Skip to main content

Cell-free Biosystems in the Production of Electricity and Bioenergy

  • Chapter
  • First Online:
Fundamentals and Application of New Bioproduction Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Fang JW, Zhang JB, Liu ZY, Shao J, Kowal P, Andreana P, Wang PG (2001) Sugar nucleotide regeneration beads (superbeads): a versatile tool for the practical synthesis of oligosaccharides. J Am Chem Soc 123:2081–2082

    CAS  Google Scholar 

  2. Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485

    CAS  Google Scholar 

  3. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 3:499–511

    CAS  Google Scholar 

  4. Wang Y, Zhang Y-HP (2009) Cell-free protein synthesis energized by slowly metabolized maltodextrin. BMC Biotechnol 9:58

    Google Scholar 

  5. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    CAS  Google Scholar 

  6. Bauer MW (2005) Distinguishing red and green biotechnology: cultivation effects of the elite press. Int J Public Opin Res 17:63–89

    Google Scholar 

  7. Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136

    CAS  Google Scholar 

  8. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. Adv Biochem Eng Biotechnol 92:225–260

    CAS  Google Scholar 

  9. Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677

    CAS  Google Scholar 

  10. Liao HH, Zhang XZ, Rollin JA, Zhang Y-HP (2011) A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol J 6:1409–1418

    CAS  Google Scholar 

  11. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

    CAS  Google Scholar 

  12. Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269

    CAS  Google Scholar 

  13. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    Google Scholar 

  14. Halpin DR, Harbury PB (2004) DNA display II: genetic manipulation of combinatorial chemistry libraries for small-molecule evolution. PloS Biol 2:1022–1030

    CAS  Google Scholar 

  15. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa SA, Linhardt RJ, Liu J (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498–501

    CAS  Google Scholar 

  16. Zhang YHP, Myung S, You C, Zhu ZG, Rollin JA (2011) Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. J Mater Chem 21:18877–18886

    CAS  Google Scholar 

  17. Zhang YHP, Sun JB, Zhong JJ (2010) Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol 21:663–669

    CAS  Google Scholar 

  18. You C, Zhang Y-HP (2013) Cell-free biosystems for biomanufacturing. Adv Biochem Eng Biotechnol 131:89–119

    Google Scholar 

  19. Guterl J-K, Sieber V (2013) Biosynthesis “debugged”: novel bioproduction strategies. Eng Life Sci 13:4–18

    CAS  Google Scholar 

  20. Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, Philipp A, Haack M, Rühmann B, Koltermann A et al (2012) Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5:2165–2172

    CAS  Google Scholar 

  21. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    CAS  Google Scholar 

  22. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E-coli. Science 291:1790–1792

    CAS  Google Scholar 

  23. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by Cyanobacteria. Microb Cell Fact 4:36

    Google Scholar 

  24. Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456

    Google Scholar 

  25. Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, Zhang Y-HP (2009) Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem 2:149–152

    CAS  Google Scholar 

  26. del Campo JSM, Rollin J, Myung S, Chun Y, Chandrayan S, Patiño R, Adams MW, Zhang Y-HP (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed. doi:10.1002/ange.201300766

  27. You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang X-Z, Li J, Zhang Y-HP (2013) Enzymatic Transformation of Non-Food Biomass to Starch. Proc Natl Acad Sci USA 110:7182–7187

    Google Scholar 

  28. Huang WD, Zhang Y-HP (2011) Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation. Energy Environ Sci 4:784–792

    CAS  Google Scholar 

  29. Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotechnol 15:272–279

    CAS  Google Scholar 

  30. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    CAS  Google Scholar 

  31. Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586

    CAS  Google Scholar 

  32. Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Google Scholar 

  33. Zhang Y-HP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng. doi: 10.1002/ese3.2

  34. Resnick SM, Zehnder AJB (2000) In vitro ATP regeneration from polyphosphate and AMP by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl Environ Microbiol 66:2045–2051

    CAS  Google Scholar 

  35. Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99:3695–3700

    CAS  Google Scholar 

  36. Liao HH, Myung S, Zhang Y-HP (2012) One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP. Appl Microbiol Biotechnol 93:1109–1117

    CAS  Google Scholar 

  37. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:57

    Google Scholar 

  38. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    CAS  Google Scholar 

  39. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    CAS  Google Scholar 

  40. Seisser B, Lavandera I, Faber K, Spelberg JHL, Kroutil W (2007) Stereo-complementary two-step cascades using a two-enzyme system leading to enantiopure epoxides. Adv Synth Catal 349:1399–1404

    CAS  Google Scholar 

  41. Ingram CU, Bommer M, Smith MEB, Dalby PA, Ward JM, Hailes HC, Lye GJ (2007) One-pot synthesis of amino-alcohols using a de-novo transketolase and beta-alanine: pyruvate transaminase pathway in Escherichia coli. Biotechnol Bioeng 96:559–569

    CAS  Google Scholar 

  42. Arechederra RL, Treu BL, Minteer SD (2007) Development of glycerol/O-2 biofuel cell. J Power Sources 173:156–161

    CAS  Google Scholar 

  43. Xu S, Minteer SD (2012) Enzymatic biofuel cell for oxidation of glucose to CO2. ACS Catal 2:91–94

    CAS  Google Scholar 

  44. Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443:155–161

    CAS  Google Scholar 

  45. Sun FF, Zhang XZ, Myung S, Zhang Y-HP (2012) Thermophilic Thermotoga maritima ribose-5-phosphate isomerase RpiB: optimized heat treatment purification and basic characterization. Protein Expr Purif 82:302–307

    CAS  Google Scholar 

  46. Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120

    CAS  Google Scholar 

  47. Hong J, Wang YR, Ye XH, Zhang YHP (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194:150–154

    CAS  Google Scholar 

  48. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    CAS  Google Scholar 

  49. Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    CAS  Google Scholar 

  50. Eijsink VGH, Gaseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30

    CAS  Google Scholar 

  51. Bloom JD, Arnold FH (2009) In the light of directed evolution: pathways of adaptive protein evolution. Proc Natl Acad Sci USA 106:9995–10000

    CAS  Google Scholar 

  52. Ye X, Zhang C, Zhang Y-HP (2012) Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase. Mol BioSyst 8:1815–1823

    CAS  Google Scholar 

  53. Kim J, Jia HF, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    CAS  Google Scholar 

  54. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    CAS  Google Scholar 

  55. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    CAS  Google Scholar 

  56. Myung S, Zhang X-Z, Zhang Y-HP (2011) Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog 27:969–975

    CAS  Google Scholar 

  57. Gao Y, Zhao F, Wang Q, Zhang Y, Xu B (2010) Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chem Soc Rev 39:3425–3433

    CAS  Google Scholar 

  58. Lin Y, Zhou S, Sheehan SW, Wang D (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401

    CAS  Google Scholar 

  59. Campbell E, Meredith M, Minteer SD, Banta S (2012) Enzymatic biofuel cells utilizing a biomimetic cofactor. Chem Commun 48:1898–1900

    CAS  Google Scholar 

  60. Maid H, Bohm P, Huber SM, Bauer W, Hummel W, Jux N, Groger H (2011) Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen: a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase. Angew Chem Int Ed 50:2397–2400

    CAS  Google Scholar 

  61. Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F (2012) Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett 15:180–183

    Google Scholar 

  62. Zhu ZG, Sun F, Zhang X, Zhang Y-HP (2012) Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens Bioelectron 36:110–115

    CAS  Google Scholar 

  63. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234

    CAS  Google Scholar 

  64. Davis F, Higson SPJ (2007) Biofuel cells: recent advances and applications. Biosens Bioelectron 22:1224–1235

    CAS  Google Scholar 

  65. Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Enzyme catalysed biofuel cells. Energy Environ Sci 1:320–337

    CAS  Google Scholar 

  66. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis: revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    CAS  Google Scholar 

  67. Harnisch F, Schroder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

    CAS  Google Scholar 

  68. Zhu ZG, Wang YR, Minteer SD, Zhang YHP (2011) Maltodextrin-powered enzymatic fuel cell through a non-natural enzymatic pathway. J Power Sources 196:7505–7509

    CAS  Google Scholar 

  69. Sato A, Kano K, Ikeda T (2003) Diaphorase/naphthoquinone derivative-modified electrode as an anode for diffusion-controlled oxidation of NADH in electrochemical cells. Chem Lett 32:880–881

    CAS  Google Scholar 

  70. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano K (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2:133–138

    CAS  Google Scholar 

  71. Arechederra RL, Minteer SD (2009) Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 9:63–69

    CAS  Google Scholar 

  72. Sokic-Lazic D, Arechederra RL, Treu BL, Minteer SD (2010) Oxidation of biofuels: fuel diversity and effectiveness of fuel oxidation through multiple enzyme cascades. Electroanalysis 22:757–764

    CAS  Google Scholar 

  73. Sokic-Lazic D, de Andrade AR, Minteer SD (2011) Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell. Electrochim Acta 56:10772–10775

    CAS  Google Scholar 

  74. Moehlenbrock MJ, Minteer SD (2008) Extended lifetime biofuel cells. Chem Soc Rev 37:1188–1196

    CAS  Google Scholar 

  75. Park BW, Yoon DY, Kim DS (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron 26:1–10

    CAS  Google Scholar 

  76. Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1:2

    Google Scholar 

  77. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun 2:370

    Google Scholar 

  78. Johnston W, Cooney MJ, Liaw BY, Sapra R, Adams MWW (2005) Design and characterization of redox enzyme electrodes: new perspectives on established techniques with application to an extremeophilic hydrogenase. Enzyme Microb Technol 36:540–549

    CAS  Google Scholar 

  79. Johnston W, Maynard N, Liaw BY, Cooney MJ (2006) In situ measurement of activity and mass transfer effects in enzyme immobilized electrodes. Enzyme Microb Technol 39:131–140

    CAS  Google Scholar 

  80. Güven G, Prodanovic R, Schwaneberg U (2010) Protein engineering: an option for enzymatic biofuel cell design. Electroanalysis 22:765–775

    Google Scholar 

  81. Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596

    CAS  Google Scholar 

  82. Sugiyama T, Goto Y, Matsumoto R, Sakai H, Tokita Y, Hatazawa T (2010) A mediator-adapted diaphorase variant for a glucose dehydrogenase-diaphorase biocatalytic system. Biosens Bioelectron 26:452–457

    CAS  Google Scholar 

  83. Yu EH, Scott K (2010) Enzymatic biofuel cells-fabrication of enzyme electrodes. Energies 3:23–42

    CAS  Google Scholar 

  84. Zhao XY, Jia HF, Kim J, Wang P (2009) Kinetic limitations of a bioelectrochemical electrode using carbon nanotube-attached glucose oxidase for biofuel cells. Biotechnol Bioengin 104:1068–1074

    CAS  Google Scholar 

  85. Akers NL, Moore CM, Minteer SD (2005) Development of alcohol/O-2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim Acta 50:2521–2525

    CAS  Google Scholar 

  86. Sokic-Lazic D, Minteer SD (2009) Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem Solid-State Lett 12:F26–F28

    CAS  Google Scholar 

  87. Tasca F, Gorton L, Kujawa M, Patel I, Harreither W, Peterbauer CK, Ludwig R, Noll G (2010) Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes. Biosens Bioelectron 25:1710–1716

    CAS  Google Scholar 

  88. Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E (2009) Biofuel cell controlled by enzyme logic systems. J Am Chem Soc 131:826–832

    CAS  Google Scholar 

  89. Tam TK, Pita M, Ornatska M, Katz E (2009) Biofuel cell controlled by enzyme logic network: approaching physiologically regulated devices. Bioelectrochemistry 76:4–9

    CAS  Google Scholar 

  90. Zhang YHP (2010) Renewable carbohydrates are a potential high-density hydrogen carrier. Int J Hydrogen Energy 35:10334–10342

    CAS  Google Scholar 

  91. Zhang YHP (2009) A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy Environ Sci 2:272–282

    CAS  Google Scholar 

  92. Thauer RK, Jungermann K, Decker K (1977) Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  93. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA 104:18871–18873

    CAS  Google Scholar 

  94. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    CAS  Google Scholar 

  95. Woodward J, Orr M, Cordray K, Greenbaum E (2000) Enzymatic production of biohydrogen. Nature 405:1014–1015

    CAS  Google Scholar 

  96. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    CAS  Google Scholar 

  97. Ardao I, Zeng A-P (2013) In silico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: application to the high-yield production of hydrogen from a synthetic metabolic pathway. Chem Eng Sci 87:183–193

    CAS  Google Scholar 

  98. Lau MW, Bals BD, Chundawat SPS, Jin MJ, Gunawan C, Balan V, Jones AD, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110

    CAS  Google Scholar 

  99. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    CAS  Google Scholar 

  100. Welch P, Scopes RK (1985) Studies on cell-free metabolism: ethanol-production by a yeast glycolytic system reconstituted from purified enzymes. J Biotechnol 2:257–273

    CAS  Google Scholar 

  101. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    CAS  Google Scholar 

  102. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    CAS  Google Scholar 

  103. Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    CAS  Google Scholar 

  104. Swartz JR (2011) Transforming biochemical engineering with cell-free biology. AIChE J 58:5–13

    Google Scholar 

  105. Hold C, Panke S (2009) Towards the engineering of in vitro systems. J R Soc Interface 6:S507–S521

    CAS  Google Scholar 

  106. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    CAS  Google Scholar 

  107. Zhou H, Xie XK, Tang Y (2008) Engineering natural products using combinatorial biosynthesis and biocatalysis. Curr Opin Biotechnol 19:590–596

    CAS  Google Scholar 

  108. Ye X, Rollin J, Zhang Y-HP (2010) Thermophilic α-glucan phosphorylase from Clostridium thermocellum: cloning, characterization and enhanced thermostability. J Mol Cat B Enzymatic 65:110–116

    CAS  Google Scholar 

  109. Wang Y, Zhang Y-HP (2010) A highly active phosphoglucomutase from Clostridium thermocellum: cloning, purification, characterization, and enhanced thermostability. J Appl Microbiol 108:39–46

    CAS  Google Scholar 

  110. Wang Y, Zhang Y-HP (2009) Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration. Microb Cell Fact 8:30

    Google Scholar 

  111. Myung S, Wang YR, Zhang Y-HP (2010) Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: characterization, metabolite stability and its implications. Proc Biochem 45:1882–1887

    CAS  Google Scholar 

  112. Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MWW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526

    Google Scholar 

  113. Santacoloma PA, Gr Sin, Gernaey KV, Woodley JM (2010) Multienzyme-catalyzed processes: next-generation biocatalysis. Org Proc Res Dev 15:203–212

    Google Scholar 

  114. Jandt U, You C, Zhang Y-HP, Zeng A-P (2013) Compartmentation and metabolic channeling: practical and modeling aspects for multienzymatic biosynthesis. Adv Biochem Eng Biotechnol

    Google Scholar 

  115. Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    CAS  Google Scholar 

  116. Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E (1999) Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase. Biochemistry 38:11440–11447

    CAS  Google Scholar 

  117. Yaoi T, Miyazaki K, Oshima T, Komukai Y, Go M (1996) Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement. J Biochem 119:1014–1018

    CAS  Google Scholar 

  118. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng. 13:345–352

    CAS  Google Scholar 

  119. Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J (2003) Complete reversal of coenzyme specificity by concerted mutation of three consecutive residues in alcohol dehydrogenase. J Biol Chem 278:40573–40580

    CAS  Google Scholar 

  120. Döhr O, Paine MJI, Friedberg T, Roberts GCK, Wolf CR (2001) Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci USA 98:81–86

    Google Scholar 

  121. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng Des Sel 15:131–140

    CAS  Google Scholar 

  122. Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41:6226–6236

    CAS  Google Scholar 

  123. Bocanegra JA, Scrutton NS, Perham RN (1993) Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32:2737–2740

    CAS  Google Scholar 

  124. Mittl PRE, Berry A, Scrutton NS, Perham RN, Schulz GE (1993) Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. J Mol Biol 231:191–195

    CAS  Google Scholar 

  125. Steen IH, Lien T, Madsen MS, Birkeland N-K (2002) Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Arch Microbiol 178:297–300

    CAS  Google Scholar 

  126. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural Zinc. J Biol Chem 280:10340–10349

    CAS  Google Scholar 

  127. Glykys DJ, Banta S (2009) Metabolic control analysis of an enzymatic biofuel cell. Biotechnol Bioeng 102:1624–1635

    CAS  Google Scholar 

  128. Woodyer RD, van der Donk WA, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614

    CAS  Google Scholar 

  129. Wiegert T, Sahm H, Sprenger GA (1997) The substitution of a single amino acid residue (Ser-116 → Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity. J Biol Chem 272:13126–13133

    CAS  Google Scholar 

  130. Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund M-F, Bertau M (2010) Engineering cofactor preference of ketone reducing biocatalysts: a mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int J Mol Sci 11:1735–1758

    CAS  Google Scholar 

  131. Sanli G, Banta S, Anderson S, Blaber M (2004) Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase. Protein Eng 13:504–512

    CAS  Google Scholar 

  132. Campbell E, Wheeldon IR, Banta S (2010) Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol Bioeng 107:763–774

    CAS  Google Scholar 

  133. Plapp BV, Sogin DC, Dworschack RT, Bohlken DP, Woenckhaus C, Jeck R (1986) Kinetics and native and modified liver alcohol dehydrogenase with coenzyme analogs: isomerization of enzyme-nicotinamide adenine dinucleotide complex. Biochemistry 25:5396–5402

    CAS  Google Scholar 

  134. Fisher HF, McGregor LL (1969) The ability of reduced nicotinamide mononucleotide to function as a hydrogen donor in the glutamic dehydrogenase reaction. Biochem Biophys Res Commun 34:627–632

    CAS  Google Scholar 

  135. Flores H, Ellington AD (2005) A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Eng Des Sel 18:369–377

    CAS  Google Scholar 

  136. Ansell RJ, Lowe CR (1999) Artificial redox coenzymes: biomimetic analogues of NAD+. Appl Microbiol Biotechnol 51:703–710

    CAS  Google Scholar 

  137. Lo HC, Leiva C, Buriez O, Kerr JB, Olmstead MM, Fish RH (2001) Bioorganometallic chemistry. 13. regioselective reduction of NAD+ models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5′-methyl phosphate, with in situ generated [Cp*Rh(Bpy)H]+: structure–activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Inorg Chem 40:6705–6716

    CAS  Google Scholar 

  138. Lo HC, Fish RH (2002) Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis. Angew Chem Int Ed 41:478–481

    CAS  Google Scholar 

  139. Lutz J, Hollmann F, Ho TV, Schnyder A, Fish RH, Schmid A (2004) Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis. J Organomet Chem 689:4783–4790

    CAS  Google Scholar 

  140. Ryan JD, Fish RH, Clark DS (2008) Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. ChemBioChem 9:2579–2582

    CAS  Google Scholar 

  141. Nazor J, Schwaneberg U (2006) Laboratory evolution of P450 BM-3 for mediated electron transfer. ChemBioChem 7:638–644

    CAS  Google Scholar 

  142. Nazor J, Dannenmann S, Adjei RO, Fordjour YB, Ghampson IT, Blanusa M, Roccatano D, Schwaneberg U (2008) Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Eng Des Sel 21:29–35

    CAS  Google Scholar 

  143. Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S (2013) Synthesis of membrane proteins in eukaryotic cell-free systems. Eng Life Sci 13:39–48

    CAS  Google Scholar 

  144. Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao ZK (2011) Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc 133:20857–20862

    CAS  Google Scholar 

  145. Zhang Y-HP (2011) Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catal 1:998–1009

    CAS  Google Scholar 

  146. Zhang Y-HP, Huang W-D (2012) Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 30:301–306

    CAS  Google Scholar 

  147. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194

    CAS  Google Scholar 

  148. Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164:34–40

    CAS  Google Scholar 

  149. Honda K, Maya S, Omasa T, Hirota R, Kuroda A, Ohtake H (2010) Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes. J Biotechnol 148:204–207

    CAS  Google Scholar 

  150. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    CAS  Google Scholar 

  151. You C, Myung S, Zhang YHP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787–8790

    CAS  Google Scholar 

  152. Chakraborty D, Barton SC (2011) Influence of mediator redox potential on fuel sensitivity of mediated laccase oxygen reduction electrodes. J Am Chem Soc 158:B440–B447

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biological Systems Engineering Department of Virginia Tech, and partially supported by Shell by the GameChanger Program, the CALS Biodesign and Bioprocessing Research Center, and NSF SBIR I and DOE STTR I grants to PZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-H. Percival Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, Z., Tam, T.K., Zhang, YH.P. (2013). Cell-free Biosystems in the Production of Electricity and Bioenergy. In: Zeng, AP. (eds) Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_201

Download citation

Publish with us

Policies and ethics