Skip to main content

Advances in Aptamer Screening and Small Molecule Aptasensors

  • Chapter
  • First Online:
Biosensors Based on Aptamers and Enzymes

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 140))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA-polymerase. Science 249:505–510

    CAS  Google Scholar 

  3. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinic Chem 45:1628–1650

    CAS  Google Scholar 

  4. Patel DJ, Suri AK, Jiang F, Jiang LC, Fan F, Kumar RA, Nonin S (1997) Structure, recognition and adaptive binding in RNA aptamer complex. J Mol Biol 272:645–664

    CAS  Google Scholar 

  5. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 87:820–825

    Google Scholar 

  6. Osborne SE, Ellington AE (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97:349–370

    CAS  Google Scholar 

  7. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    CAS  Google Scholar 

  8. Geiger A, Burgstaller P, Von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24:1029–1036

    CAS  Google Scholar 

  9. Niazi JH, Lee SJ, Kim YS, Gu MB (2008) ssDNA aptamers that selectively bind oxytetracycline. Bioorg Med Chem 16:1254–1261

    CAS  Google Scholar 

  10. You KM, Lee SH, Im A, Lee SB (2003) Aptamers as functional nucleic acids: in vitro selection and biotechnological applications. Biotech Bioprocess Eng 8:64–75

    CAS  Google Scholar 

  11. Tombelli S, Minunni M, Mascini M (2005) Analytical application of aptamers. Biosens Bioelectron 20:2424–2434

    CAS  Google Scholar 

  12. Baldrich E, Acero JL, Reekmans G, Laureyn W, O’Sullivan CK (2005) Displacement enzyme linked aptamer assay. Anal Chem 77:4774–4784

    CAS  Google Scholar 

  13. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    CAS  Google Scholar 

  14. Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW, Miller JA, Trainor GL (1996) Potent antisense oligonucleotides to human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 24:1901–1907

    CAS  Google Scholar 

  15. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    CAS  Google Scholar 

  16. Marshall KA, Ellington AD (2000) In vitro selection of RNA aptamers. Meth Enzymol 318:19–214

    Google Scholar 

  17. Sampson T (2003) Aptamers and SELEX: the technology. World Patent Inf 25:123–129

    CAS  Google Scholar 

  18. Harada K, Frankel AD (1995) Identification of two novel arginine binding DNAs. EMBO J 23:5798–5811

    Google Scholar 

  19. Hamula C, Guthrie J, Zhang H, Li XF, Le XC (2006) Selection and analytical applications of aptamers. Tr Anal Chem 25:681–691

    CAS  Google Scholar 

  20. Reinemann C, Stoltenburg R, Strehlitz B (2009) Investigations on the specificity of DNA aptamers binding to ethanolamine. Anal Chem 81:3973–3978

    CAS  Google Scholar 

  21. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc 127:3165–3171

    CAS  Google Scholar 

  22. White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M, Sullenger B (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 4:567–573

    CAS  Google Scholar 

  23. Shimada T, Fujita N, Maeda M, Ishihama A (2005) Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 10:907–917

    CAS  Google Scholar 

  24. Stoltenburg R, Reinemann C, Strehlitz B (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection Anal. Bioanal Chem 383:83–91

    CAS  Google Scholar 

  25. Bianchini M, Radrizzani M, Brocardo MG, Reyes GB, Gonzalez SC, Santa-Coloma TA (2001) Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods 252:191–197

    CAS  Google Scholar 

  26. Theis MG, Knorre A, Kellersch B, Moelleken J, Wieland F, Kolanus W, Famulok M (2004) Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc Natl Acad Sci 101:11221–11226

    CAS  Google Scholar 

  27. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71:8790–8797

    CAS  Google Scholar 

  28. Bridonneau P, Chang YF, Buvoli VB, O’Connell D, Parma D (1999) Site directed selection of oligonucleotide antagonists by competitive elution. Antisens. Nucleic A 9:1–11

    CAS  Google Scholar 

  29. Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Development of DNA aptamers using cell-SELEX. Nat Protocol 5:1169–1185

    CAS  Google Scholar 

  30. Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR methods Appl 3:S136–S140

    CAS  Google Scholar 

  31. Bittker JA, Le BV, Liu DR (2002) Nucleic acids evolution and minimization by nonhomologous random recombination. Nat Biotechnol 20:1204–1209

    Google Scholar 

  32. Paul A, Avci-Adali M, Ziemer G, Wendel HP (2009) Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems udirng cell-SELEX. Oligonucleotides 19:243–254

    CAS  Google Scholar 

  33. Fitzwater T, Polisky B (1996) A SELEX primer Methods Enzymol 267:275–301

    CAS  Google Scholar 

  34. Naimuddin M, Kitamura K, Kinoshita Y, Honda-Takahashi Y, Murakami M, Ito M, Yamamoto K, Hanada K, Husimi Y, Nishigaki K (2007) Selection-by-function: efficient enrichment of cathepsin E inhibitors from a DNA library. J Mol Recognit 20:58–68

    CAS  Google Scholar 

  35. Wu LH, Curran JF (1999) An allosteric synthetic DNA. Nucleic Acids Res 27:1512–1516

    CAS  Google Scholar 

  36. Williams KP, Bartel DP (1995) PCR product with strands of unequal length. Nucleic Acids Res 23:4220–4221

    CAS  Google Scholar 

  37. Hendry P, Hannan G (1996) Detection and quantitation of unlabeled nucleic acids in polyacrylamide gels. Biotechniques 20:258–264

    CAS  Google Scholar 

  38. Niazi JH, Lee SJ, Gu MB (2008) Single stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 16:7245–7253

    CAS  Google Scholar 

  39. Kim YS, Hyun CJ, Kim IA, Gu MB (2010) Isolation and characterization of enantioselective DNA aptamers for ibuprofen. Bioorg Med Chem 18:3467–3473

    CAS  Google Scholar 

  40. Shi H, Fan XC, Ni ZY, Lis JT (2002) Evolutionary dynamics and population control during in vitro selection and amplification with multiple targets. RNA 8:1461–1470

    CAS  Google Scholar 

  41. Beinoraviciute-Kellner R, Lipps G, Krauss G (2005) In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae. FEBS Lett 579:4535–4540

    CAS  Google Scholar 

  42. Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Gill A, Hope J, James W, Tahiri-Alaoui A (2003) Characterization of 2’-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J Biol Chem 278:39697–39705

    CAS  Google Scholar 

  43. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    CAS  Google Scholar 

  44. Wang W, Jia L (2009) Progress in aptamer screening methods. Chin J Anal Chem 37:454–460

    Google Scholar 

  45. Wang CL, Zhang M, Yang G, Zhang DJ, Ding HM, Wang HX, Fan M, Shen BF, Shao NS (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22

    CAS  Google Scholar 

  46. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CZ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103:11838–11843

    CAS  Google Scholar 

  47. Conrad RC, Baskerville S, Ellington AD (1995) In vitro selection methodologies to probe RNA function and structure. Mol Div 1:69–78

    CAS  Google Scholar 

  48. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  Google Scholar 

  49. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

    CAS  Google Scholar 

  50. Morgenstern B (2004) DIALIGN: multiple DNA and Protein Sequence Alignment at BiBiServ. Nucleic Acids Res 32:W33–W36

    CAS  Google Scholar 

  51. Morgenstern B, Prohaska SJ, Pöhler D, Stadler PF (2006) Multiple sequence alignment with user-defined anchor points. Algorithms Mol Boil 1:6

    Google Scholar 

  52. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    CAS  Google Scholar 

  53. Horn WT, Convery MA, Stonehouse NJ, Adams CJ, Liljas L, Phillips SEV, Stockley PG (2004) The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions. RNA 10:1776–1782

    CAS  Google Scholar 

  54. Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J (1993) Thrombin binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci 90:3745–3749

    CAS  Google Scholar 

  55. Chaloin L, Lehmann MJ, Sczakiel G, Restle T (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30:4001–4008

    CAS  Google Scholar 

  56. Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14:457–464

    CAS  Google Scholar 

  57. Ruff KM, Snyder TM, Liu DR (2010) Enhanced functional potential of nucleic acid aptamer library patterned to increase secondary structure. J Am Chem Soc 132:9453–9464

    CAS  Google Scholar 

  58. Wilson C, Keefe AD (2006) Building oligonucleotide therapeutics using non-natural chemistries. Curr Opin Chem Biol 10:607–614

    CAS  Google Scholar 

  59. Kusser W (2000) Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. J Biotechnol 74:27–38

    CAS  Google Scholar 

  60. Pieken W, Olsen DB, Benseler F, Aurup H, Eckstein HF (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317

    CAS  Google Scholar 

  61. Heidenreich O, Eckstein F (1992) Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem 267:1904–1909

    CAS  Google Scholar 

  62. Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM (1997) Isolation and characterization of 2’-fluoro-, 2’-amino-, and 2’-fluoro-/amino- modified RNA ligands to human INF-gamma that inhibit receptor binding. J Immunol 159: 259–267

    Google Scholar 

  63. Prakash TP, Bhat B (2007) 2’-modified oligonucleitides for antisense therapeutics. Curr Top Med Chem 7:641–649

    CAS  Google Scholar 

  64. Koizumi M (2007) True antisense oligonucleotides with modified nucleotides restricted in the N-conformation. Curr Top Med Chem 7:661–665

    CAS  Google Scholar 

  65. Sawai H, Ozaki A, Satoh F, Ohbayashi T, Masud M, Ozaki H (2001) Expansion of structural and functional diversities of DNA using new 5-substituted deoxyuridine derivatives by PCR with superthermophilic KOD Dash DNA polymerase, Chem Commun 24:2604–2605

    Google Scholar 

  66. Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H (2006) Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg Med Chem 14:2518–2526

    CAS  Google Scholar 

  67. Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opion Chem Biol 12:448–456

    CAS  Google Scholar 

  68. Golden MC, Collins BD, Willis MC, Koch TH (2000) Diagnostic potential of photoSELEX-evolved ssDNA aptamers. J Biotechnol 81:167–178

    CAS  Google Scholar 

  69. Singer BS, Shtatland T, Brown D, Gold L (1997) Libraries for genomic SELEX. Nucleic Acids Res 25:781–786

    CAS  Google Scholar 

  70. Shtatland T, Gill SC, Javornik BE, Johansson HE, Singer BS, Uhlenbeck OC, Zichi DA, Gold L (2000) Interactions of Escherichia coli RNA with bacteriophage MS2 coat protein: genomic SELEX. Nucleic Acids Res 28:E93

    CAS  Google Scholar 

  71. Fischer NO, Tok J, Tarasow TM (2008) Massively parallel interrogation of aptamer sequence, structure and function. PLoS ONE 3:e2720

    Google Scholar 

  72. Katilius E, Flores C, Woodbury NW (2007) Exploring the sequence space of a DNA aptamer using microarrays. Nucleic Acids Res 35:7626–7635

    CAS  Google Scholar 

  73. Wen JD, Gray DM (2004) Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Res 32:e182

    Google Scholar 

  74. Pan WH, Xin P, Clawson GA (2008) Minimal primer and primer-free SELEX protocols for selection of aptamers from random DNA libraries. Biotechniques 44:351–360

    CAS  Google Scholar 

  75. Vater A, Jarosch F, Buchner K, Klussmann S (2003) Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Res 31:e130

    Google Scholar 

  76. Burke DH, Willis JH (1998) Recombination, RNA evolution, and bifunctional RNA molecules isolated through Chimeric SELEX. RNA 4:1165–1175

    CAS  Google Scholar 

  77. Deng Q, German I, Buchanan D, Kennedy RT (2001) Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 73:5415–5421

    CAS  Google Scholar 

  78. Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32(178–180):182–173

    Google Scholar 

  79. Tok JB, Fischer NO (2008) Single microbead SELEX for efficient ssDNA aptamer generation against botulinum neurotoxin. Chem Comm 16:1883–1885

    Google Scholar 

  80. Mendonsa SD, Bowser MT (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem 76:5387–5392

    CAS  Google Scholar 

  81. Tang JJ, Xie JW, Shao NS, Yan Y (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27:1303–1311

    CAS  Google Scholar 

  82. Drabovich AP, Berezovski M, Okhonin V, Krylov SN (2006) Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem 78:3171–3178

    CAS  Google Scholar 

  83. Mosing RK, Mendonsa SD, Bowser MT (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 77:6107–6112

    CAS  Google Scholar 

  84. Cox JC, Rudolph P, Ellington AD (1998) Automated RNA selection. Biotechnol Prog 14:845–850

    CAS  Google Scholar 

  85. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    CAS  Google Scholar 

  86. Cox JC, Rajendran M, Riedel T, Davidson EA, Sooter LJ, Bayer TS, Schmitz BM, Ellington AD (2002) Automated acquisition of aptamer sequences. Comb Chem High Throughput Screening 5:289–299

    CAS  Google Scholar 

  87. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30:e108

    Google Scholar 

  88. Hianik T, Ostatna V, Sonlajtnerova M, Grman I (2007) Influence of ionic strength, pH, and aptamer configuration for binding affinity to thrombin. Biochem 70:127–133

    CAS  Google Scholar 

  89. Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45

    Google Scholar 

  90. Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP (2006) A microfluidic SELEX prototype. Anal Bioanal Chem 384:191–198

    CAS  Google Scholar 

  91. Park SM, Ahn JY, Jo MJ, Lee D, Lis JT, Craighead HG, Kim S (2009) Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 9:1206–1212

    CAS  Google Scholar 

  92. Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci 106:2989–2994

    CAS  Google Scholar 

  93. Gian J, Lou X, Zhang Y, Xiao Y, Soh HT (2009) Generation of high specific aptamers via micromagnetic selection. Anal Chem 81:5490–5495

    Google Scholar 

  94. Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1:538–550

    CAS  Google Scholar 

  95. Hofmann HP, Limmer S, Hornung V, Sprinzl M (1997) Ni2 + -binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA 3:1289–1300

    CAS  Google Scholar 

  96. Kim M, Um HJ, Bang S, Lee SH, Oh SJ, Han JH, Kim KW, Min J, Kim YH (2009) Arsenic removal from Vietnamese groundwater using the Arsenic-binding DNA aptamer. Environ Sci Technol 43:9335–9340

    CAS  Google Scholar 

  97. Mann D, Reinemann C, Stoltenburg R, Strehlitz B (2005) In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun 338:1928–1934

    CAS  Google Scholar 

  98. Grate D, Wilson C (2001) Inducible regulation of the S-cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 9:2565–2570

    CAS  Google Scholar 

  99. Stojanovic MN, Landry DW (2002) Aptamer-based colorimetric probe for cocaine. J Am Chem Soc 124:9678–9679

    CAS  Google Scholar 

  100. Kato T, Takemura T, Yano K, Ikebukuro K, Karube I (2000) In vitro selection of DNA aptamers which bind to cholic acid. Biochim Biophys Acta 1493:12–18

    CAS  Google Scholar 

  101. Vianini E, Palumbo M, Gatto B (2001) In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorg Med Chem 9:2543–2548

    CAS  Google Scholar 

  102. Park JW, Tatavarty R, Kim DW, Jung HE, Gu MB (2012) Immobilization-free screening of aptamers assisted by graphene oxide. Chem Com 48:2071–2073

    CAS  Google Scholar 

  103. Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu J (2011) Adsorption and desorption of DNA on graphene oxide studies by fluorescently labeled oligonucleotides. Langmuir 27:2731–2738

    CAS  Google Scholar 

  104. Nutiu R, Li YF (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Edit 44:1061–1065

    CAS  Google Scholar 

  105. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci 100:15416–15421

    CAS  Google Scholar 

  106. Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:697–704

    CAS  Google Scholar 

  107. Tang Z, Shangguan D, Wang K, Shi H, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan W (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907

    CAS  Google Scholar 

  108. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron 22:2525–2531

    CAS  Google Scholar 

  109. Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    CAS  Google Scholar 

  110. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–614

    Google Scholar 

  111. Yamamoto R, Baba T, Kumar PK (2000) Molecular beacon aptamer fluorescence in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    CAS  Google Scholar 

  112. Frauendorf CA, Jaschke A (2001) Detection of small organic analytes by fluorescing molecular switches. Bioorg Med Chem 9:2521–2524

    CAS  Google Scholar 

  113. Song Y, Zhao C, Ren J, Qu X (2009) Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem Commun 15:1975–1977

    Google Scholar 

  114. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778

    CAS  Google Scholar 

  115. Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80:8853–8855

    CAS  Google Scholar 

  116. Wu C, Yan L, Wang C, Lin H, Wang C, Chen X, Yang CJ (2010) A general excimer signaling approach for aptamer sensors. Biosens Bioelectron 25:2232–2237

    CAS  Google Scholar 

  117. Liu JW, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    CAS  Google Scholar 

  118. Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100:6297–6301

    CAS  Google Scholar 

  119. Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48:8670–8674

    CAS  Google Scholar 

  120. Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoparticles for multiplex detection in homogenous solution. Small 6:201–204

    CAS  Google Scholar 

  121. Kim YS, Jurng J (2011) Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection. Analyst 136:3720–3724

    CAS  Google Scholar 

  122. Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80:7408–7413

    CAS  Google Scholar 

  123. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    CAS  Google Scholar 

  124. Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499

    CAS  Google Scholar 

  125. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    CAS  Google Scholar 

  126. Liu CW, Huang CC, Chang HT (2009) Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal Chem 81:2383–2387

    CAS  Google Scholar 

  127. Ozaki H, Nishihira A, Wakabayashi M, Kuwahara M, Sawai H (2006) Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg Med Chem Lett 16:4381–4384

    CAS  Google Scholar 

  128. Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2 + and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131:15352–15357

    CAS  Google Scholar 

  129. Xiang Y, Wang Z, Xing H, Wong NY, Lu Y (2010) Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach. Anal Chem 82:4122–4129

    CAS  Google Scholar 

  130. Xu Z, Morita K, Sato Y, Dai Q, Nishizawa S, Teramae N (2009) Label-free aptamer-based sensor using abasic site-containing DNA and a nucleobase-specific fluorescent ligand. Chem Commun 42:6445–6447

    Google Scholar 

  131. Li B, Qin C, Li T, Wang L, Dong S (2009) Fluorescent switch constructed based on hemin-sensitive anionic conjugated polymer and its applications in DNA-related sensors. Anal Chem 81:3544–3550

    CAS  Google Scholar 

  132. Zhang CY, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    CAS  Google Scholar 

  133. Zhu Z, Yang C, Zhou X, Qin J (2011) Label-free aptamer-based sensors for L-argininamide by using nucleic acid minor groove binding dyes. Chem Commun 47:3192–3194

    CAS  Google Scholar 

  134. Xu W, Lu Y (2010) Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 82:574–578

    CAS  Google Scholar 

  135. Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125:14716–14717

    CAS  Google Scholar 

  136. Sando S, Narita A, Hayami M, Aoyama Y (2008) Transcription monitoring using fused RNA with a dyebinding light-up aptamer as a tag: a blue fluorescent RNA. Chem Commun 33:3858–3860

    Google Scholar 

  137. Furutani C, Shinomiya K, Aoyama Y, Yamada K, Sando S (2010) Modular blue fluorescent RNA sensors for label-free detection of target molecules. Mol BioSyst 6:1569–1571

    CAS  Google Scholar 

  138. Shi Y, Huang WT, Luo HQ, Li NB (2011) A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem Commun 47:4676–4678

    CAS  Google Scholar 

  139. Huang CC, Chang HT (2008) Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun 12:1461–1463

    Google Scholar 

  140. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49:5665–5667

    CAS  Google Scholar 

  141. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    CAS  Google Scholar 

  142. Liu J, Lu Y (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2 + ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839

    CAS  Google Scholar 

  143. Zhang J, Wang L, Pan D, Song S, Boey F, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4:1196–1200

    CAS  Google Scholar 

  144. Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94

    CAS  Google Scholar 

  145. Liu J, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959

    CAS  Google Scholar 

  146. Zhao WA, Chiuman W, Brook MA, Li YF (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8:727–731

    CAS  Google Scholar 

  147. Huang CC, Huang YF, Cao Z, Tan W, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    CAS  Google Scholar 

  148. Ono A, Torigou H, Tanaka Y, Okamoto I (2011) Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem Soc Rev 40:5855–5866

    CAS  Google Scholar 

  149. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    CAS  Google Scholar 

  150. Xu H, Wang Y, Huang X, Li Y, Zhang H, Zhong X (2012) Hg2+ -mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 137:924–931

    CAS  Google Scholar 

  151. Li B, Du Y, Dong S (2009) DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal Chimi Acta 644:78–82

    CAS  Google Scholar 

  152. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci 101:14036–14039

    CAS  Google Scholar 

  153. Wei H, Li B, Li J, Dong S, Wang E (2008) DNAzyme-based colorimetric sensing of lead (Pb2 +) using unmodified gold nanoparticle probes. Nanotechnology 19:1–5

    Google Scholar 

  154. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 28:3780–3782

    Google Scholar 

  155. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2 + –DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun ***2242–2244

    Google Scholar 

  156. Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26:1644–1649

    CAS  Google Scholar 

  157. Kim YS, Kim JH, Kim IA, Lee SJ, Gu MB (2011) The affinity ratio—Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens Bioelectron 26:4058–4063

    CAS  Google Scholar 

  158. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan W (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    CAS  Google Scholar 

  159. Lee J, Kim HJ, Kim J (2008) Polydiacetylene liposome arrays for selective potassium detection. J Am Chem Soc 130:5010–5011

    CAS  Google Scholar 

  160. Lee J, Seo S, Kim J (2012) Colorimetric detection of warfare gases by polydiacetylenes toward equipment-free detection. Adv Func Mater 22:1632–1638

    CAS  Google Scholar 

  161. Liu X, Tang Y, Wang L, Zhang J, Song S, Fan C, Wang S (2007) Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv Mater 19:1471–1474

    CAS  Google Scholar 

  162. Rodriguez MC, Kawde AN, Wang J (2005) Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem Commun 2005:4267–4269

    Google Scholar 

  163. Radi AE, Sanchez JLA, Baldrich E, O’Sullivan CK (2005) Reusable impedimetric aptasensor. Anal Chem 77:6320–6323

    CAS  Google Scholar 

  164. Xu Y, Yang L, Ye XY, He PA, Fang YZ (2006) An aptamer-based protein biosensor by detecting the amplified impedance signal. Electroanal 18:1449–1456

    CAS  Google Scholar 

  165. Kim YS, Niazi JH, Gu MB (2009) Sepecific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip. Anal Chim Acta 634:250–254

    CAS  Google Scholar 

  166. Kim YJ, Kim YS, Niazi JH, Gu MB (2010) Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst Eng 33:31–37

    CAS  Google Scholar 

  167. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44:5456–5459

    CAS  Google Scholar 

  168. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139

    CAS  Google Scholar 

  169. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129:1042–1043

    CAS  Google Scholar 

  170. Li X, Qi H, Shen L, Gao Q, Zhang C (2008) Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis 13:1475–1482

    Google Scholar 

  171. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127:17990–17991

    CAS  Google Scholar 

  172. Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263

    CAS  Google Scholar 

  173. Lu Y, Li X, Zhang L, Yu P, Su L, Mao L (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem 80:1883–1890

    CAS  Google Scholar 

  174. Wu Z, Guo M, Zhang S, Chen C, Jiang J, Shen G, Yu R (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79:2933–2939

    CAS  Google Scholar 

  175. Du Y, Li B, Wei H, Wang Y, Wang E (2008) Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem 80:5110–5117

    CAS  Google Scholar 

  176. Feng K, Sun C, Kang Y, Chen J, Jiang J, Shen G, Yu R (2008) Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem Comm 10:531–535

    CAS  Google Scholar 

  177. Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81:7660–7666

    CAS  Google Scholar 

  178. Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in resum. J Am Chem Soc 130:4256–4258

    CAS  Google Scholar 

  179. Feng K, Sun C, Kang Y, Chen J, Jiang JH, Shen GL, Yu RQ (2008) Electrochem Commun 10:531–535

    CAS  Google Scholar 

  180. Li X, Qi HL, Shen LH, Gao Q, Zhang CX (2008) Electrochemical aptasensor for the determination of cocaine incorporating gold nanoparticles modification. Electroanalysis 20:1475–1482

    CAS  Google Scholar 

  181. Wang X, Dong P, He PG, Fang YZ (2010) A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal Chim Acta 658:128–132

    CAS  Google Scholar 

  182. Shen L, Chen Z, Li Y, Jing P, Xie S, He S, He P, Shao Y (2007) A chronocoulometric aptamer sensor for adenosine monophosphate. Chem Commun 21:2169–2171.

    Google Scholar 

  183. Du Y, Li B, Wang F, Dong S (2009) Au nanoparticles grafted sandwich platform used amplified small molecules electrochemical aptasensor. Biosens Bioelectron 24:1979–1983

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Bock Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, Y.S., Gu, M.B. (2013). Advances in Aptamer Screening and Small Molecule Aptasensors. In: Gu, M., Kim, HS. (eds) Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_225

Download citation

Publish with us

Policies and ethics