Identification and Bioanalysis of Natural Products from Insect Symbionts and Pathogens

  • Alexander O. Brachmann
  • Helge B. BodeEmail author
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 135)


With the development of several novel methods in genome sequencing, molecular biology, and analytical chemistry a new area of natural product chemistry is currently starting that allows the analysis of minute amounts of complex biological samples. The combination of these methods, as discussed in this review, also enables the analysis of bacteria living in symbiosis or being pathogenic to insects, which might be the largest reservoir for novel microbes associated with higher organisms due to the huge number of insect species.

Graphical Abstract


Insects Natural products Nematodes NRPS Photorhabdus PKS Xenorhabdus 


  1. 1.
    Anand S, Prasad MV, Yadav G, Kumar N, Shehara J, Ansari MZ, Mohanty D (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38:W487–W496Google Scholar
  2. 2.
    Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203Google Scholar
  3. 3.
    Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217Google Scholar
  4. 4.
    Behnken S, Lincke T, Kloss F, Ishida K, Hertweck C (2012) Antiterminator-mediated unveiling of cryptic polythioamides in an anaerobic bacterium. Angew Chem Int Ed Engl 51:2425–2428Google Scholar
  5. 5.
    Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606Google Scholar
  6. 6.
    Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230Google Scholar
  7. 7.
    Bode HB, Muller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed Engl 44:6828–6846Google Scholar
  8. 8.
    Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler C, Lorenzen W, Brachmann AO, Grün P (2012) Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem Eur J 18:2342–2348Google Scholar
  9. 9.
    Boszormenyi E, Ersek T, Fodor A, Fodor AM, Foldes LS, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormany A, Pekar S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759Google Scholar
  10. 10.
    Brachmann AO, Forst S, Furgani GM, Fodor A, Bode HB (2006) Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii. J Nat Prod 69:1830–1832Google Scholar
  11. 11.
    Brachmann AO, Joyce SA, Jenke-Kodama H, Schwär G, Clarke DJ, Bode HB (2007) A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Chem Bio Chem 8:1721–1728Google Scholar
  12. 12.
    Brachmann AO, Kirchner F, Kegler C, Kinski SC, Schmitt I, Bode HB (2012) Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J Biotechnol 157:96–99Google Scholar
  13. 13.
    Brachmann AO, Reimer D, Lorenzen W, Augusto AE, Kopp Y, Piel J, Bode HB (2012) Reciprocal cross talk between fatty acid and antibiotic biosynthesis in a nematode symbiont. Angew Chem Int Ed Engl 51:12086–12089Google Scholar
  14. 14.
    Brady SF, Bauer JD, Clarke-Pearson MF, Daniels R (2007) Natural products from isnA-containing biosynthetic gene clusters recovered from the genomes of cultured and uncultured bacteria. J Am Chem Soc 129:12102Google Scholar
  15. 15.
    Campelo AB, Gil JA (2002) The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51–59Google Scholar
  16. 16.
    Carr G, Poulsen M, Klassen JL, Hou Y, Wyche TP, Bugni TS, Currie CR, Clardy J (2012) Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin. Org Lett 14:2822–2825Google Scholar
  17. 17.
    Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, Bode HB, Brachmann AO, Cowles CE, Cowles KN, Darby C, de Leon L, Drace K, Du ZJ, Givaudan A, Tran EEH, Jewell KA, Knack JJ, Krasomil-Osterfeld KC, Kukor R, Lanois A, Latreille P, Leimgruber NK, Lipke CM, LiuRY, Lu XJ, Martens EC, Marri PR, MedigueC, Menard ML, Miller NM, Morales-Soto N, Norton S, Ogier JC, Orchard SS, Park D, Park Y, Qurollo BA, Sugar DR, Richards GR, Rouy Z, Slominski B, Slominski K, Snyder H, Tjaden BC, van der Hoeven R, Welch RD, Wheeler C, Xiang BS, Barbazuk B, Gaudriault S, Goodner B, Slater SC, Forst S, Goldman BS, Goodrich-Blair H (2011) The entomopathogenic bacterial endosymbionts xenorhabdus and photorhabdus: convergent lifestyles from divergent genomes. PLoS ONE 6(11):e27909Google Scholar
  18. 18.
    Chen Y, Ntai I, Ju KS, Unger M, Zamdborg L, Robinson SJ, Doroghazi JR, Labeda DP, Metcalf WW, Kelleher NL (2012) A proteomic survey of nonribosomal peptide and polyketide biosynthesis in actinobacteria. J Proteome Res 11:85–94Google Scholar
  19. 19.
    Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. WormBook. 1–9Google Scholar
  20. 20.
    Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897Google Scholar
  21. 21.
    Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev 43:145–192Google Scholar
  22. 22.
    Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183Google Scholar
  23. 23.
    Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554Google Scholar
  24. 24.
    Cortina NS, Krug D, Plaza A, Revermann O, Muller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed Engl 51:811–816Google Scholar
  25. 25.
    Crawford JM, Kontnik R, Clardy J (2010) Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol 20:69–74Google Scholar
  26. 26.
    Crawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT (2011) Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis. Chem Biol 18:1102–1112Google Scholar
  27. 27.
    Crawford JM, Portmann C, Kontnik R, Walsh CT, Clardy J (2011) NRPS substrate promiscuity diversifies the xenematides. Org Lett 13:5144–5147Google Scholar
  28. 28.
    Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 109:10821–10826Google Scholar
  29. 29.
    Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704Google Scholar
  30. 30.
    Davidson SA, Norton SA, Carder MC, Debboun M (2009) Outbreak of dermatitis linearis caused by Paederus ilsae and Paederus iliensis (Coleoptera: Staphylinidae) at a military base in Iraq. US Army Med Dep J 6–15Google Scholar
  31. 31.
    Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8:e1002527Google Scholar
  32. 32.
    Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342Google Scholar
  33. 33.
    Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313Google Scholar
  34. 34.
    Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630Google Scholar
  35. 35.
    Esquenazi E, Coates C, Simmons L, Gonzalez D, Gerwick WH, Dorrestein PC (2008) Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol Biosyst 4:562–570Google Scholar
  36. 36.
    Esquenazi E, Yang YL, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26:1521–1534Google Scholar
  37. 37.
    Fabre B, Armau E, Etienne G, Legendre F, Tiraby G (1988) A simple screening method for insecticidal substances from actinomycetes. J Antibiot (Tokyo) 41:212–219Google Scholar
  38. 38.
    Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370Google Scholar
  39. 39.
    Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wagele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36(9):1199–1213Google Scholar
  40. 40.
    Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of burkholderic Acid, a noncanonical, cryptic polyketide from human pathogenic burkholderia species. Angew Chem Int Ed Engl 51:11611–11615Google Scholar
  41. 41.
    Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear–linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446Google Scholar
  42. 42.
    Fuchs SW, Proschak A, Jaskolla TW, Karas M, Bode HB (2011) Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Org Biomol Chem 9:3130–3132Google Scholar
  43. 43.
    Fuchs SW, Sachs CC, Kegler C, Nollmann FI, Karas M, Bode HB (2012) Neutral loss fragmentation pattern based screening for arginine-rich natural products in Xenorhabdus and Photorhabdus. Anal Chem 84:6948–6955Google Scholar
  44. 44.
    Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268Google Scholar
  45. 45.
    Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University PressGoogle Scholar
  46. 46.
    Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu WT, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6:e18565Google Scholar
  47. 47.
    Grundmann F, Dill V, Dowling A, Thanwisai A, Bode E, Chantratita N, Ffrench-Constant R, Bode HB (2012) Identification and isolation of insecticidal oxazoles from Pseudomonas spp. Beilstein. J Org Chem 8:749–752Google Scholar
  48. 48.
    Gualtieri M, Aumelas A, Thaler JO (2009) Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot (Tokyo) 62:295–302Google Scholar
  49. 49.
    Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746Google Scholar
  50. 50.
    Hammond SM, Lambert PA, Kliger BN (1974) The mode of action of polyene antibiotics; induced potassium leakage in Candida albicans. J Gen Microbiol 81:325–330Google Scholar
  51. 51.
    Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438Google Scholar
  52. 52.
    Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190Google Scholar
  53. 53.
    Hilker M, Eschbach U, Dettner K (1992) Occurrence of anthraquinones in eggs and larvae of several galerucinae (Coleoptera, Chrysomelidae). Naturwissenschaften 79:271–274Google Scholar
  54. 54.
    Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, Wyche TP, Bugni TS (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84:4277–4283Google Scholar
  55. 55.
    Hung KY, Harris PW, Heapy AM, Brimble MA (2011) Synthesis and assignment of stereochemistry of the antibacterial cyclic peptide xenematide. Org Biomol Chem 9:236–242Google Scholar
  56. 56.
    Hwang SY, Paik S, Park SH, Kim HS, Lee IS, Kim SP, Baek WK, Suh MH, Kwon TK, Park JW, Park JB, Lee JJ, Suh SI (2003) N-phenethyl-2-phenylacetamide isolated from Xenorhabdus nematophilus induces apoptosis through caspase activation and calpain-mediated Bax cleavage in U937 cells. Int J Oncol 22:151–157Google Scholar
  57. 57.
    Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053Google Scholar
  58. 58.
    Ishida K, Lincke T, Behnken S, Hertweck C (2010) Induced biosynthesis of cryptic polyketide metabolites in a burkholderia thailandensis quorum sensing mutant. J Am Chem Soc 132:13966–13968Google Scholar
  59. 59.
    Itoh J, Omoto S, Shomura T, Nishizawa N, Miyado S, Yuda Y, Shibata U, Inouye S (1981) Amicoumacin-A, a new antibiotic with strong antiinflammatory and antiulcer activity. J Antibiot (Tokyo) 34:611–613Google Scholar
  60. 60.
    Ji D, Yi Y, Kang GH, Choi YH, Kim P, Baek NI, Kim Y (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 239:241–248Google Scholar
  61. 61.
    Joyce SA, Brachmann AO, Glazer I, Lango L, Schwär G, Clarke DJ, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed 47:1942–1945Google Scholar
  62. 62.
    Kellner RL (2002) Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem Mol Biol 32:389–395Google Scholar
  63. 63.
    Kersten RD, Yang YL, Xu YQ, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol Nat Chem Biol 7:794–802Google Scholar
  64. 64.
    Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75:1144–1155Google Scholar
  65. 65.
    Kontnik R, Crawford JM, Clardy J (2010) Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem Biol 5:659–665Google Scholar
  66. 66.
    Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Müller R (2008) Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74:3058–3068Google Scholar
  67. 67.
    Krug D, Zurek G, Schneider B, Garcia R, Müller R (2008) Efficient mining of myxobacterial metabolite profiles enabled by liquid chromatography-electrospray ionization-time-of-flight mass spectrometry and compound-based principal component analysis. Anal Chim Acta 624:97–106Google Scholar
  68. 68.
    Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C (2012) Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 54:410–417Google Scholar
  69. 69.
    Kwon B, Kim Y (2008) Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 101:36–41Google Scholar
  70. 70.
    Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linear and cyclic peptides from the entomopathogenic Bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077Google Scholar
  71. 71.
    Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348Google Scholar
  72. 72.
    Li J, Chen G, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086Google Scholar
  73. 73.
    Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH (2009) Automated genome mining for natural products. BMC Bioinform 10:185Google Scholar
  74. 74.
    Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chem Int Ed Engl 49:2011–2013Google Scholar
  75. 75.
    Liu WT, Ng J, Meluzzi D, Bandeira N, Gutierrez M, Simmons TL, Schultz AW, Linington RG, Moore BS, Gerwick WH, Pevzner PA, Dorrestein PC (2009) Interpretation of tandem mass spectra obtained from cyclic nonribosomal peptides. Anal Chem 81:4200–4209Google Scholar
  76. 76.
    McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DR, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784Google Scholar
  77. 77.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346Google Scholar
  78. 78.
    Metzker ML (2009) Sequencing in real time. Nat Biotechnol 27:150–151Google Scholar
  79. 79.
    Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46Google Scholar
  80. 80.
    Mohimani H, Liu WT, Yang YL, Gaudencio SP, Fenical W, Dorrestein PC, Pevzner PA (2011) Multiplex de novo sequencing of peptide antibiotics. J Comput Biol 18:1371–1381Google Scholar
  81. 81.
    Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci USA 109:13811–13816Google Scholar
  82. 82.
    Mosey RA, Floreancig PE (2012) Isolation, biological activity, synthesis, and medicinal chemistry of the pederin/mycalamide family of natural products. Nat Prod Rep 29:980–995Google Scholar
  83. 83.
    Mullin GE (2011) Red wine, grapes, and better health–resveratrol. Nutr Clin Pract 26:722–723Google Scholar
  84. 84.
    Nollmann FI, Dowling A, Kaiser M, Deckmann K, Grösch S, Ffrench-Constant R, Bode HB (2012) Synthesis of szentiamide, a depsipeptide from entopathogenic Xenorhabdus szentirmaii with activity against Plamodium falciparum. Beilstein J Org Chem 8:528–533Google Scholar
  85. 85.
    Oh DC, Poulsen M, Currie CR, Clardy J (2009a) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–396Google Scholar
  86. 86.
    Oh DC, Scott JJ, Currie CR, Clardy J (2009) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636Google Scholar
  87. 87.
    Ohlendorf B, Simon S, Wiese J, Imhoff JF (2011) Szentiamide, an N-formylated cyclic depsipeptide from Xenorhabdus szentirmaii DSM 16338T. Nat Prod Commun 6:1247–1250Google Scholar
  88. 88.
    Paik S, Park YH, Suh SI, Kim HS, Lee IS, Park MK, Lee CS, Park SH (2001) Unusual cytotoxic phenethylamides from Xenorhabdus nematophilus. Bull Korean Chem Soc 22:372–374Google Scholar
  89. 89.
    Petitt RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19–25Google Scholar
  90. 90.
    Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange–the chemotype-to-phenotype link. Nat Chem Biol 8:26–35Google Scholar
  91. 91.
    Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007Google Scholar
  92. 92.
    Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538Google Scholar
  93. 93.
    Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50Google Scholar
  94. 94.
    Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27:996–1047Google Scholar
  95. 95.
    Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227Google Scholar
  96. 96.
    Prieto C, Garcia-Estrada C, Lorenzana D, Martin JF (2012) NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28:426–427Google Scholar
  97. 97.
    Proschak A, Schultz K, Herrmann J, Dowling AJ, Brachmann AO, Ffrench-Constant R, Muller R, Bode HB (2011) Cytotoxic fatty acid amides from Xenorhabdus. Chem Bio Chem 12:2011–2015Google Scholar
  98. 98.
    Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Hakansson K, Williams RM, Ehrlich GD, Sherman DH (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6:1244–1256Google Scholar
  99. 99.
    Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808Google Scholar
  100. 100.
    Reimer D, Luxenburger E, Brachmann AO, Bode HB (2009) A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chem Bio Chem 10:1997–2001Google Scholar
  101. 101.
    Reimer D, Pos KM, Thines M, Grün P, Bode HB (2011) A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat Chem Biol 7:888–890Google Scholar
  102. 102.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352Google Scholar
  103. 103.
    Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367Google Scholar
  104. 104.
    Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 108:1955–1960Google Scholar
  105. 105.
    Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63Google Scholar
  106. 106.
    Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJ, Hutchings MI (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6:e22028Google Scholar
  107. 107.
    Song CJ, Seo S, Shrestha S, Kim Y (2011) Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth Plutella xylostella. J Microbiol Biotechnol 21:317–322Google Scholar
  108. 108.
    Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505Google Scholar
  109. 109.
    Stein ML, Beck P, Kaiser M, Dudler R, Becker CF, Groll M (2012) One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc Natl Acad Sci USA 109:18367–18371Google Scholar
  110. 110.
    Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7:492–498Google Scholar
  111. 111.
    Tae H, Kong EB, Park K (2007) ASMPKS: an analysis system for modular polyketide synthases. Bmc Bioinform 8:327Google Scholar
  112. 112.
    Takahashi S, Iwai H, Kosaka K, Miyazaki T, Osanai Y, Arao N, Tanaka K, Nagai K, Nakagawa A (2007) Byelyankacin: a novel melanogenesis inhibitor produced by Enterobacter sp. B20. J Antibiot (Tokyo) 60:717–720Google Scholar
  113. 113.
    Teeling H, Glockner FO (2012) Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Brief Bioinform (6):728–742Google Scholar
  114. 114.
    Theodore CM, King JB, You J, Cichewicz RH (2012) Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets. J Nat Prod 204(1):32–39Google Scholar
  115. 115.
    Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65:3793–3799Google Scholar
  116. 116.
    Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Yang G, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, ffrench-Constant RH (2008) Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105:15967–15972Google Scholar
  117. 117.
    Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van d V, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA 109:E1743–E1752Google Scholar
  118. 118.
    Watrous JD, Dorrestein PC (2011) Imaging mass spectrometry in microbiology. Nat Rev Microbiol 9:683–694Google Scholar
  119. 119.
    Wenzel SC, Gross F, Zhang Y, Fu J, Stewart FA, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356Google Scholar
  120. 120.
    Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench-Constant RH (2009) Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens, BMC. Genomics 10:302Google Scholar
  121. 121.
    Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897Google Scholar
  122. 122.
    Zhou Q, Dowling A, Heide H, Wohnert J, Brandt U, Baum J, Ffrench-Constant R, Bode HB (2012) Xentrivalpeptides a-q: depsipeptide diversification in xenorhabdus. J Nat Prod 75:1717–1722Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich BiowissenschaftenGoethe Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations