Advertisement

Antiparasitic Peptides

  • Jette Pretzel
  • Franziska Mohring
  • Stefan Rahlfs
  • Katja BeckerEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 135)

Abstract

The most important parasitic diseases, malaria, leishmaniasis, trypanosomiasis, and schistosomiasis, are a great burden to mankind, threatening the life of millions of people worldwide and mostly affecting the poorest. Because drug resistance is increasing and vaccines are rarely available, novel chemotherapeutic compounds are necessary in order to treat these devastating diseases. Insects serve as vectors of many human parasitic diseases and have been shown to express a huge variety of antimicrobial peptides (AMPs). Therefore, research activity on insect-derived AMPs has been increasing in the last 40 years. This chapter summarizes the current state of research on the possible role of AMPs as potential chemotherapeutic compounds against human parasitic diseases.

Graphical Abstract

As a representative antimicrobial peptide with antiparasitic activity, the structure of insect defensin A is shown [PDB accession code: 1ICA]. The molecule is surrounded by schematic representations of the human pathogenic parasites Plasmodium, Leishmania and Trypanosoma.

Keywords

Antimicrobial peptides Antiparasitic peptides Drug discovery Parasites 

Abbreviations

AMP

Antimicrobial peptide

CL

Cutaneous leishmaniasis

DALY

Disability-adjusted life years

DCL

Diffuse cutaneous leishmaniasis

EC50

50 % effective concentration

ED50

50 % effective dose

EMP

Electrophoretic mobility

HC50

50 % hemolytic concentration

IC50

50 % inhibitory concentration

LC50

50 % lethal concentration

LPG

Lipophosphoglycan

MCL

Mucocutaneous leishmaniasis

NET

Neutrophil extracellular traps

NO

Nitric oxide

PEG

Polyethylene glycol

RBC

Red blood cell

SmDLP

Schistosoma mansoni dermaseptin-like peptide

WHO

World Health Organization

Notes

Acknowledgments

The work was supported by the Federal State of Hessen as part of the LOEWE Research Focus Insect Biotechnology.

References

  1. 1.
    CDC (2010) About parasites. http://www.cdc.gov/parasites/about.html. Accessed 21 July 2012
  2. 2.
    WHO (2012) Initiative for vaccine research (IVR)—parasitic diseases. http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index4.html. Accessed 21 July 2012
  3. 3.
    WHO (2010) First WHO report on neglected tropical diseases: working to overcome the global impact of negleted tropical diseases. http://www.who.int/neglected_diseases/2010report/en/. Accessed 07 August 2012
  4. 4.
    Dunn PE (1986) Biochemical aspects of insect immunology. Ann Rev Entomol 31:321–339Google Scholar
  5. 5.
    Lowenberger C (2001) Innate immune response of Aedes aegypti. Insect Biochem Mol Biol 31:219–229Google Scholar
  6. 6.
    Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344Google Scholar
  7. 7.
    Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126Google Scholar
  8. 8.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55Google Scholar
  9. 9.
    Simmaco M, Mignogna G, Barra D (1999) Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers 47:435–450Google Scholar
  10. 10.
    Ganz T, Weiss J (1997) Antimicrobial peptides of phagocytes and epithelia. Semin Hematol 34:343–354Google Scholar
  11. 11.
    Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic ll-37/hcap-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95:9541–9546Google Scholar
  12. 12.
    Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L et al (2000) The human antimicrobial and chemotactic peptides ll-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093Google Scholar
  13. 13.
    Sorensen O, Cowland JB, Askaa J, Borregaard N (1997) An elisa for hcap-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods 206:53–59Google Scholar
  14. 14.
    Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16Google Scholar
  15. 15.
    Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248Google Scholar
  16. 16.
    Kaaya GP, Otieno lH, Dardji N (1985) Cellular and humoral immunity in Glossina. Dev Comp Immunol 9:177Google Scholar
  17. 17.
    De Azambuja P, Freitas CC, Garcia ES (1986) Evidence and partial characterization of an inducible antibacterial factor in the hemolymph of Rhodnius prolixus. J Insect Physiol 32:807–812Google Scholar
  18. 18.
    Kaaya GP, Flyg C, Boman HG (1987) Induction of cecropin and attacin-like antibacterial factors in the hemolymph of Glossina-morsitans-morsitans. Insect Biochem 17:309–315Google Scholar
  19. 19.
    Chalk R, Townson H, Natori S, Desmond H, Ham PJ (1993) Purification of an insect defensin from the mosquito Aedes aegypti. Insect Biochem Molec 24:403–410Google Scholar
  20. 20.
    Hultmark D, Engström A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. Embo J 2:571–576Google Scholar
  21. 21.
    Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL et al (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. Faseb J 2:2878–2883Google Scholar
  22. 22.
    Beevers AJ, Dixon AM (2010) Helical membrane peptides to modulate cell function. Chem Soc Rev 39:2146–2157Google Scholar
  23. 23.
    Hsiao LL, Howard RJ, Aikawa M, Taraschi TF (1991) Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J 274:121–132Google Scholar
  24. 24.
    Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin ii: Buforin ii kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257Google Scholar
  25. 25.
    Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614Google Scholar
  26. 26.
    Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the atpase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry-Us 40:3016–3026Google Scholar
  27. 27.
    Kulkarni MM, McMaster WR, Kamysz E, Kamysz W, Engman DM, McGwire BS (2006) The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 62:1484–1497Google Scholar
  28. 28.
    Fieck A, Hurwitz I, Kang AS, Durvasula R (2010) Trypanosoma cruzi: Synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol 125:342–347Google Scholar
  29. 29.
    Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215Google Scholar
  30. 30.
    Steiner H (1982) Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. Febs Lett 137:283–287Google Scholar
  31. 31.
    Tomas S, Shankar B, Karnik S, Jayaraman VK (2012) Indicula-Thomas S CAMP: collection of anti-microbial peptides. A comprehensive antimicrobial peptide database. www.bicnirrh.res.in/antimicrobial/. Accessed 10 July 2012
  32. 32.
    Tossi A, Mitaritonna N, Tarantino C, Giangaspero A, Dandri L, Winterstein K (2012) Antimicrobial sequence database. http://www.bbcm.univ.trieste.it/. Accessed 10 July 2012
  33. 33.
    Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076Google Scholar
  34. 34.
    Lecuyer H, Dervichian DG (1969) Structure of aqueous mixtures of lecithin and cholesterol. J Mol Biol 45:39–57Google Scholar
  35. 35.
    Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin—isolation, characterization of 2 active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453Google Scholar
  36. 36.
    Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci USA 85:910–913Google Scholar
  37. 37.
    Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry-Us 35:13723–13728Google Scholar
  38. 38.
    Brand GD, Leite JRSA, Silva LP, Albuquerque S, Protes MV, Azevedo RB et al (2002) Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta- Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem 277:49332–49340Google Scholar
  39. 39.
    Mor A, Nicolas P (1994) The NH2-terminal alpha-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem 269:1934–1939Google Scholar
  40. 40.
    Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K (2002) In vitro antiviral activity of dermaseptins against Herpes simplex virus type 1. J Med Virol 66:229–234Google Scholar
  41. 41.
    Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry-Us 31:12416–12423Google Scholar
  42. 42.
    Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223Google Scholar
  43. 43.
    Habermann E (1972) Bee and wasp venoms. Science 177:314–322Google Scholar
  44. 44.
    Sessa G, Freer JH, Colacicco G, Weissmann G (1969) Interaction of alytic polypeptide, melittin, with lipid membrane systems. J Biol Chem 244:3575–3582Google Scholar
  45. 45.
    Hanke W, Methfessel C, Wilmsen HU, Katz E, Jung G, Boheim G (1983) Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta 727:108–114Google Scholar
  46. 46.
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485Google Scholar
  47. 47.
    Cuppoletti J, Abbott AJ (1990) Interaction of melittin with the (Na + + K +)ATPase: evidence for a melittin-induced conformational change. Arch Biochem Biophys 283:249–257Google Scholar
  48. 48.
    Cuppoletti J (1990) [125I]azidosalicylyl melittin binding domains: evidence for a polypeptide receptor on the gastric (H + + K +)ATPase. Arch Biochem Biophys 278:409–415Google Scholar
  49. 49.
    Subbalakshmi C, Nagaraj R, Sitaram N (1999) Biological activities of c-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. Febs Lett 448:62–66Google Scholar
  50. 50.
    Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740Google Scholar
  51. 51.
    Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76:1436–1439Google Scholar
  52. 52.
    Hoffmann JA, Hetru C (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:415–441Google Scholar
  53. 53.
    Lehrer R, Barton A, Daher KA, Harwig SSL, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. J Clin Invest 84:553–561Google Scholar
  54. 54.
    Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3:1362–1373Google Scholar
  55. 55.
    Casteels-Josson K, Capaci T, Casteels P, Tempst P (1993) Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. Embo J 12:1569–1578Google Scholar
  56. 56.
    Li WF, Ma GX, Zhou XX (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359Google Scholar
  57. 57.
    Castle M, Nazarian A, Yi SS, Tempst P (1999) Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 274:32555–32564Google Scholar
  58. 58.
    Carlsson A, Engstrom P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 59:3040–3045Google Scholar
  59. 59.
    Carlsson A, Nystrom T, de Cock H, Bennich H (1998) Attacin–an insect immune protein–binds lps and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144(Pt 8):2179–2188Google Scholar
  60. 60.
    WHO (2011) World malaria report 2011. http://www.who.int/malaria/world_malaria_report_2011/en/. Accessed 13 July 2012
  61. 61.
    Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M et al (2003) Artemisinins target the serca of Plasmodium falciparum. Nature 424:957–961Google Scholar
  62. 62.
    Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: Host-parasite interactions. Int J Parasitol 34:163–189Google Scholar
  63. 63.
    Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci USA 93:11865–11870Google Scholar
  64. 64.
    Fidock DA (2010) Drug discovery: priming the antimalarial pipeline. Nature 465:297–298Google Scholar
  65. 65.
    Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western cambodia. N Engl J Med 359:2619–2620Google Scholar
  66. 66.
    Gelhaus C, Jacobs T, Andra J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian nk-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 52:1713–1720Google Scholar
  67. 67.
    Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitos. Infect Immun 57:2628–2633Google Scholar
  68. 68.
    Frederik PM, Stuart MC, Bomans PH, Busing WM (1989) Phospholipid, nature’s own slide and cover slip for cryo-electron microscopy. J Microsc 153:81–92Google Scholar
  69. 69.
    Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I et al (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem 272:31609–31616Google Scholar
  70. 70.
    Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H et al (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44:2442–2451Google Scholar
  71. 71.
    Efron L, Dagan A, Gaidukov L, Ginsburg H, Mor A (2002) Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277:24067–24072Google Scholar
  72. 72.
    Conde R, Zamudio FZ, Rodriguez MH, Possani LD (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. Febs Lett 471:165–168Google Scholar
  73. 73.
    Arrighi RB, Nakamura C, Miyake J, Hurd H, Burgess JG (2002) Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malarias. Antimicrob Agents Chemother 46:2104–2110Google Scholar
  74. 74.
    Tian C, Gao B, Rodriguez Mdel C, Lanz-Mendoza H, Ma B, Zhu S (2008) Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol Immunol 45:3909–3916Google Scholar
  75. 75.
    Vijay S, Rawat M, Adak T, Dixit R, Nanda N, Srivastava H et al (2011) Parasite killing in malaria non-vector mosquito Anopheles culicifacies species b: Implication of nitric oxide synthase upregulation. Plos One 6:e18400Google Scholar
  76. 76.
    Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH et al (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234:607–610Google Scholar
  77. 77.
    Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Muller HM et al (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9:75–84Google Scholar
  78. 78.
    Kim W, Koo H, Richman AM, Seeley D, Vizioli J, Klocko AD et al (2004) Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (diptera: Culicidae): Effects on susceptibility to Plasmodium. J Med Entomol 41:447–455Google Scholar
  79. 79.
    Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, Levashina EA (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the defensin gene. EMBO Rep 3:852–856Google Scholar
  80. 80.
    Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Muller HM, Dimopoulos G (2001) Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 98:12630–12635Google Scholar
  81. 81.
    Lowenberger C, Bulet P, Charlet M, Hetru C, Hodgeman B, Christensen BM et al (1995) Insect immunity—isolation of 3 novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Molec 25:867–873Google Scholar
  82. 82.
    Lowenberger C, Charlet M, Vizioli J, Kamal S, Richman A, Christensen BM et al (1999) Antimicrobial activity spectrum, cdna cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J Biol Chem 274:20092–20097Google Scholar
  83. 83.
    Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, Raikhel AS (2010) Blocking of Plasmodium transmission by cooperative action of cecropin a and defensin a in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 107:8111–8116Google Scholar
  84. 84.
    Carballar-Lejarazu R, Rodriguez MH, de la Cruz Hernandez–Hernandez F, Ramos-Castaneda J, Possani LD, Zurita-Ortega M et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092Google Scholar
  85. 85.
    Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA 109:12734–12739Google Scholar
  86. 86.
    Mason AJ, Moussaoui W, Abdelrahman T, Boukhari A, Bertani P, Marquette A et al (2009) Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides. J Biol Chem 284:119–133Google Scholar
  87. 87.
    Achtman AH, Pilat S, Law CW, Lynn DJ, Janot L, Mayer ML et al (2012) Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Sci Transl Med 4:135ra164Google Scholar
  88. 88.
    Wieczorek M, Jenssen H, Kindrachuk J, Scott WRP, Elliott M, Hilpert K et al (2010) Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol 17:970–980Google Scholar
  89. 89.
    Schlein Y (1993) Leishmania and sandflies: interactions in the life cycle and transmission. Parasitol Today 9:255–258Google Scholar
  90. 90.
    Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microb 27:305–318Google Scholar
  91. 91.
    CDC (2012) Parasites—Leishmaniasis. http://www.cdc.gov/parasites/leishmaniasis/index.html. Accessed 12 June 2012
  92. 92.
    WHO (2010) Geographical distribution of visceral leishmaniasis in the old and new world. http://www.who.int/leishmaniasis/leishmaniasis_maps/en/index.html. Accessed 20 July 2012
  93. 93.
    WHO (2012) WHO report on global surveillance of epidemic-prone infectious diseases—leishmaniasis. http://www.who.int/csr/resources/publications/CSR_ISR_2000_1leish/en/index.html. Accessed 20 July 2012
  94. 94.
    Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2:167–176Google Scholar
  95. 95.
    Wassef MK, Fioretti TB, Dwyer DM (1985) Lipid analyses of isolated surface-membranes of Leishmania donovani promastigotes. Lipids 20:108–115Google Scholar
  96. 96.
    Spath GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ et al (2000) Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 97:9258–9263Google Scholar
  97. 97.
    Pimenta PF, de Souza W (1983) Leishmania mexicana amazonensis: surface charge of amastigote and promastigote forms. Exp Parasitol 56:194–206Google Scholar
  98. 98.
    Salay LC, Nobre TM, Colhone MC, Zaniquelli MED, Ciancaglini P, Stabeli RG et al (2011) Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing Leishmania amazonensis lipid-rich extract and membrane models. J Pept Sci 17:700–707Google Scholar
  99. 99.
    Hernandez C, Mor A, Dagger F, Nicolas P, Hernandez A, Benedetti EL et al (1992) Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 59:414–424Google Scholar
  100. 100.
    Zampa MF, Araujo IM, Costa V, Nery Costa CH, Santos JR Jr, Zucolotto V et al (2009) Leishmanicidal activity and immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine 5:352–358Google Scholar
  101. 101.
    Akuffo H, Hultmark D, Engstom A, Frohlich D, Kimbrell D (1998) Drosophila antibacterial protein, cecropin a, differentially affects non-bacterial organisms such as Leishmania in a manner different from other amphipathic peptides. Int J Mol Med 1:77–82Google Scholar
  102. 102.
    Diaz-Achirica P, Ubach J, Guinea A, Andreu D, Rivas L (1998) The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1–8)M(1–18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330(Pt 1):453–460Google Scholar
  103. 103.
    Perez-Cordero JJ, Lozano JM, Cortes J, Delgado G (2011) Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides 32:683–690Google Scholar
  104. 104.
    Samakovlis C, Kylsten P, Kimbrell DA, Engstrom A, Hultmark D (1991) The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. Embo J 10:163–169Google Scholar
  105. 105.
    Konno K, Rangel M, Oliveira JS, Cabrera MPD, Fontana R, Hirata IY et al (2007) Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 28:2320–2327Google Scholar
  106. 106.
    Chicharro C, Granata C, Lozano R, Andreu D, Rivas L (2001) N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1–7)M(2–9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 45:2441–2449Google Scholar
  107. 107.
    Fernandez-Reyes M, Diaz D, de la Torre BG, Cabrales-Rico A, Valles-Miret M, Jimenez-Barbero J et al (2010) Lysine N(epsilon)-trimethylation, a tool for improving the selectivity of antimicrobial peptides. J Med Chem 53:5587–5596Google Scholar
  108. 108.
    Guerrero E, Saugar JM, Matsuzaki K, Rivas L (2004) Role of positional hydrophobicity in the leishmanicidal activity of magainin 2. Antimicrob Agents Chemother 48:2980–2986Google Scholar
  109. 109.
    Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L (2008) Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. Faseb J 22:1817–1828Google Scholar
  110. 110.
    Bera A, Singh S, Nagaraj R, Vaidya T (2003) Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 127:23–35Google Scholar
  111. 111.
    Kulkarni MM, McMaster WR, Kamysz W, McGwire BS (2009) Antimicrobial peptide-induced apoptotic death of Leishmania results from calcium-dependent, caspase-independent mitochondrial toxicity. J Biol Chem 284:15496–15504Google Scholar
  112. 112.
    Luque-Ortega JR, Cruz LJ, Albericio F, Rivas L (2010) The antitumoral depsipeptide IB-01212 kills Leishmania through an apoptosis-like process involving intracellular targets. Mol Pharmaceut 7:1608–1617Google Scholar
  113. 113.
    Wang Y, Chen Y, Xin L, Beverley SM, Carlsen ED, Popov V et al (2011) Differential microbicidal effects of human histone proteins H2a and H2b on Leishmania promastigotes and amastigotes. Infect Immun 79:1124–1133Google Scholar
  114. 114.
    Chadbourne FL, Raleigh C, Ali HZ, Denny PW, Cobb SL (2011) Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa. J Pept Sci 17:751–755Google Scholar
  115. 115.
    Lynn MA, Kindrachuk J, Marr AK, Jenssen H, Pante N, Elliott MR et al (2011) Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: role of leishmanolysin in parasite survival. Plos Neglect Trop Dis 5Google Scholar
  116. 116.
    Kindrachuk J, Scruten E, Attah-Poku S, Bell K, Potter A, Babiuk LA et al (2011) Stability, toxicity, and biological activity of host defense peptide BMAP28 and its inversed and retro-inversed isomers. Biopolymers 96:14–24Google Scholar
  117. 117.
    Risso A, Braidot E, Sordano MC, Vianello A, Macri F, Skerlavaj B et al (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22:1926–1935Google Scholar
  118. 118.
    Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L et al (2004) Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun 72:7140–7146Google Scholar
  119. 119.
    Berrocal-Lobo M, Molina A, Rodriguez-Palenzuela P, Garcia-Olmedo F, Rivas L (2009) Leishmania donovani: thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol 122:247–249Google Scholar
  120. 120.
    Bohlmann H, Appel K (1991) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the defensin gene. EMBO Rep 3:852–856Google Scholar
  121. 121.
    Stec B (2006) Plant thionins–the structural perspective. Cell Mol Life Sci 63:1370–1385Google Scholar
  122. 122.
    Alberola J, Rodriguez A, Francino O, Roura X, Rivas L, Andreu D (2004) Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob Agents Chemother 48:641–643Google Scholar
  123. 123.
    Erfe MCB, David CV, Huang C, Lu V, Maretti-Mira AC, Haskell J et al (2012) Efficacy of synthetic peptides RP-1 and AA-RP-1 against Leishmania species in vitro and in vivo. Antimicrob Agents Chemother 56:658–665Google Scholar
  124. 124.
    CDC (2010) Division of parasitic diseases and malaria (dpdm). Dpdx. http://www.dpd.cdc.gov/dpdx/Default.htm. Accessed 18 June 2012
  125. 125.
    Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, Schenkman S (2001) The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol Biochem Parasitol 114:143–150Google Scholar
  126. 126.
    Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78:22–31Google Scholar
  127. 127.
    Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MA, De Baetselier P (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160:1949–1956Google Scholar
  128. 128.
    Kennedy PG (2004) Human african trypanosomiasis of the cns: current issues and challenges. J Clin Invest 113:496–504Google Scholar
  129. 129.
    Sternberg JM (2004) Human african trypanosomiasis: clinical presentation and immune response. Parasite Immunol 26:469–476Google Scholar
  130. 130.
    Brun R, Blum J, Chappuis F, Burri C (2010) Human african trypanosomiasis. Lancet 375:148–159Google Scholar
  131. 131.
    Prata A (2001) Clinical and epidemiological aspects of chagas disease. Lancet Infect Dis 1:92–100Google Scholar
  132. 132.
    WHO (2012) Human african trypanosomiasis (sleeping sickness). http://www.who.int/mediacentre/factsheets/fs259/en/. Accessed 20 July 2012
  133. 133.
    Pepin J, Milord F (1991) African trypanosomiasis and drug-induced encephalopathy—risk-factors and pathogenesis. T Roy Soc Trop Med H 85:222–224Google Scholar
  134. 134.
    Burri C, Brun R (2003) Eflornithin for the treatment of human african trypanosomiasis. Parasitol Res 90:S49–S52Google Scholar
  135. 135.
    Barrett MP, Fairlamb AH (1999) The biochemical basis of arsenical-diamidine crossresistance in african trypanosomes. Parasitol Today 15:136–140Google Scholar
  136. 136.
    Matovu E, Enyaru JC, Legros D, Schmid C, Seebeck T, Kaminsky R (2001) Melarsoprol refractory T. b. gambiense from omugo, north-western uganda. Trop Med Int Health 6:407–411Google Scholar
  137. 137.
    Brun R, Schumacher R, Schmid C, Kunz C, Burri C (2001) The phenomenon of treatment failures in human african trypanosomiasis. Trop Med Int Health 6:906–914Google Scholar
  138. 138.
    Msangi AR, Whitaker CJ, Lehane MJ (1998) Factors influencing the prevalence of trypanosome infection of Glossina pallidipes on the ruvu flood plain of eastern tanzania. Acta Trop 70:143–155Google Scholar
  139. 139.
    Woolhouse MEJ, Bealby K, Mcnamara JJ, Silutongwe J (1994) Trypanosome infections of the tsetse-fly Glossina-pallidipes in the luangwa valley, zambia. Int J Parasitol 24:987–993Google Scholar
  140. 140.
    Hao ZR, Kasumba I, Lehane MJ, Gibson WC, Kwon J, Aksoy S (2001) Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc Natl Acad Sci USA 98:12648–12653Google Scholar
  141. 141.
    Boulanger N, Brun R, Ehret-Sabatier L, Kunz C, Bulet P (2002) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Molec 32:369–375Google Scholar
  142. 142.
    Hu CY, Aksoy S (2006) Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60:1194–1204Google Scholar
  143. 143.
    Hu YJ, Aksoy S (2005) An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem Molec 35:105–115Google Scholar
  144. 144.
    Kitani H, Naessens J, Kubo M, Nakamura Y, Iraqi F, Gibson J et al (2009) Synthetic nonamer peptides derived from insect defensin mediate the killing of african trypanosomes in axenic culture. Parasitol Res 105:217–225Google Scholar
  145. 145.
    Haines LR, Hancock REW, Pearson TW (2003) Cationic antimicrobial peptide killing of african trypanosomes and Sodalis glossinidius, a bacterial symbiont of the insect vector of sleeping sickness. Vector-Borne Zoonot 3:175–186Google Scholar
  146. 146.
    Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M (1996) Biological characterization of two novel cethelicidin-derived peptides and identificationof structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271:28375–28381Google Scholar
  147. 147.
    Haines LR, Thomas JM, Jackson AM, Eyford BA, Razavi M, Watson CN et al (2009) Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18. PLoS Negl Trop Dis 3:e373Google Scholar
  148. 148.
    McGwire BS, Olson CL, Tack BF, Engman DM (2003) Killing of african trypanosomes by antimicrobial peptides. J Infect Dis 188:146–152Google Scholar
  149. 149.
    Lopez L, Morales G, Ursic R, Wolff M, Lowenberger C (2003) Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of chagas disease. Insect Biochem Molec 33:439–447Google Scholar
  150. 150.
    Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB et al (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278Google Scholar
  151. 151.
    Huang CM, Chen HC, Zierdt CH (1990) Magainin analogs effective against pathogenic protozoa. Antimicrob Agents Chemother 34:1824–1826Google Scholar
  152. 152.
    Madison MN, Kleshchenko YY, Nde PN, Simmons KJ, Lima MF, Villalta F (2007) Human defensin alpha-1 causes Trypanosoma cruzi membrane pore formation and induces DNA fragmentation, which leads to trypanosome destruction. Infect Immun 75:4780–4791Google Scholar
  153. 153.
    Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368:1106–1118Google Scholar
  154. 154.
    Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425Google Scholar
  155. 155.
    WHO (2011) Schistosomiasis. Weekly epidemiological record 86:73–80Google Scholar
  156. 156.
    Ferrari TC (2004) Involvement of central nervous system in the schistosomiasis. Mem Inst Oswaldo Cruz 99:59–62Google Scholar
  157. 157.
    Fallon PG, Doenhoff MJ (1994) Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am J Trop Med Hyg 51:83–88Google Scholar
  158. 158.
    Andrade ZA (1987) Pathology of human schistosomiasis. Mem Inst Oswaldo Cruz 82(Suppl 4):17–23Google Scholar
  159. 159.
    de Carvalho Bicalho Varneiro R, da Silveira Santos AL, Campos Caldeira Brant L, Tôrres Rabelo F, Ligeiro CM, de Barcelos IP et al (2011) Endomyocardial fibrosis associated with mansoni schistosomiasis. Rev Soc Bras Med Tro 44:644–645Google Scholar
  160. 160.
    Bottieau E, Clerinx J, de Vega MR, Van den Enden E, Colebunders R, Van Esbroeck M et al (2006) Imported katayama fever: clinical and biological features at presentation and during treatment. J Infect 52:339–345Google Scholar
  161. 161.
    Cheevers WA, Kamel IA, Elwi AW, Mosimann JE, Danner R, Sippel JE (1978) Schistosoma monasoni and S. haematobium infections in egypt. III extrahepathic pathology. Am J Trop Med Hyg 27:55–75Google Scholar
  162. 162.
    Lambertucci JR (1993) Acute schistosomiasis: clinical, diagnostic and therapeutic features. Rev Inst Med Trop Sao Paulo 35:399–404Google Scholar
  163. 163.
    Bergquist NR, Colley DG (1998) Schistosomiasis vaccine:research to development. Parasitol Today 14:99–104Google Scholar
  164. 164.
    Wilson RA, Coulson PS (1998) Why don’t we have a schistosomiasis vaccine? Parasitol Today 14:97–99Google Scholar
  165. 165.
    WHO (2011) Who model list of essential medicines. http://www.who.int/medicines/publications/essentialmedicines/en/. Accessed 07 July 2012
  166. 166.
    Stelma FF, Talla I, Sow S, Kongs A, Niang M, Polman K et al (1995) Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am J Trop Med Hyg 53:167–170Google Scholar
  167. 167.
    Abdul-Ghani R, Loutfy N, El Sahn A, Hassan A (2009) Current chemotherapy arsenal for Schistosomiasis mansoni: alternatives and challenges. Parasitol Res 104:955–965Google Scholar
  168. 168.
    Caffrey CR (2007) Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol 11:433–439Google Scholar
  169. 169.
    Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, Wynn NB et al (2009) Reduced susceptibility to praziquantel among naturally occurring kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3:e504Google Scholar
  170. 170.
    Liang YS, Coles GC, Doenhoff MJ, Southgate VR (2001) In vitro responses of praziquantel-resistant and -susceptible Schistosoma mansoni to praziquantel. Int J Parasitol 31:1227–1235Google Scholar
  171. 171.
    de Moraes J, Nascimento C, Miura LMCV, Leite JRSA, Nakano E, Kawano T (2011) Evaluation of the in vitro activity of dermaseptin 01, a cationic antimicrobial peptide, against Schistosoma mansoni. Chem Biodivers 8:548–558Google Scholar
  172. 172.
    Xiao SH, Shen BG, Chollet J, Tanner M (2000) Tegumental changes in 21-day-old Schistosoma mansoni harboured in mice treated with artemether. Acta Trop 75:341–348Google Scholar
  173. 173.
    Dagan A, Efron L, Gaidukov L, Mor A, Ginsburg H (2002) In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother 46:1059–1066Google Scholar
  174. 174.
    Savoia D, Guerrini R, Marzola E, Salvadori S (2008) Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 16:8205–8209Google Scholar
  175. 175.
    Quinn GA, Heymans R, Rondaj F, Shaw C, de Jong-Brink M (2005) Schistosoma mansoni dermaseptin-like peptide: structural and functional characterization. J Parasitol 91:1340–1351Google Scholar
  176. 176.
    WHO (2012) Initiative for vaccine research. Parasitic diseases. Hookworm disease. http://www.who.int/vaccine_research/diseases/soa_parasitic/en/index2.html. Accessed 21 July 2012
  177. 177.
    Pillai A, Ueno S, Zhang H, Lee JM, Kato Y (2005) Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem J 390:207–214Google Scholar
  178. 178.
    CDC (2012) Parasites—Babesiosis—biology. http://www.cdc.gov/parasites/babesiosis/biology.html. Accessed 14 June 2012
  179. 179.
    Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan XN, Oliver JH et al (2007) Babesial vector tick defensin against Babesia sp parasites. Infect Immun 75:3633–3640Google Scholar
  180. 180.
    Rahman MM, Tsuji N, Boldbaatar D, Battur B, Liao M, Umemiya-Shirafuji R et al (2010) Structural characterization and cytolytic activity of a potent antimicrobial motif in longicin, a defensin-like peptide in the tick Haemaphysalis longicornis. J Vet Med Sci 72:149–156Google Scholar
  181. 181.
    Galay RL, Maeda H, Aung KM, Umemiya-Shirafuji R, Xuan X, Igarashi I et al (2012) Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis. Trop Anim Health Prod 44:343–348Google Scholar
  182. 182.
    Fogaca AC, da Silva PI, Jr., Miranda MT, Bianchi AG, Miranda A, Ribolla PE et al (1999) Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J Biol Chem 274:25330–25334Google Scholar
  183. 183.
    Fogaca AC, Lorenzini DM, Kaku LM, Esteves E, Bulet P, Daffre S (2004) Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Dev Comp Immunol 28:191–200Google Scholar
  184. 184.
    Lu X, Che Q, Lv Y, Wang M, Lu Z, Feng F et al (2010) A novel defensin-like peptide from salivary glands of the hard tick, Haemaphysalis longicornis. Protein Sci 19:392–397Google Scholar
  185. 185.
    Hynes WL, Ceraul SM, Todd SM, Seguin KC, Sonenshine DE (2005) A defensin-like gene expressed in the black-legged tick, Ixodes scapularis. Med Vet Entomol 19:339–344Google Scholar
  186. 186.
    Chrudimska T, Chrudimsky T, Golovchenko M, Rudenko N, Grubhoffer L (2010) New defensins from hard and soft ticks: similarities, differences, and phylogenetic analyses. Vet Parasitol 167:298–303Google Scholar
  187. 187.
    CDC (2012) Parasites—Toxoplasmosis (toxoplasma infection). http://www.cdc.gov/parasites/toxoplasmosis/biology.html. Accessed 17 June 2012
  188. 188.
    Dubey JP (2008) The history of Toxoplasma gondii-the first 100 years. J Eukaryot Microbiol 55:467–475Google Scholar
  189. 189.
    Allegra CJ, Kovacs JA, Drake JC, Swan JC, Chabner BA, Masur H (1987) Potent in vitro and in vivo antitoxoplasma activity of the lipid-soluble antifolate trimetrexate. J Clin Invest 79:478–482Google Scholar
  190. 190.
    Tanaka T, Rahman MM, Battur B, Boldbaatar D, Liao M, Umemiya-Shirafuji R et al (2010) Parasiticidal activity of human alpha-defensin-5 against Toxoplasma gondii. In Vitro Cell Dev Biol Anim 46:560–565Google Scholar
  191. 191.
    Tanaka T, Maeda H, Matsuo T, Boldbattar D, Umemiya-Shirafuji R, Kume A et al (2012) Parasiticidal activity of Haemaphysalis longicornis longicin P4 peptide against Toxoplasma gondii. Peptides 34:242–250Google Scholar
  192. 192.
    Tanaka T, Maeda H, Galay RL, Boldbattar D, Umemiya R, Suzuki H (2012) Tick longicin implicated in the arthropod transmission of Toxoplasma gondii. J Veterinar Sci Technol 3:1000112–1000117Google Scholar
  193. 193.
    Lipsky BA, Holroyd KJ, Zasloff M (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47:1537–1545Google Scholar
  194. 194.
    Kollef M, Pittet D, Garcia MS, Chastre J, Fagon JY, Bonten M et al (2006) A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am J Resp Crit Care 173:91–97Google Scholar
  195. 195.
    Koprivnjak T, Peschel A (2011) Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 68:2243–2254Google Scholar
  196. 196.
    Agarwal S, Boddu SH, Jain R, Samanta S, Pal D, Mitra AK (2008) Peptide prodrugs: Improved oral absorption of lopinavir, a HIV protease inhibitor. Int J Pharm 359:7–14Google Scholar
  197. 197.
    Mesnukul A, Yodkhum K, Mahadlek J, Phaechamud T (2010) Characterization of indomethacin release from polyethylene glycol tablet fabricated with mold technique. Indian J Pharm Sci 72:92–100Google Scholar
  198. 198.
    Johnson RM, Harrison SD, Maclean D (2011) Therapeutic applications of cell-penetrating peptides. Methods Mol Biol 683:535–551Google Scholar
  199. 199.
    Joshi HM, Bhumakar DR, Joshi K, Pokharvar V, Sastry M (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305Google Scholar
  200. 200.
    Li Y (2009) Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 54:1–9Google Scholar
  201. 201.
    Carballar-Lejarazu R, Rodriguez MH, Hernandez–Hernandez FD, Ramos-Castaneda J, Possani LD, Zurita-Ortega M et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092Google Scholar
  202. 202.
    Mangoni ML, Saugar JM, Dellisanti M, Barra D, Simmaco M, Rivas L (2005) Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280:984–990Google Scholar
  203. 203.
    Yamage M, Yoshiyama M, Grab DJ, Kubo M, Iwasaki T, Kitani H et al (2009) Characteristics of novel insect defensin-based membrane-disrupting trypanocidal peptides. Biosci Biotechnol Biochem 73:1520–1526Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jette Pretzel
    • 1
  • Franziska Mohring
    • 1
  • Stefan Rahlfs
    • 1
  • Katja Becker
    • 1
    Email author
  1. 1.Biochemistry and Molecular BiologyInterdisciplinary Research CenterGiessenGermany

Personalised recommendations