Utility of Insects for Studying Human Pathogens and Evaluating New Antimicrobial Agents

  • Yan WangEmail author
  • De-Dong Li
  • Yuan-Ying Jiang
  • Eleftherios MylonakisEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 135)


Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.


Antimicrobial efficacy Drosophila Galleria Infection Insect Pathogen Pathogenesis 



Methicillin-resistant Staphylococcus aureus


RNA interference



This work was supported by the National Institutes of Health through an R01 award (AI075286) and an R21 award (AI070569) to Eleftherios Mylonakis, and National Natural Science Foundation of China (81273558, 81072678) to Yan Wang.


  1. 1.
    Parkins MD, Gregson DB, Pitout JD, Ross T, Laupland KB (2010) Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection 38(1):25–32Google Scholar
  2. 2.
    Roberts RR, Hota B, Ahmad I, Scott RD 2nd, Foster SD, Abbasi F, Schabowski S, Kampe LM, Ciavarella GG, Supino M, Naples J, Cordell R, Levy SB, Weinstein RA (2009) Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 49(8):1175–1184Google Scholar
  3. 3.
    Filice GA, Nyman JA, Lexau C, Lees CH, Bockstedt LA, Como-Sabetti K, Lesher LJ, Lynfield R (2010) Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect Control Hosp Epidemiol 31(4):365–373Google Scholar
  4. 4.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310Google Scholar
  5. 5.
    Mauldin PD, Salgado CD, Hansen IS, Durup DT, Bosso JA (2010) Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob Agents Chemother 54(1):109–115Google Scholar
  6. 6.
    Davies A, Ridley S, Hutton J, Chinn C, Barber B, Angus DC (2005) Cost effectiveness of drotrecogin alfa (activated) for the treatment of severe sepsis in the United Kingdom. Anaesthesia 60(2):155–162Google Scholar
  7. 7.
    Vashishtha VM (2010) Growing antibiotics resistance and the need for new antibiotics. Indian Pediatr 47(6):505–506Google Scholar
  8. 8.
    (2009) Urgently needed: new antibiotics. Lancet 374(9705):1868Google Scholar
  9. 9.
    Miller LG, Hajjeh RA, Edwards JE Jr (2001) Estimating the cost of nosocomial candidemia in the United States. Clin Infect Dis 32(7):1110Google Scholar
  10. 10.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163Google Scholar
  11. 11.
    Paulitsch A, Weger W, Ginter-Hanselmayer G, Marth E, Buzina W (2006) A 5-year (2000–2004) epidemiological survey of Candida and non-Candida yeast species causing vulvovaginal candidiasis in Graz. Austria Mycoses 49(6):471–475Google Scholar
  12. 12.
    Kavanagh K, Reeves EP (2004) Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28(1):101–112Google Scholar
  13. 13.
    Peleg AY, Monga D, Pillai S, Mylonakis E, Moellering RC Jr, Eliopoulos GM (2009) Reduced susceptibility to vancomycin influences pathogenicity in Staphylococcus aureus infection. J Infect Dis 199(4):532–536Google Scholar
  14. 14.
    Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1(5):440–464Google Scholar
  15. 15.
    Limmer S, Quintin J, Hetru C, Ferrandon D (2011) Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions. Curr Drug Targets 12(7):978–999Google Scholar
  16. 16.
    Chamilos G, Samonis G, Kontoyiannis DP (2011) Drosophila melanogaster as a model host for the study of microbial pathogenicity and the discovery of novel antimicrobial compounds. Curr Pharm Des 17(13):1246–1253Google Scholar
  17. 17.
    Glavis-Bloom J, Muhammed M, Mylonakis E (2012) Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol 710:11–17Google Scholar
  18. 18.
    Mylonakis E, Casadevall A, Ausubel FM (2007) Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3(7):e101Google Scholar
  19. 19.
    Desbois AP, Coote PJ (2012) Utility of greater wax moth larva (Galleria mellonella) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol 78:25–53Google Scholar
  20. 20.
    Cotter G, Doyle S, Kavanagh K (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27(2):163–169Google Scholar
  21. 21.
    Junqueira JC (2012) Galleria mellonella as a model host for human pathogens: Recent studies and new perspectives. Virulence 3(6):474–476Google Scholar
  22. 22.
    Fuchs BB, O’Brien E, Khoury JB, Mylonakis E (2010) Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1(6):475–482Google Scholar
  23. 23.
    Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP (2007) Role of mini-host models in the study of medically important fungi. Lancet Infect Dis 7(1):42–55Google Scholar
  24. 24.
    Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E (2009) Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53(6):2605–2609Google Scholar
  25. 25.
    Garcia-Lara J, Needham AJ, Foster SJ (2005) Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host-pathogen interaction. FEMS Immunol Med Microbiol 43(3):311–323Google Scholar
  26. 26.
    Konkel ME, Tilly K (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect/Inst Pasteur 2(2):157–166Google Scholar
  27. 27.
    Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL, Musser JM (2001) Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proce Natl Acad Sci USA 98(18):10416–10421Google Scholar
  28. 28.
    Fedhila S, Daou N, Lereclus D, Nielsen-LeRoux C (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62(2):339–355Google Scholar
  29. 29.
    Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology (Reading, England) 146(Pt 11):2825–2832Google Scholar
  30. 30.
    Bouillaut L, Ramarao N, Buisson C, Gilois N, Gohar M, Lereclus D, Nielsen-Leroux C (2005) FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol 71(12):8903–8910Google Scholar
  31. 31.
    Wand ME, Bock LJ, Turton JF, Nugent PG, Sutton JM (2012) Acinetobacter baumannii virulence is enhanced in Galleria mellonella following biofilm adaptation. J Med Microbiol 61(Pt 4):470–477Google Scholar
  32. 32.
    Antunes LC, Imperi F, Carattoli A, Visca P (2011) Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PloS One 6(8):e22674Google Scholar
  33. 33.
    Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8(6):e1002758Google Scholar
  34. 34.
    Antunes LC, Imperi F, Minandri F, Visca P (2012) In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 56(11):5961–5970Google Scholar
  35. 35.
    Hornsey M, Wareham DW (2011) In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 55(7):3534–3537Google Scholar
  36. 36.
    Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA (2012) Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 80(3):1015–1024Google Scholar
  37. 37.
    Zimbler DL, Park TM, Arivett BA, Penwell WF, Greer SM, Woodruff TM, Tierney DL, Actis LA (2012) Stress response and virulence functions of the Acinetobacter baumannii NfuA Fe-S scaffold protein. J Bacteriol 194(11):2884–2893Google Scholar
  38. 38.
    Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka D, Hammer B, Zimmermann O, Ziesing S, Wichelhaus TA, Hunfeld KP, Borgmann S, Grobner S, Higgins PG, Seifert H, Busse HJ, Witte W, Pfeifer Y, Wilharm G (2012) Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302(3):117–128Google Scholar
  39. 39.
    Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76(3):1267–1275Google Scholar
  40. 40.
    Mil-Homens D, Fialho AM (2012) A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. PloS One 7(7):e41747Google Scholar
  41. 41.
    Thomson EL, Dennis JJ (2012) A Burkholderia cepacia complex non-ribosomal peptide-synthesized toxin is hemolytic and required for full virulence. Virulence 3(3):286–298Google Scholar
  42. 42.
    Schell MA, Lipscomb L, DeShazer D (2008) Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 190(7):2306–2313Google Scholar
  43. 43.
    Tegos GP, Haynes MK, Schweizer HP (2012) Dissecting novel virulent determinants in the Burkholderia cepacia complex. Virulence 3(3):234–237Google Scholar
  44. 44.
    Ibrahim M, Tang Q, Shi Y, Almoneafy A, Fang Y, Xu L, Li W, Li B, Xie GL (2012) Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water, clinical, and agricultural isolates in China. World J Microbiol Biotechnol 28(5):2113–2123Google Scholar
  45. 45.
    Seed KD, Dennis JJ (2009) Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother 53(5):2205–2208Google Scholar
  46. 46.
    Agnoli K, Schwager S, Uehlinger S, Vergunst A, Viteri DF, Nguyen DT, Sokol PA, Carlier A, Eberl L (2012) Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol Microbiol 83(2):362–378Google Scholar
  47. 47.
    Mil-Homens D, Rocha EP, Fialho AM (2010) Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology (Reading, England) 156(Pt 4):1084–1096Google Scholar
  48. 48.
    Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT, Sokol PA, Eberl L (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77(9):4102–4110Google Scholar
  49. 49.
    Champion OL, Karlyshev AV, Senior NJ, Woodward M, La Ragione R, Howard SL, Wren BW, Titball RW (2010) Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 201(5):776–782Google Scholar
  50. 50.
    Wand ME, Muller CM, Titball RW, Michell SL (2011) Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11(1):11Google Scholar
  51. 51.
    Silva IN, Ferreira AS, Becker JD, Zlosnik JE, Speert DP, He J, Mil-Homens D, Moreira LM (2011) Mucoid morphotype variation of Burkholderia multivorans during chronic cystic fibrosis lung infection is correlated with changes in metabolism, motility, biofilm formation and virulence. Microbiology (Reading, England) 157(Pt 11):3124–3137Google Scholar
  52. 52.
    Vial L, Groleau MC, Lamarche MG, Filion G, Castonguay-Vanier J, Dekimpe V, Daigle F, Charette SJ, Deziel E (2010) Phase variation has a role in Burkholderia ambifaria niche adaptation. ISME J 4(1):49–60Google Scholar
  53. 53.
    Muller CM, Conejero L, Spink N, Wand ME, Bancroft GJ, Titball RW (2012) Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect Immun 80(9):3247–3255Google Scholar
  54. 54.
    Mil-Homens D, Bernardes N, Fialho AM (2012) The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia. FEMS Microbiol Lett 328(1):61–69Google Scholar
  55. 55.
    Fazli M, O’Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82(2):327–341Google Scholar
  56. 56.
    Costello A, Herbert G, Fabunmi L, Schaffer K, Kavanagh KA, Caraher EM, Callaghan M, McClean S (2011) Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. J Med Microbiol 60(Pt 3):289–299Google Scholar
  57. 57.
    McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, Darby T, Charbit A, Sleator RD, Joyce SA, Cowart RE, Hill C, Klebba PE, Gahan CG (2012) A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes. PloS One 7(2):e30928Google Scholar
  58. 58.
    Fedhila S, Buisson C, Dussurget O, Serror P, Glomski IJ, Liehl P, Lereclus D, Nielsen-LeRoux C (2010) Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103(1):24–29Google Scholar
  59. 59.
    Mukherjee K, Altincicek B, Hain T, Domann E, Vilcinskas A, Chakraborty T (2010) Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol 76(1):310–317Google Scholar
  60. 60.
    Joyce SA, Gahan CG (2010) Molecular pathogenesis of Listeria monocytogenes in the alternative model host Galleria mellonella. Microbiology (Reading, England) 156(Pt 11):3456–3468Google Scholar
  61. 61.
    Seifart Gomes C, Izar B, Pazan F, Mohamed W, Mraheil MA, Mukherjee K, Billion A, Aharonowitz Y, Chakraborty T, Hain T (2011) Universal stress proteins are important for oxidative and acid stress resistance and growth of Listeria monocytogenes EGD-e in vitro and in vivo. PloS One 6(9):e24965Google Scholar
  62. 62.
    McLaughlin HP, Caly DL, McCarthy Y, Ryan RP, Dow JM (2012) An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa. PloS One 7(8):e42205Google Scholar
  63. 63.
    Lore NI, Cigana C, De Fino I, Riva C, Juhas M, Schwager S, Eberl L, Bragonzi A (2012) Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PloS One 7(4):e35648Google Scholar
  64. 64.
    Choi JY, Sifri CD, Goumnerov BC, Rahme LG, Ausubel FM, Calderwood SB (2002) Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol 184(4):952–961Google Scholar
  65. 65.
    Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182(13):3843–3845Google Scholar
  66. 66.
    Inglis RF, Gardner A, Cornelis P, Buckling A (2009) Spite and virulence in the bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106(14):5703–5707Google Scholar
  67. 67.
    Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E (2003) Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71(5):2404–2413Google Scholar
  68. 68.
    Champion OL, Cooper IA, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PC, Titball RW (2009) Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology (Reading, England) 155(Pt 5):1516–1522Google Scholar
  69. 69.
    Strong PC, Hinchliffe SJ, Patrick H, Atkinson S, Champion OL, Wren BW (2011) Identification and characterisation of a novel adhesin Ifp in Yersinia pseudotuberculosis. BMC Microbiol 11:85Google Scholar
  70. 70.
    Erickson DL, Russell CW, Johnson KL, Hileman T, Stewart RM (2011) PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microb Pathog 51(6):389–395Google Scholar
  71. 71.
    Champion OL, Karlyshev A, Cooper IA, Ford DC, Wren BW, Duffield M, Oyston PC, Titball RW (2011) Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. Microbiology (Reading, England) 157(Pt 4):1115–1122Google Scholar
  72. 72.
    Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW (2011) Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 60(Pt 5):661–669Google Scholar
  73. 73.
    Gundogdu O, Mills DC, Elmi A, Martin MJ, Wren BW, Dorrell N (2011) The Campylobacter jejuni transcriptional regulator Cj1556 plays a role in the oxidative and aerobic stress response and is important for bacterial survival in vivo. J Bacteriol 193(16):4238–4249Google Scholar
  74. 74.
    Dunphy GB, Chadwick JS (1989) Effects of selected carbohydrates and the contribution of the prophenoloxidase cascade system to the adhesion of strains of Pseudomonas aeruginosa and Proteus mirabilis to hemocytes of nonimmune larval Galleria mellonella. Can J Microbiol 35(4):524–527Google Scholar
  75. 75.
    Chadwick JS, Aston WP, Ricketson JR (1980) Further studies on the effect and role of cobra venom factor on protective immunity in Galleria mellonella: activity in the response against Proteus mirabilis. Dev Comp Immunol 4(2):223–231Google Scholar
  76. 76.
    Morton DB, Dunphy GB, Chadwick JS (1987) Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Dev Comp Immunol 11(1):47–55Google Scholar
  77. 77.
    Morton DB, Barnett RI, Chadwick JS (1984) Structural alterations to Proteus mirabilis as a result of exposure to haemolymph from the larvae of Galleria mellonella. Microbios 39(157–158):177–185Google Scholar
  78. 78.
    Leuko S, Raivio TL (2012) Mutations that impact the enteropathogenic Escherichia coli Cpx envelope stress response attenuate virulence in Galleria mellonella. Infect Immun 80(9):3077–3085Google Scholar
  79. 79.
    Harding CR, Schroeder GN, Reynolds S, Kosta A, Collins JW, Mousnier A, Frankel G (2012) Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 80(8):2780–2790Google Scholar
  80. 80.
    Lebreton F, Riboulet-Bisson E, Serror P, Sanguinetti M, Posteraro B, Torelli R, Hartke A, Auffray Y, Giard JC (2009) ace, Which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77(7):2832–2839Google Scholar
  81. 81.
    de Oliveira NE, Abranches J, Gaca AO, Laport MS, Damaso CR, Bastos Mdo C, Lemos JA, Giambiagi-deMarval M (2011) clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology (Reading, England) 157(Pt 3):656–665Google Scholar
  82. 82.
    Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard JC, Leclercq R, Cattoir V (2011) Galleria mellonella as a model for studying Enterococcus faecium host persistence. J Mol Microbiol Biotechnol 21(3–4):191–196Google Scholar
  83. 83.
    Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace JM, Auffray Y, Sanguinetti M (2010) Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 78(9):3889–3897Google Scholar
  84. 84.
    Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS, Hartke A, Giard JC (2011) SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 79(7):2638–2645Google Scholar
  85. 85.
    Yan X, Zhao C, Budin-Verneuil A, Hartke A, Rince A, Gilmore MS, Auffray Y, Pichereau V (2009) The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. Microbiology (Reading, England) 155(Pt 10):3226–3237Google Scholar
  86. 86.
    Gaspar F, Teixeira N, Rigottier-Gois L, Marujo P, Nielsen-LeRoux C, Crespo MT, Lopes Mde F, Serror P (2009) Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE. Microbiology (Reading, England) 155(Pt 11):3564–3571Google Scholar
  87. 87.
    Latimer J, Forbes S, McBain AJ (2012) Attenuated virulence and biofilm formation in Staphylococcus aureus following sublethal exposure to triclosan. Antimicrob Agents Chemother 56(6):3092–3100Google Scholar
  88. 88.
    Purves J, Cockayne A, Moody PC, Morrissey JA (2010) Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Infect Immun 78(12):5223–5232Google Scholar
  89. 89.
    Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP (2010) Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 6(6):e1000944Google Scholar
  90. 90.
    Mowlds P, Kavanagh K (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165(1):5–12Google Scholar
  91. 91.
    Fallon J, Kelly J, Kavanagh K (2012) Galleria mellonella as a model for fungal pathogenicity testing. Methods Mol Biol 845:469–485Google Scholar
  92. 92.
    Junqueira JC (2012) Models hosts for the study of oral candidiasis. Adv Exp Med Biol 710:95–105Google Scholar
  93. 93.
    Mowlds P, Barron A, Kavanagh K (2008) Physical stress primes the immune response of Galleria mellonella larvae to infection by Candida albicans. Microbes Infect/Inst Pasteur 10(6):628–634Google Scholar
  94. 94.
    Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E (2010) Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes and Infect/Inst Pasteur 12(6):488–496Google Scholar
  95. 95.
    Dunphy GB, Oberholzer U, Whiteway M, Zakarian RJ, Boomer I (2003) Virulence of Candida albicans mutants toward larval Galleria mellonella (Insecta, Lepidoptera, Galleridae). Can J Microbiol 49(8):514–524Google Scholar
  96. 96.
    Garcia-Rodas R, Casadevall A, Rodriguez-Tudela JL, Cuenca-Estrella M, Zaragoza O (2011) Cryptococcus neoformans capsular enlargement and cellular gigantism during Galleria mellonella infection. PloS One 6(9):e24485Google Scholar
  97. 97.
    Mylonakis E (2008) Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165(1):1–3Google Scholar
  98. 98.
    Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, Ausubel FM, Diener A (2005) Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73(7):3842–3850Google Scholar
  99. 99.
    London R, Orozco BS, Mylonakis E (2006) The pursuit of cryptococcal pathogenesis: heterologous hosts and the study of cryptococcal host-pathogen interactions. FEMS Yeast Res 6(4):567–573Google Scholar
  100. 100.
    Fuchs BB, Mylonakis E (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9(4):346–351Google Scholar
  101. 101.
    Fallon JP, Troy N, Kavanagh K (2011) Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2(5):413–421Google Scholar
  102. 102.
    Reeves EP, Reiber K, Neville C, Scheibner O, Kavanagh K, Doyle S (2006) A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus. FEBS J 273(13):3038–3053Google Scholar
  103. 103.
    Scully LR, Bidochka MJ (2009) An alternative insect pathogenic strategy in an Aspergillus flavus auxotroph. Mycol Res 113(Pt 2):230–239Google Scholar
  104. 104.
    Jackson JC, Higgins LA, Lin X (2009) Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PloS One 4(1):e4224Google Scholar
  105. 105.
    Reeves EP, Messina CG, Doyle S, Kavanagh K (2004) Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158(1):73–79Google Scholar
  106. 106.
    Soukup AA, Farnoodian M, Berthier E, Keller NP (2012) NosA, a transcription factor important in Aspergillus fumigatus stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genet Biol 49(11):857–865Google Scholar
  107. 107.
    Slater JL, Gregson L, Denning DW, Warn PA (2011) Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol 49(Suppl 1):S107–S113Google Scholar
  108. 108.
    Christians JK, Cheema MS, Vergara IA, Watt CA, Pinto LJ, Chen N, Moore MM (2011) Quantitative trait locus (QTL) mapping reveals a role for unstudied genes in Aspergillus virulence. PloS One 6(4):e19325Google Scholar
  109. 109.
    Renwick J, Daly P, Reeves EP, Kavanagh K (2006) Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161(6):377–384Google Scholar
  110. 110.
    Fallon JP, Reeves EP, Kavanagh K (2011) The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes. Microbiology (Reading, England) 157(Pt 5):1481–1488Google Scholar
  111. 111.
    Cheema MS, Christians JK (2011) Virulence in an insect model differs between mating types in Aspergillus fumigatus. Med Mycol 49(2):202–207Google Scholar
  112. 112.
    Mukherjee K, Abu Mraheil M, Silva S, Muller D, Cemic F, Hemberger J, Hain T, Vilcinskas A, Chakraborty T (2011) Anti-Listeria activities of Galleria mellonella hemolymph proteins. Appl Environ Microbiol 77(12):4237–4240Google Scholar
  113. 113.
    Brennan M, Thomas DY, Whiteway M, Kavanagh K (2002) Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Medl Microbiol 34(2):153–157Google Scholar
  114. 114.
    Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM (2011) Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2(2):111–119Google Scholar
  115. 115.
    Fuchs BB, Bishop LR, Kovacs JA, Mylonakis E (2011) Galleria mellonella are resistant to Pneumocystis murina infection. Mycopathologia 171(4):273–277Google Scholar
  116. 116.
    Achterman RR, Smith AR, Oliver BG, White TC (2011) Sequenced dermatophyte strains: growth rate, conidiation, drug susceptibilities, and virulence in an invertebrate model. Fungal Genet Biol 48(3):335–341Google Scholar
  117. 117.
    Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E (2007) Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect/Inst Pasteur 9(6):729–734Google Scholar
  118. 118.
    Bergin D, Brennan M, Kavanagh K (2003) Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect/Inst Pasteur 5(15):1389–1395Google Scholar
  119. 119.
    Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K (2006) Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect/Inst Pasteur 8(8):2105–2112Google Scholar
  120. 120.
    Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A (2007) Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 75(1):175–183Google Scholar
  121. 121.
    Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K (2005) Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73(7):4161–4170Google Scholar
  122. 122.
    Vogel H, Altincicek B, Glockner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genom 12:308Google Scholar
  123. 123.
    Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39(11):792–800Google Scholar
  124. 124.
    Lionakis MS (2011) Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence 2(6):521–527Google Scholar
  125. 125.
    Chamilos G, Lionakis MS, Lewis RE, Lopez-Ribot JL, Saville SP, Albert ND, Halder G, Kontoyiannis DP (2006) Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 193(7):1014–1022Google Scholar
  126. 126.
    Lionakis MS, Kontoyiannis DP (2012) Drosophila melanogaster as a model organism for invasive aspergillosis. Methods Mol Biol 845:455–468Google Scholar
  127. 127.
    Levitin A, Marcil A, Tettweiler G, Laforest MJ, Oberholzer U, Alarco AM, Thomas DY, Lasko P, Whiteway M (2007) Drosophila melanogaster thor and response to Candida albicans infection. Eukaryot Cell 6(4):658–663Google Scholar
  128. 128.
    Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M (2004) Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 172(9):5622–5628Google Scholar
  129. 129.
    Lionakis MS, Kontoyiannis DP (2010) The growing promise of Toll-deficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment. Virulence 1(6):488–499Google Scholar
  130. 130.
    Lionakis MS, Lewis RE, May GS, Wiederhold NP, Albert ND, Halder G, Kontoyiannis DP (2005) Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 191(7):1188–1195Google Scholar
  131. 131.
    Glittenberg MT, Silas S, MacCallum DM, Gow NA, Ligoxygakis P (2011) Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans. Dis Model Mech 4(4):504–514Google Scholar
  132. 132.
    Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4(9):1285–1294Google Scholar
  133. 133.
    Mulcahy H, Sibley CD, Surette MG, Lewenza S (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7(10):e1002299Google Scholar
  134. 134.
    Kim SH, Park SY, Heo YJ, Cho YH (2008) Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect Immun 76(9):4152–4162Google Scholar
  135. 135.
    Lutter EI, Purighalla S, Duong J, Storey DG (2012) Lethality and cooperation of Pseudomonas aeruginosa quorum-sensing mutants in Drosophila melanogaster infection models. Microbiology (Reading, England) 158(Pt 8):2125–2132Google Scholar
  136. 136.
    Lutter EI, Faria MM, Rabin HR, Storey DG (2008) Pseudomonas aeruginosa cystic fibrosis isolates from individual patients demonstrate a range of levels of lethality in two Drosophila melanogaster infection models. Infect Immun 76(5):1877–1888Google Scholar
  137. 137.
    Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Scin USA 108(42):17378–17383Google Scholar
  138. 138.
    Jensen RL, Pedersen KS, Loeschcke V, Ingmer H, Leisner JJ (2007) Limitations in the use of Drosophila melanogaster as a model host for gram-positive bacterial infection. Lett Appl Microbiol 44(2):218–223Google Scholar
  139. 139.
    Linderman JA, Chambers MC, Gupta AS, Schneider DS (2012) Infection-Related Declines in Chill Coma Recovery and Negative Geotaxis in Drosophila melanogaster. PloS One 7(9):e41907Google Scholar
  140. 140.
    Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3(11):e173Google Scholar
  141. 141.
    Mueller JL, Page JL, Wolfner MF (2007) An ectopic expression screen reveals the protective and toxic effects of Drosophila seminal fluid proteins. Genetics 175(2):777–783Google Scholar
  142. 142.
    Valtonen TM, Roff DA, Rantala MJ (2011) Analysis of the effects of early nutritional environment on inbreeding depression in Drosophila melanogaster. J Evol Biol 24(1):196–205Google Scholar
  143. 143.
    Thomas P, Yamada R, Johnson KN, Asgari S (2010) Ectopic expression of an endoparasitic wasp venom protein in Drosophila melanogaster affects immune function, larval development and oviposition. Insect Mol Biol 19(4):473–480Google Scholar
  144. 144.
    Kallio J, Myllymaki H, Gronholm J, Armstrong M, Vanha-aho LM, Makinen L, Silvennoinen O, Valanne S, Ramet M (2010) Eye transformer is a negative regulator of Drosophila JAK/STAT signaling. FASEB J 24(11):4467–4479Google Scholar
  145. 145.
    Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA 108(38):15966–15971Google Scholar
  146. 146.
    Lazzaro BP, Sackton TB, Clark AG (2006) Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria. Genetics 174(3):1539–1554Google Scholar
  147. 147.
    Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325(5938):340–343Google Scholar
  148. 148.
    Sackton TB, Lazzaro BP, Clark AG (2010) Genotype and gene expression associations with immune function in Drosophila. PLoS Genet 6(1):e1000797Google Scholar
  149. 149.
    Chang HJ, Dhanasingh I, Gou X, Rice AM, Dushay MS (2012) Loss of Hemolectin reduces the survival of Drosophila larvae after wounding. Dev Comp Immunol 36(2):274–278Google Scholar
  150. 150.
    Imroze K, Prasad NG (2011) Mating with large males decreases the immune defence of females in Drosophila melanogaster. J Genet 90(3):427–434Google Scholar
  151. 151.
    Miest TS, Bloch-Qazi M (2008) Sick of mating: sexual transmission of a pathogenic bacterium in Drosophila melanogaster. Fly (Austin) 2(4):215–219Google Scholar
  152. 152.
    Khan I, Prasad NG (2013) The aging of the immune response in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 68(2):129–135Google Scholar
  153. 153.
    Valtonen TM, Kangassalo K, Polkki M, Rantala MJ (2012) Transgenerational effects of parental larval diet on offspring development time, adult body size and pathogen resistance in Drosophila melanogaster. PloS One 7(2):e31611Google Scholar
  154. 154.
    Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PloS One 6(9):e25430Google Scholar
  155. 155.
    Jensen A, Thomsen LE, Jorgensen RL, Larsen MH, Roldgaard BB, Christensen BB, Vogel BF, Gram L, Ingmer H (2008) Processing plant persistent strains of Listeria monocytogenes appear to have a lower virulence potential than clinical strains in selected virulence models. Int J Food Microbiol 123(3):254–261Google Scholar
  156. 156.
    Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP (2009) Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis 200(1):152–157Google Scholar
  157. 157.
    Lohse MB, Johnson AD (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PloS One 3(1):e1473Google Scholar
  158. 158.
    Davis MM, Alvarez FJ, Ryman K, Holm AA, Ljungdahl PO, Engstrom Y (2011) Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PloS One 6(11):e27434Google Scholar
  159. 159.
    Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E (2004) Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 3(2):413–419Google Scholar
  160. 160.
    Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ (2004) Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 23(9):672–676Google Scholar
  161. 161.
    Chamilos G, Bignell EM, Schrettl M, Lewis RE, Leventakos K, May GS, Haas H, Kontoyiannis DP (2010) Exploring the concordance of Aspergillus fumigatus pathogenicity in mice and Toll-deficient flies. Med Mycol 48(3):506–510Google Scholar
  162. 162.
    Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310(5749):847–850Google Scholar
  163. 163.
    Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13(5):737–748Google Scholar
  164. 164.
    Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4(1):21–30Google Scholar
  165. 165.
    Chamilos G, Lewis RE, Hu J, Xiao L, Zal T, Gilliet M, Halder G, Kontoyiannis DP (2008) Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci USA 105(27):9367–9372Google Scholar
  166. 166.
    Qin QM, Luo J, Lin X, Pei J, Li L, Ficht TA, de Figueiredo P (2011) Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathog 7(6):e1002078Google Scholar
  167. 167.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983Google Scholar
  168. 168.
    Hoffmann JA (2003) The immune response of Drosophila. Nature 426(6962):33–38Google Scholar
  169. 169.
    Lionakis MS, Lim JK, Lee CC, Murphy PM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3(2):180–199Google Scholar
  170. 170.
    Altincicek B, Knorr E, Vilcinskas A (2008) Beetle immunity: Identification of immune-inducible genes from the model insect Tribolium castaneum. Dev Comp Immunol 32(5):585–595Google Scholar
  171. 171.
    Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402(6760):370–371Google Scholar
  172. 172.
    Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12(3):R85–R86Google Scholar
  173. 173.
    Lorenzen MD, Kimzey T, Shippy TD, Brown SJ, Denell RE, Beeman RW (2007) piggyBac-based insertional mutagenesis in Tribolium castaneum using donor/helper hybrids. Insect Mol Biol 16(3):265–275Google Scholar
  174. 174.
    Lorenzen MD, Berghammer AJ, Brown SJ, Denell RE, Klingler M, Beeman RW (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12(5):433–440Google Scholar
  175. 175.
    Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167(2):737–746Google Scholar
  176. 176.
    Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214(11):575–578Google Scholar
  177. 177.
    Wimmer EA (2003) Innovations: applications of insect transgenesis. Nat Rev Genet 4(3):225–232Google Scholar
  178. 178.
    Tamang MD, Kim S, Kim SM, Kong HH, Kim J (2011) Interaction of Acinetobacter baumannii 19606 and 1656–2 with Acanthamoeba castellanii. J Microbiol 49(5):841–846Google Scholar
  179. 179.
    Silver AC, Williams D, Faucher J, Horneman AJ, Gogarten JP, Graf J (2011) Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data. PloS One 6(2):e16751Google Scholar
  180. 180.
    Castonguay-Vanier J, Vial L, Tremblay J, Deziel E (2010) Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PloS One 5(7):e11467Google Scholar
  181. 181.
    Bare J, Sabbe K, Huws S, Vercauteren D, Braeckmans K, van Gremberghe I, Favoreel H, Houf K (2010) Influence of temperature, oxygen and bacterial strain identity on the association of Campylobacter jejuni with Acanthamoeba castellanii. FEMS Microbiol Ecol 74(2):371–381Google Scholar
  182. 182.
    Bui XT, Qvortrup K, Wolff A, Bang DD, Creuzenet C (2012) Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii. BMC Microbiol 12(1):232Google Scholar
  183. 183.
    Bui XT, Winding A, Qvortrup K, Wolff A, Bang DD, Creuzenet C (2012) Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen. Environ Microbiol 14(8):2034–2047Google Scholar
  184. 184.
    Ahlund MK, Ryden P, Sjostedt A, Stoven S (2010) Directed screen of Francisella novicida virulence determinants using Drosophila melanogaster. Infect Immun 78(7):3118–3128Google Scholar
  185. 185.
    Saeed A, Johansson D, Sandstrom G, Abd H (2012) Temperature depended role of Shigella flexneri invasion plasmid on the interaction with Acanthamoeba castellanii. Int J Microbiol 2012:917031Google Scholar
  186. 186.
    El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M, Moore E, Rasley A (2009) Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 75(23):7488–7500Google Scholar
  187. 187.
    Zhou X, Elmose J, Call DR (2007) Interactions between the environmental pathogen Listeria monocytogenes and a free-living protozoan (Acanthamoeba castellanii). Environ Microbiol 9(4):913–922Google Scholar
  188. 188.
    Chieda Y, Iiyama K, Lee JM, Kusakabe T, Yasunaga-Aoki C, Shimizu S (2011) Virulence of an exotoxin A-deficient strain of Pseudomonas aeruginosa toward the silkworm, Bombyx mori. Microbial Pathog 51(6):407–414Google Scholar
  189. 189.
    Bradbury RS, Reid DW, Inglis TJ, Champion AC (2011) Decreased virulence of cystic fibrosis Pseudomonas aeruginosa in Dictyostelium discoideum. Microbiol Immunol 55(4):224–230Google Scholar
  190. 190.
    Nicoletti M, Iacobino A, Prosseda G, Fiscarelli E, Zarrilli R, De Carolis E, Petrucca A, Nencioni L, Colonna B, Casalino M (2011) Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int J Med Microbiol 301(1):34–43Google Scholar
  191. 191.
    Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, Santa T, Sekimizu K (2004) Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 48(3):774–779Google Scholar
  192. 192.
    An D, Apidianakis Y, Boechat AL, Baldini RL, Goumnerov BC, Rahme LG (2009) The pathogenic properties of a novel and conserved gene product, KerV, in proteobacteria. PloS One 4(9):e7167Google Scholar
  193. 193.
    Vlahou G, Schmidt O, Wagner B, Uenlue H, Dersch P, Rivero F, Weissenmayer BA (2009) Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases. BMC microbiology 9:138Google Scholar
  194. 194.
    Guichard A, McGillivray SM, Cruz-Moreno B, van Sorge NM, Nizet V, Bier E (2010) Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 467(7317):854–858Google Scholar
  195. 195.
    Dey R, Hoffman PS, Glomski IJ (2012) Germination and amplification of anthrax spores by soil-dwelling amoebas. Appl Environ Microbiol 78(22):8075–8081Google Scholar
  196. 196.
    Fournier D, Berge JB, Cardoso de Almeida ML, Bordier C (1988) Acetylcholinesterases from Musca domestica and Drosophila melanogaster brain are linked to membranes by a glycophospholipid anchor sensitive to an endogenous phospholipase. J Neurochem 50(4):1158–1163Google Scholar
  197. 197.
    Alseth I, Rognes T, Lindback T, Solberg I, Robertsen K, Kristiansen KI, Mainieri D, Lillehagen L, Kolsto AB, Bjoras M (2006) A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol Microbiol 59(5):1602–1609Google Scholar
  198. 198.
    Pandiarajan J, Cathrin BP, Pratheep T, Krishnan M (2011) Defense role of the cocoon in the silk worm Bombyx mori L. Rapid Commun Mass Spectrom 25(21):3203–3206Google Scholar
  199. 199.
    Huang L, Cheng T, Xu P, Cheng D, Fang T, Xia Q (2009) A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PloS One 4(12):e8098Google Scholar
  200. 200.
    Stenfors Arnesen L, Granum PE, Buisson C, Bohlin J, Nielsen-LeRoux C (2011) Using an insect model to assess correlation between temperature and virulence in Bacillus weihenstephanensis and Bacillus cereus. FEMS Microbiol Lett 317(2):196–202Google Scholar
  201. 201.
    Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75(4):1565–1576Google Scholar
  202. 202.
    Channaiah LH, Subramanyam B, Zurek L (2010) Survival of Enterococcus faecalis OG1RF:pCF10 in poultry and cattle feed: vector competence of the red flour beetle, Tribolium castaneum (Herbst). J Food Prot 73(3):568–573Google Scholar
  203. 203.
    Wang Z, Flax LA, Kemp MM, Linhardt RJ, Baron MJ (2011) Host and pathogen glycosaminoglycan-binding proteins modulate antimicrobial peptide responses in Drosophila melanogaster. Infect Immun 79(2):606–616Google Scholar
  204. 204.
    Shamim M, Baig M, Nataraju B, Datta RK, Gupta SK (1995) Evaluation of protein-A linked monoclonal antibody latex agglutination test for diagnosis of nuclear polyhedrosis virus (BmNPV) of silkworm Bombyx mori L. J Immunoass 16(2):155–166Google Scholar
  205. 205.
    Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA (2011) The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 79(6):2277–2284Google Scholar
  206. 206.
    Shiratsuchi A, Mori T, Sakurai K, Nagaosa K, Sekimizu K, Lee BL, Nakanishi Y (2012) Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila. J Biol Chem 287(26):21663–21672Google Scholar
  207. 207.
    Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C (2012) Evaluation of Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol Lett 326(2):116–124Google Scholar
  208. 208.
    Hobson RP (2000) The effects of diffusates from the spores of Aspergillus fumigatus and A. terreus on human neutrophils, Naegleria gruberi and Acanthamoeba castellanii. Med Mycol 38(2):133–141Google Scholar
  209. 209.
    Hanaoka N, Takano Y, Shibuya K, Fugo H, Uehara Y, Niimi M (2008) Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. Eukaryot Cell 7(10):1640–1648Google Scholar
  210. 210.
    Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K (2012) Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans. J Appl Microbiol 112(1):138–146Google Scholar
  211. 211.
    Evans SE, Leventakos K, Ben-Ami R, You D, Thakkar SG, Lewis RE, Kontoyiannis DP (2010) Toll-deficient Drosophila are resistant to infection by Pneumocystis spp.: additional evidence of specificity to mammalian hosts. Virulence 1(6):523–525Google Scholar
  212. 212.
    Belmatoug N, Fantin B (1997) Contribution of animal models of infection for the evaluation of the activity of antimicrobial agents. Int J Antimicrob Agents 9(2):73–82Google Scholar
  213. 213.
    Wilson-Sanders SE (2011) Invertebrate models for biomedical research, testing, and education. ILAR J Natl Res Counc, Inst Lab Anim Resour 52(2):126–152Google Scholar
  214. 214.
    Desbois AP, Coote PJ (2011) Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 66(8):1785–1790Google Scholar
  215. 215.
    Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, Rossi L, De Pascale G, Curak J, Brown E, Tyers M, Wright GD (2011) Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol 7:499Google Scholar
  216. 216.
    Vu K, Gelli A (2010) Astemizole and an analogue promote fungicidal activity of fluconazole against Cryptococcus neoformans var. grubii and Cryptococcus gattii. Med Mycol 48(2):255–262Google Scholar
  217. 217.
    Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 106(8):2818–2823Google Scholar
  218. 218.
    Mowlds P, Coates C, Renwick J, Kavanagh K (2010) Dose-dependent cellular and humoral responses in Galleria mellonella larvae following beta-glucan inoculation. Microbes Infect/Inst Pasteur 12(2):146–153Google Scholar
  219. 219.
    Desalermos A, Muhammed M, Glavis-Bloom J, Mylonakis E (2011) Using C. elegans for antimicrobial drug discovery. Expert Opin Drug Discov 6(6):645–652Google Scholar
  220. 220.
    Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55(6):2655–2661Google Scholar
  221. 221.
    Ahmad S, Hunter L, Qin A, Mann BJ, van Hoek ML (2010) Azithromycin effectiveness against intracellular infections of Francisella. BMC Microbiol 10:123Google Scholar
  222. 222.
    Barman TK, Arora P, Rao M, Bhadauriya T, Upadhyay DJ (2008) Utilization of Bombyx mori larvae as a surrogate animal model for evaluation of the anti-infective potential of oxazolidinones. J Infect Chemother 14(2):166–169Google Scholar
  223. 223.
    Rowan R, Moran C, McCann M, Kavanagh K (2009) Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of [Ag2(mal)(phen)3]. Biometals 22(3):461–467Google Scholar
  224. 224.
    Kelly J, Kavanagh K (2011) Caspofungin primes the immune response of the larvae of Galleria mellonella and induces a non-specific antimicrobial response. J Med Microbiol 60(Pt 2):189–196Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.New Drug Research and Development Center, School of PharmacySecond Military Medical UniversityShanghaiChina
  2. 2.Division of Infectious Diseases, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Division of Infectious Diseases, Rhode Island HospitalWarren Alpert Medical School of Brown UniversityRhode IslandUSA

Personalised recommendations