Galleria Mellonella as a Model Host to Study Gut Microbe Homeostasis and Brain Infection by the Human Pathogen Listeria Monocytogenes

  • Krishnendu Mukherjee
  • Ramya Raju
  • Rainer Fischer
  • Andreas VilcinskasEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 135)


The gastrointestinal tract in both mammals and insects is associated with microbes (collectively the microbiota), which are controlled by the intestinal immune system. These microbes regulate pathogens that can infect gut epithelial cells, and there is increasing evidence for a reciprocal relationship between beneficial and pathogenic bacteria in the gut and the intestinal immune system. Deciphering these complex interactions between the microbiota and intestinal immune system in mammals requires surrogate model systems, such as larvae of the greater wax moth Galleria mellonella. The exposure of G. mellonella microbiota to antibiotics induces immunity and stress-related genes in the intestine. The model can also provide insight into the virulence mechanisms of pathogens such as Listeria monocytogenes in the human gut and brain. We also discuss the current uses of G. mellonella as a model to develop therapeutic strategies against listeriosis.

Graphical Abstract


Blood–brain barrier Galleria mellonella Gut-microbe homeostasis Listeria monocytogenes 



Central nervous system


Antimicrobial peptide



The authors acknowledge financial support from the Hessian Ministry of Science and Art (HMWK) via the collaborative research projects granted under the LOEWE programs “Insect Biotechnology” (Insektenbiotechnologie) and “Translational Pharmaceutical Research” (Angewandte Arzneimittelforschung). The authors thank Dr Richard M Twyman for editing the manuscript.


  1. 1.
    Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241CrossRefGoogle Scholar
  2. 2.
    Kelly D, Mulder IE (2012) Microbiome and immunological interactions. Nutr Rev 70(Suppl 1):S18–S30CrossRefGoogle Scholar
  3. 3.
    Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8(5):e1002742. doi: 10.1371/journal.ppat.1002742 CrossRefGoogle Scholar
  4. 4.
    Glavis-Bloom J, Muhammed M, Mylonakis E (2012) Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol 710:11–17Google Scholar
  5. 5.
    Chamilos G, Samonis G, Kontoyiannis DP (2011) Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr Pharm Des 17(13):1246–1253CrossRefGoogle Scholar
  6. 6.
    Vilcinskas A (2011) Anti-infective therapeutics from the Lepidopteran model host Galleria mellonella. Curr Pharm Des 17(13):1240–1245CrossRefGoogle Scholar
  7. 7.
    Mukherjee K, Fischer R, Vilcinskas A (2012) Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection. Front Zool 9:25 Google Scholar
  8. 8.
    Ooi ST, Lorber B (2005) Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis 40(9):1327–1332CrossRefGoogle Scholar
  9. 9.
    Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A (2013) Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4(4):324–332. doi: 10.4161/viru.23629 Google Scholar
  10. 10.
    Mukherjee K, Abu Mraheil M, Silva S, Müller D, Cemic F, Hemberger J, Hain T, Vilcinskas A, Chakraborty T (2011) Anti-listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol 77(12):4237–4240CrossRefGoogle Scholar
  11. 11.
    Sudakaran S, Salem H, Kost C, Kaltenpoth M (2012) Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 21(24):6134–6151. doi: 10.1111/mec.12027 CrossRefGoogle Scholar
  12. 12.
    Koch H, Schmid-Hempel P (2012) Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecol Lett 15(10):1095–1103CrossRefGoogle Scholar
  13. 13.
    Engel P, Moran NA (2012) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4(1):60–65 Google Scholar
  14. 14.
    Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108(48):19288–19292CrossRefGoogle Scholar
  15. 15.
    Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109(27):11002–11007CrossRefGoogle Scholar
  16. 16.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638CrossRefGoogle Scholar
  17. 17.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRefGoogle Scholar
  18. 18.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133CrossRefGoogle Scholar
  19. 19.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefGoogle Scholar
  20. 20.
    Xu J, Gordon JI (2007) Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459CrossRefGoogle Scholar
  21. 21.
    Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, Andersen G, Westermann M, Heckel DG, Boland W (2012) Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7(7):e36978CrossRefGoogle Scholar
  22. 22.
    Sanz Y, Nadal I, Sanchez E (2007) Probiotics as drugs against human gastrointestinal infections. Recent Pat Anti-Infect Drug Disc 2:148–156CrossRefGoogle Scholar
  23. 23.
    Medellin-Pena MJ, Griffiths MW (2009) Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl Environ Microbiol 75:1165–1172CrossRefGoogle Scholar
  24. 24.
    Corr SC, Gahan CG, Hill C (2007) Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol Med Microbiol 50:380–388CrossRefGoogle Scholar
  25. 25.
    Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290CrossRefGoogle Scholar
  26. 26.
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904CrossRefGoogle Scholar
  27. 27.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723CrossRefGoogle Scholar
  28. 28.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884CrossRefGoogle Scholar
  29. 29.
    Vilcinskas A (2011) Insects emerge as valuable model hosts to explore virulence. Virulence 2(5):376–378CrossRefGoogle Scholar
  30. 30.
    Pitsouli C, Apidianakis Y, Perrimon N (2009) Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6:301–307CrossRefGoogle Scholar
  31. 31.
    Rubin DC (2007) Intestinal morphogenesis. Curr Opin Gastroenterol 23:111–114CrossRefGoogle Scholar
  32. 32.
    Hooper LV (2009) Do symbiotic bacteria subvert host immunity? Nat Rev Microbiol 7:367–374CrossRefGoogle Scholar
  33. 33.
    Othman M, Aguero R, Lin HC (2008) Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 24:11–16CrossRefGoogle Scholar
  34. 34.
    Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112CrossRefGoogle Scholar
  35. 35.
    Clermont A, Wedde M, Seitz V, Podsiadlowski L, Lenze D, Hummel M, Vilcinskas A (2004) Cloning and expression of an inhibitor of microbial metalloproteinases from insects contributing to innate immunity. Biochem J 382(Pt 1):315–322Google Scholar
  36. 36.
    Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel KH, Vilcinskas A (2006) Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol Chem 387(5):549–557CrossRefGoogle Scholar
  37. 37.
    Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53(3):125–133CrossRefGoogle Scholar
  38. 38.
    Altincicek B, Vilcinskas A (2008) Identification of a lepidopteran matrix metalloproteinase with dual roles in metamorphosis and innate immunity. Dev Comp Immunol 32(4):400–409CrossRefGoogle Scholar
  39. 39.
    Altincicek B, Vilcinskas A (2006) Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth Galleria mellonella. Dev Comp Immunol 30(12):1108–1118CrossRefGoogle Scholar
  40. 40.
    De La Cochetiere MF, Durand T, Lalande V, Petit JC, Potel G, Beaugerie L (2008) Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. Microb Ecol 56:395–402CrossRefGoogle Scholar
  41. 41.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280CrossRefGoogle Scholar
  42. 42.
    Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66CrossRefGoogle Scholar
  43. 43.
    Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58:1160–1167CrossRefGoogle Scholar
  44. 44.
    Danese S, Sans M, Fiocchi C (2004) Inflammatory bowel disease: the role of environmental factors. Autoimmun Rev 3:394–400CrossRefGoogle Scholar
  45. 45.
    Beaugerie L, Petit JC (2004) Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol 18:337–352CrossRefGoogle Scholar
  46. 46.
    Sommer MO, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131CrossRefGoogle Scholar
  47. 47.
    Lee HR, Pimentel M (2006) Bacteria and irritable bowel syndrome: the evidence for small intestinal bacterial overgrowth. Curr Gastroenterol Rep 8:305–311CrossRefGoogle Scholar
  48. 48.
    Croswell A, Amir E, Teggatz P, Barman M, Salzman NH (2009) Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun 77:2741–2753CrossRefGoogle Scholar
  49. 49.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280CrossRefGoogle Scholar
  50. 50.
    Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66CrossRefGoogle Scholar
  51. 51.
    Lindgren M, Lofmark S, Edlund C, Huovinen P, Jalava J (2009) Prolonged impact of a one-week course of clindamycin on Enterococcus spp. in human normal microbiota. Scand J Infect Dis 41:215–219CrossRefGoogle Scholar
  52. 52.
    Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother 58:1160–1167CrossRefGoogle Scholar
  53. 53.
    Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870CrossRefGoogle Scholar
  54. 54.
    O’Shea EF, O’Connor PM, Raftis EJ, O’Toole PW, Stanton C, Cotter PD, Ross RP, Hill C (2011) Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius. J Bacteriol 193(24):6973–6982CrossRefGoogle Scholar
  55. 55.
    Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76(1):310–317CrossRefGoogle Scholar
  56. 56.
    Joyce SA, Gahan CG (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology 156(Pt 11):3456–3468CrossRefGoogle Scholar
  57. 57.
    Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12:308CrossRefGoogle Scholar
  58. 58.
    van Sorge NM, Doran KS (2012) Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 7(3):383–394CrossRefGoogle Scholar
  59. 59.
    Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. N Engl J Med 337:970–976CrossRefGoogle Scholar
  60. 60.
    van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351:1849–1859CrossRefGoogle Scholar
  61. 61.
    Clauss HE, Lorber B (2008) Central nervous system infection with Listeria monocytogenes. Curr Infect Dis Rep 10:300–306CrossRefGoogle Scholar
  62. 62.
    Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Krishnendu Mukherjee
    • 1
  • Ramya Raju
    • 2
  • Rainer Fischer
    • 1
    • 3
  • Andreas Vilcinskas
    • 1
    • 2
    Email author
  1. 1.Department of BioresourcesFraunhofer Institute for Molecular Biology and Applied EcologyGiessenGermany
  2. 2.Institute of Phytopathology and Applied ZoologyJustus-Liebig-University of GiessenGiessenGermany
  3. 3.Department of Molecular BiologyFraunhofer Institute for Molecular Biology and Applied EcologyAachenGermany

Personalised recommendations