Soetaert W (2009) Enzymatic production of α-D-galactose 1-phosphate by lactose phosphorolysis. Biotechnol Lett 31(12):1873–1877

    Google Scholar 

  79. Foulstone M, Reading C (1982) Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob Agents Chemother 22(5):753–762. doi:10.1128/aac

    CAS  Google Scholar 

  80. Cheng S, Wei D, Song Q, Zhao X (2006) Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde. Biotechnol Lett 28(14):1129–1133

    CAS  Google Scholar 

  81. Elling L (1996) Kinetic characterization of UDP-glucose pyrophosphorylase from germinated barley (malt). Phytochemistry 42(4):955–960

    CAS  Google Scholar 

  82. Shen B, Du LC, Sanchez C, Edwards DJ, Chen M, Murrell JM (2002) Cloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003. J Nat Prod 65(3):422–431. doi:10.1021/np010550q

    CAS  Google Scholar 

  83. Bogman K, Erne-Brand F, Alsenz J, Drewe J (2003) The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci 92(6):1250–1261. doi:10.1002/jps.10395

    CAS  Google Scholar 

  84. Ryan W, Parulekar SJ (1991) Immobilization of Escherichia-Coli JM103[pUC8] in kappa-carrageenan coupled with recombinant protein release by insitu cell-membrane permeabilization. Biotechnol Prog 7(2):99–110. doi:10.1021/bp00008a004

    CAS  Google Scholar 

  85. Rutter GA, Denton RM (1992) Effects of insulin and guanosine 5′-gamma-thio triphosphate on fatty-acid synthesis and lipolysis within electropermeabilized fat-cells. Biochem J 281:431–435

    CAS  Google Scholar 

  86. Bonnafous J-C, Dornand J, Mani J-C (1982) Alamethicin or detergent permeabilization of the cell membrane as a tool for adenylate cyclase determination: application to the study of hormone responsiveness in lymphocytes. Biochim Biophys Acta (Mol Cell Res) 720(3):235–241. doi:10.1016/0167-4889(82)90046-5

    CAS  Google Scholar 

  87. Johansson FI, Michalecka AM, Moller IM, Rasmusson AG (2004) Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria. Biochem J 380:193–202. doi:10.1042/bj20031969

    Google Scholar 

  88. Curran KA, Crook NC, Alper HS (2012) Using flux balance analysis to guide microbial metabolic engineering. Methods Mol Biol 834:197–216. doi:10.1007/978-1-61779-483-4_13

    CAS  Google Scholar 

  89. Neuner A, Heinzle E (2011) Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J 6(3):318–329. doi:10.1002/biot.201000307

    CAS  Google Scholar 

  90. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13(2):159–168. doi:10.1016/j.ymben.2011.01.003

    CAS  Google Scholar 

  91. Kroemer JO, Wittmann C, Schroeder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369. doi:10.1016/j.ymben.2006.02.001

    CAS  Google Scholar 

  92. Bujara M, Panke S (2012) In silico assessment of cell-free systems. Biotechnol Bioeng 109(10):2620–2629. doi:10.1002/Bit.24534

    CAS  Google Scholar 

  93. Soh KC, Miskovic L, Hatzimanikatis V (2012) From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 12(2):129–143. doi:10.1111/j.1567-1364.2011.00771.x

    CAS  Google Scholar 

  94. Yuryev R, Liese A (2010) Biocatalysis: the outcast. ChemCatChem 2(1):103–107. doi:10.1002/cctc.200900126

    CAS  Google Scholar 

  95. Weinig S, Mahmud T, Muller R (2003) Markerless mutations in the myxothiazol biosynthetic gene cluster: a delicate megasynthetase with a superfluous nonribosomal peptide synthetase domain. Chem Biol 10(10):953–960. doi:10.1016/j.chembiol.2003.09.013

    CAS  Google Scholar 

  96. Wessjohann L, Vogt T, Julia K, Robert K (2012) Prenyl- und Methyltransferasen in Natur- und Synthese. Biospektrum 18:22–25. doi:10.1007/s12268-012-0137-4

    CAS  Google Scholar 

  97. Branco RJF, Graber M, Denis V, Pleiss J (2009) Molecular mechanism of the hydration of Candida antarctica lipase B in the gas phase: water adsorption isotherms and molecular dynamics simulations. ChemBioChem 10(18):2913–2919. doi:10.1002/cbic.200900544

    CAS  Google Scholar 

  98. Trodler P, Pleiss J (2008) Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct Biol 8:9. doi:10.1186/1472-6807-8-9

    Google Scholar 

  99. Struck A-W, Thompson ML, Wong LS, Micklefield J (2012) S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem 13(18):2642–2655. doi:10.1002/cbic.201200556

    CAS  Google Scholar 

  100. Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, Struck A-W, Smith CP, Micklefield J (2012) Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Angew Chem-Int Ed 51(29):7181–7184. doi:10.1002/anie.201202043

    CAS  Google Scholar 

  101. Zhang YH (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29(6):715–725. doi:10.1016/j.biotechadv.2011.05.020

    CAS  Google Scholar 

  102. Wilson DJ, Shi C, Teitelbaum AM, Gulick AM, Aldrich CC (2013) Characterization of AusA: a dimodular nonribosomal peptide synthetase responsible for the production of aureusimine pyrazinones. Biochemistry 52(5):926–937. doi:10.1021/bi301330q

    CAS  Google Scholar 

  103. Link H, Kochanowski K, Sauer U (2013) Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nat Biotechnol 31(4):357–361. doi:10.1038/nbt.2489

    Google Scholar 

  104. Heinzle E, Matsuda F, Miyagawa H, Wakasa K, Nishioka T (2007) Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. Plant J 50(1):176–187. doi:10.1111/j.1365-313X.2007.03037.x

    CAS  Google Scholar 

  105. Wu L, Wang WM, van Winden WA, van Gulik WM, Heijnen JJ (2004) A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem 271(16):3348–3359. doi:10.1111/j.1432-1033.2004.04269.x

    CAS  Google Scholar 

  106. Krauser S, Kiefer P, Heinzle E (2012) Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli. ChemCatChem 4(6):786–788. doi:10.1002/cctc.201100351

    CAS  Google Scholar 

  107. Broadwater SJ, Roth SL, Price KE, Kobaslija M, McQuade DT (2005) One-pot multi-step synthesis: a challenge spawning innovation. Org Biomol Chem 3(16):2899–2906

    CAS  Google Scholar 

  108. Treitz G, Maria G, Giffhorn F, Heinzle E (2001) Kinetic model discrimination via step-by-step experimental and computational procedure in the enzymatic oxidation of D-glucose. J Biotechnol 85(3):271–287. doi:10.1016/s0168-1656(00)00371-0

    CAS  Google Scholar 

  109. Wohlgemuth R (2007) Interfacing biocatalysis and organic synthesis. J Chem Technol Biotechnol 82(12):1055–1062. doi:10.1002/jctb.1761

    CAS  Google Scholar 

  110. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432(7019):829–837. doi:10.1038/nature03194

    CAS  Google Scholar 

  111. Bode HB, Muller R (2005) The impact of bacterial genomics on natural product research. Angew Chem-Int Ed 44(42):6828–6846. doi:10.1002/anie.200501080

    CAS  Google Scholar 

  112. Wu M-C, Law B, Wilkinson B, Micklefield J (2012) Bioengineering natural product biosynthetic pathways for therapeutic applications. Curr Opin Biotechnol 23(6):931–940. doi:10.1016/j.copbio.2012.03.008

    CAS  Google Scholar 

  113. Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem. doi:10.1002/anie.201208344

    Google Scholar 

  114. Wong FT, Khosla C (2012) Combinatorial biosynthesis of polyketides—a perspective. Curr Opin Chem Biol 16(1–2):117–123. doi:10.1016/j.cbpa.2012.01.018

    CAS  Google Scholar 

  115. Pickens LB, Tang Y (2009) Decoding and engineering tetracycline biosynthesis. Metab Eng 11(2):69–75. doi:10.1016/j.ymben.2008.10.001

    CAS  Google Scholar 

  116. Pulsawat N, Kitani S, Nihira T (2007) Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393(1–2):31–42. doi:10.1016/j.gene.2006.12.035

    CAS  Google Scholar 

  117. Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130(13):4507–4516. doi:10.1021/ja711188x

    CAS  Google Scholar 

  118. Tang GL, Cheng YQ, Shen B (2004) Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem Biol 11(1):33–45. doi:10.1016/j.chembiol.2003.12.014

    CAS  Google Scholar 

  119. Kim ES, Bibb MJ, Butler MJ, Hopwood DA, Sherman DH (1994) Sequences of the oxytetracycline polyketide synthase-encoding otc genes from Streptomyces-rimosus. Gene 141(1):141–142. doi:10.1016/0378-1119(94)90144-9

    CAS  Google Scholar 

  120. Schlichting I, Cryle MJ (2009) Macromolecular complexes involving cytochrome P450 enzymes. FEBS J 276:21–22

    Google Scholar 

  121. Cryle MJ, Schlichting I (2008) Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(Biol) ACP complex. Proc Natl Acad Sci U S A 105(41):15696–15701. doi:10.1073/pnas.0805983105

    Google Scholar 

  122. Pickens LB, Tang Y (2010) Oxytetracycline biosynthesis. J Biol Chem 285(36):27509–27515. doi:10.1074/jbc.R110.130419

    CAS  Google Scholar 

  123. Stevens DC, Henry MR, Murphy KA, Boddy CN (2010) Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus. Appl Environ Microbiol 76(8):2681–2683. doi:10.1128/aem.02841-09

    CAS  Google Scholar 

  124. Weissman KJ, Muller R (2008) Protein-protein interactions in multienzyme megasynthetases. ChemBioChem 9(6):826–848. doi:10.1002/cbic.200700751

    CAS  Google Scholar 

  125. Findrik Z, Vasic-Racki D (2009) Overview on reactions with multi-enzyme systems. Chem Biochem Eng Q 23(4):545–553

    CAS  Google Scholar 

  126. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97(1):87–98. doi:10.1007/s00253-012-4551-9

    CAS  Google Scholar 

  127. Medema MH, Breitling R, Takano E (2011) Synthetic biology in Streptomyces bacteria. Methods Enzymol 497:485–502. doi:10.1016/B978-0-12-385075-1.00021-4

    CAS  Google Scholar 

  128. Wenzel SC, Muller R (2009) The biosynthetic potential of myxobacteria and their impact in drug discovery. Curr Opin Drug Discov Devel 12(2):220–230

    CAS  Google Scholar 

  129. Boddy CN, Garza A (2010) System and method for the heterologous expression of polyketide synthase gene clusters. US Patent (20100184038 A1)

    Google Scholar 

  130. Akai S, Hanada R, Fujiwara N, Kita Y, Egi M (2010) One-pot synthesis of optically active allyl esters via lipase-vanadium combo catalysis. Org Lett 12(21):4900–4903. doi:10.1021/ol102053a

    CAS  Google Scholar 

  131. Caiazzo A, Garcia PML, Wever R, van Hest JCM, Rowan AE, Reek JNH (2009) Synergy between chemo- and bio-catalysts in multi-step transformations. Org Biomol Chem 7(14):2926–2932. doi:10.1039/b901592b

    CAS  Google Scholar 

  132. Fowler ZL, Koffas MAG (2009) Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol 83(5):799–808. doi:10.1007/s00253-009-2039-z

    CAS  Google Scholar 

  133. Santacoloma PA, Sin G, Gernaey KV, Woodley JM (2011) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Process Res Dev 15(1):203–212. doi:10.1021/op1002159

    CAS  Google Scholar 

  134. Tanner P, Onaca O, Balasubramanian V, Meier W, Palivan CG (2011) Enzymatic cascade reactions inside polymeric nanocontainers: a means to combat oxidative stress. Chem-Eur J 17(16):4552–4560. doi:10.1002/chem.201002782

    CAS  Google Scholar 

  135. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS ONE 6(5):e19230. doi:10.1371/journal.pone.0019230

    CAS  Google Scholar 

  136. Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164(1):34–40. doi:10.1016/j.jbiotec.2012.11.011

    CAS  Google Scholar 

  137. Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15(2):187–193. doi:10.1016/j.cbpa.2010.11.019

    CAS  Google Scholar 

  138. Bar-Even A, Salah Tawfik D (2013) Engineering specialized metabolic pathways—is there a room for enzyme improvements? Curr Opin Biotechnol 24(2):310–319. doi:10.1016/j.copbio.2012.10.006

    CAS  Google Scholar 

  139. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:18. doi:10.1038/msb4100155

    Google Scholar 

  140. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633. doi:10.1093/nar/gkp456

    CAS  Google Scholar 

  141. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA, Bolton E, Gindulyte A, Bryant SH (2012) PubChem’s bioassay database. Nucleic Acids Res 40(D1):D400–D412. doi:10.1093/nar/gkr1132

    Google Scholar 

  142. de Matos P, Adams N, Hastings J, Moreno P, Steinbeck C (2012) A database for chemical proteomics: ChEBI. Methods Mol Biol (Clifton, NJ) 803:273–296

    Google Scholar 

  143. Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The Transporter Classification Database: recent advances. Nucleic Acids Res 37:D274–D278. doi:10.1093/nar/gkn862

    CAS  Google Scholar 

  144. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279. doi:10.1093/nar/gkl925

    CAS  Google Scholar 

  145. Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S, Krebs O, Bittkowski M, Wetsch E, Rojas I, Mueller W (2012) SABIO-RK-database for biochemical reaction kinetics. Nucleic Acids Res 40(D1):D790–D796. doi:10.1093/nar/gkr1046

    Google Scholar 

  146. Alcantara R, Axelsen KB, Morgat A, Belda E, Coudert E, Bridge A, Cao H, de Matos P, Ennis M, Turner S, Owen G, Bougueleret L, Xenarios I, Steinbeck C (2012) Rhea-a manually curated resource of biochemical reactions. Nucleic Acids Res 40(D1):D754–D760. doi:10.1093/nar/gkr1126

    Google Scholar 

  147. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(D1):D36–D42. doi:10.1093/nar/gks1195

    Google Scholar 

  148. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu ZY, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang YL, Wilbur WJ, Yaschenko E, Ye J (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40(D1):D13–D25. doi:10.1093/nar/gkr1184

  149. Maglott D, Ostell J, Pruitt KD, Tatusova T (2011) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57. doi:10.1093/nar/gkq1237

    CAS  Google Scholar 

  150. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    CAS  Google Scholar 

  151. Cochrane G, Alako B, Amid C, Bower L, Cerdeno-Tarraga A, Cleland I, Gibson R, Goodgame N, Jang M, Kay S, Leinonen R, Lin X, Lopez R, McWilliam H, Oisel A, Pakseresht N, Pallreddy S, Park Y, Plaister S, Radhakrishnan R, Riviere S, Rossello M, Senf A, Silvester N, Smirnov D, ten Hoopen P, Toribio A, Vaughan D, Zalunin V (2013) Facing growth in the European Nucleotide Archive. Nucleic Acids Res 41(D1):D30–D35. doi:10.1093/nar/gks1175

    Google Scholar 

  152. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Soehngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–D676. doi:10.1093/nar/gkq1089

    CAS  Google Scholar 

  153. Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28(1):304–305. doi:10.1093/nar/28.1.304

    CAS  Google Scholar 

  154. Magrane M, Consortium U (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (J Biol Databases Curation) 14:bar009-bar009

    Google Scholar 

  155. Yu NY, Laird MR, Spencer C, Brinkman FSL (2011) PSORTdb-an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res 39:D241. doi:10.1093/nar/gkq1093

    CAS  Google Scholar 

  156. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35. doi:10.1186/gb-2004-5-5-r35

    Google Scholar 

  157. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815. doi:10.1093/nar/gks1094

    Google Scholar 

  158. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(D1):D841–D846. doi:10.1093/nar/gkr1088

    Google Scholar 

  159. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(D1). doi:10.1093/nar/gkr988

  160. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30. doi:10.1093/nar/28.1.27

    CAS  Google Scholar 

  161. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang PF, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40(D1):D742–D753. doi:10.1093/nar/gkr1014

    Google Scholar 

  162. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1):W597–W603. doi:10.1093/Nar/Gks400

    Google Scholar 

  163. Morgat A, Coissac E, Coudert E, Axelsen KB, Keller G, Bairoch A, Bridge A, Bougueleret L, Xenarios I, Viari A (2012) UniPathway: a resource for the exploration and annotation of metabolic pathways. Nucleic Acids Res 40(D1). doi:10.1093/nar/gkr1023

  164. Gao J, Ellis LBM, Wackett LP (2010) The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res 38:D488–D491. doi:10.1093/nar/gkp771

    CAS  Google Scholar 

  165. Ganter M, Bernard T, Moretti S, Stelling J, Pagni M (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29(6):815-816. doi:10.1093/bioinformatics/btt036

    Google Scholar 

  166. Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213. doi:10.1186/1471-2105-11-213

    Google Scholar 

  167. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92. doi:10.1186/1752-0509-4-92

    Google Scholar 

  168. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590. doi:10.1093/nar/gkq1143

    CAS  Google Scholar 

  169. Michal G, Schomburg D (2012) Biochemical pathways. An atlas of biochemistry and molecular biology. Wiley, New York

    Google Scholar 

  170. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33(17):5691–5702. doi:10.1093/nar/gki866

    CAS  Google Scholar 

  171. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28(9):977–982. doi:10.1038/nbt.1672

    CAS  Google Scholar 

  172. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinformatics 11(1):40–79. doi:10.1093/bib/bbp043

    CAS  Google Scholar 

  173. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316. doi:10.1093/nar/gkr483

    CAS  Google Scholar 

  174. Bates JT, Chivian D, Arkin AP (2011) GLAMM: Genome-Linked Application for Metabolic Maps. Nucleic Acids Res 39:W400–W405. doi:10.1093/nar/gkr433

    CAS  Google Scholar 

  175. Liao Y-C, Tsai M-H, Chen F-C, Hsiung CA (2012) GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28(13):1752–1758. doi:10.1093/bioinformatics/bts267

    CAS  Google Scholar 

  176. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 1:2. doi:10.1186/1752-0509-1-2

    Google Scholar 

  177. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15):1930-1931. doi:10.1093/bioinformatics/btl267

    Google Scholar 

  178. Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19):2229–2235. doi:10.1093/bioinformatics/btn401

    CAS  Google Scholar 

  179. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727–738. doi:10.1038/nprot.2007.99

    CAS  Google Scholar 

  180. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. doi:10.1038/nprot.2011.308

    CAS  Google Scholar 

  181. Reed JL, Famili I, Thiele I, Palsson BO (2006) Towards multidimensional genome annotation. Nat Rev Genet 7(2):130–141. doi:10.1038/nrg1769

    CAS  Google Scholar 

  182. Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD (2012) Mathematical optimization applications in metabolic networks. Metab Eng 14(6):672–686. doi:10.1016/j.ymben.2012.09.005

    CAS  Google Scholar 

  183. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. doi:10.1038/nprot.2009.203

    CAS  Google Scholar 

  184. Haggart CR, Bartell JA, Saucerman JJ, Papin JA (2011) Whole-genome metabolic network reconstruction and constraint-based modeling. In: Jameson D, Verma M, Westerhoff HV (eds) Methods in systems biology. Methods in enzymology, vol 500. Elsevier Academic Press Inc, San Diego, pp 411–433. doi:10.1016/b978-0-12-385118-5.00021-9

  185. Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320. doi:10.1038/msb.2009.77

    Google Scholar 

  186. Deville Y, Gilbert D, van Helden J, Wodak S (2003) An overview of data models for the analysis of biochemical pathways. In: Gordon P (ed) Proceedings of computational methods in systems Biology, vol 2602. Springer, Berlin

    Google Scholar 

  187. Le Novere N, Hucka M, Mi HY, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villeger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu GM, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation (vol 27, pg 735, 2009). Nat Biotechnol 27(9):864. doi:10.1038/nbt0909-864d

    Google Scholar 

  188. Lee W-H, Kim M-D, Jin Y-S, Seo J-H (2013) Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97(7):2761–2772. doi:10.1007/s00253-013-4750-z

    CAS  Google Scholar 

  189. Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, Sasaki M, Mikami Y, Shimizu S (2006) Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli. Biosci Biotechnol Biochem 70(6):1371–1378. doi:10.1271/bbb.50648

    CAS  Google Scholar 

  190. Horinouchi N, Sakai T, Kawano T, Matsumoto S, Sasaki M, Hibi M, Shima J, Shimizu S, Ogawa J (2012) Construction of microbial platform for an energy-requiring bioprocess: practical 2’-deoxyribonucleoside production involving a C-C coupling reaction with high energy substrates. Microb Cell Fact 11:82. doi:10.1186/1475-2859-11-82

    CAS  Google Scholar 

  191. Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5(7):647–659. doi:10.1002/biot.200900247

    CAS  Google Scholar 

  192. Terzer M, Maynard ND, Covert MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1(3):285–297 doi:10.1002/wsbm.37

    CAS  Google Scholar 

  193. Kim TY, Sohn SB, Bin Kim Y, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623. doi:10.1016/j.copbio.2011.10.007

    CAS  Google Scholar 

  194. Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33(1):164–190. doi:10.1111/j.1574-6976.2008.00146.x

    CAS  Google Scholar 

  195. Neuner A, Wagner I, Sieker T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163(2):217–224. doi:10.1016/j.jbiotec.2012.07.190

    CAS  Google Scholar 

  196. Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y, Horinouchi S (1999) A new pathway for polyketide synthesis in microorganisms. Nature 400(6747):897–899. doi:10.1038/23748

    CAS  Google Scholar 

  197. Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglycosylation, and application of immobilised enzyme for production of [alpha]-D-glucose 1-phosphate. J Biotechnol 129(1):77–86

    CAS  Google Scholar 

  198. Weyler C, Heinzle E (2013) submitted

    Google Scholar 

  199. Koizumi S (2003) Large-scale production of oligosaccharides using bacterial functions. Trends Glycosci Glyc 15(82):65–74

    CAS  Google Scholar 

  200. Koizumi S, Endo T, Tabata K, Nagano H, Ohnishi J, Ozaki A (2000) Large-scale production of GDP-fucose and Lewis X by bacterial coupling. J Ind Microbiol Biotechnol 25(4):213–217. doi:10.1038/sj.jim.7000055

    CAS  Google Scholar 

  201. Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotech 16(9):847–850

    CAS  Google Scholar 

  202. Ni Y, Zhang B, Sun Z (2012) Efficient synthesis of (R)-2-Chloro-1-(3-chlorophenyl)ethanol by permeabilized whole-cells of Candida ontarioensis. Chin J Catal 33(4):681–687. doi:10.1016/s1872-2067(11)60363-x

    CAS  Google Scholar 

  203. Fu J, Bian XY, Hu SB, Wang HL, Huang F, Seibert PM, Plaza A, Xia LQ, Muller R, Stewart AF, Zhang YM (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446. doi:10.1038/Nbt.2183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Heinzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krauser, S., Weyler, C., Blaß, L.K., Heinzle, E. (2013). Directed Multistep Biocatalysis Using Tailored Permeabilized Cells. In: Zeng, AP. (eds) Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_240

Download citation

Publish with us

Policies and ethics