Skip to main content

Drosophila and the Hallmarks of Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 135))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Hh:

Hedgehog

Dpp:

Decapentaplegic

Wg:

Wingless

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

lgl:

Lethal giant larvae

scrib:

Scribbled

dlg:

Discs large

EGF:

Epidermal growth factor

MAPK:

Mitogen-activated protein kinase

JNK:

c-Jun N-terminal kinase

TNF:

Transforming growth factor

UAS:

Upstream activating sequence

G-TRACE:

Gal4 technique for realtime and clonal expression

FRT:

Flippase recognition target

MARCM:

Mosaic analysis with a repressible cell marker

esg:

Escargot

csp:

Caspase

Pdm1:

POU domain protein 1

CSC:

Cancer stem cells

Dronc:

Drosophila Nedd2-like caspase

Dcp-1:

Death caspase-1

PDGF:

Platelet-derived growth factor

psr:

Phosphatidylserine receptor

dSPARC:

Drosophila homologue of secreted protein, acidic, cysteine-rich

ISC:

Intestinal stem cells

MEN:

Multiple endocrine neoplasia

RET:

Rearranged during transfection

Csk:

C-terminal Src kinase

PcG:

Polycomb group

RB:

Retinoblastoma

TP53:

Tumor protein 53

DIAP1:

Drosophila melanogaster inhibitor of apoptosis-1

IAP:

Inhibitor of apoptosis

BCL:

B-cell lymphoma

Debcl:

Death executioner Bcl-2

BMP:

Bone morphogenetic protein

piwi:

P-element induced wimpy testis

GSC:

Germline stem cell

FGF:

Fibroblast growth factor

LINE:

Long interspersed (transposable) elements

RNAi:

Ribonucleic acid interference

VEGF:

Vascular endothelial growth factor

TSP-1:

Thrombospodin-1

btl:

Breathless

HIF:

Hypoxia-inducible factor

dVHL:

Drosophila Von Hippel–Lindau tumor suppressor

B. mori :

Bombyx mori

FGFR:

Fibroblast growth factor receptor

EGFR:

Epidermal growth factor receptor

vFGF:

Viral fibroblast growth factor

IMD:

Immune deficiency pathway

EMT:

Epithelial–mesenchymal transition

MMP:

Matrix metalloproteinase

A-P boundary:

Anterior–posterior boundary

Src:

Sarcoma

Rho1:

Rho GTPase

byn:

Brachyenteron

GFP:

Green fluorescent protein

SYCP1:

Synaptonemal complex protein 1

l(3)mbt:

Lethal 3 malignant brain tumor

ATP:

Adenosine triphosphate

GLUT1:

Glucose transporter 1

TOR:

Target of rapamycin

Inr/PI3K:

Insulin receptor/phosphoinositide 3-kinase

TrxG:

Trithorax group

P. aeruginosa :

Pseudomonas aeruginosa

IL:

Interleukin

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B-cells

Ubc9:

Ubiquitin carrier protein 9

APC:

Adenomatous polyposis coli

TSC:

Tuberous sclerosis complex

S6K:

Ribosomal protein S6 kinase

ROS:

Reactive oxygen species

NF:

Neurofibromatosis

RTK:

Receptor tyrosine kinase

Shh:

Sonic hedgehog

Ihh:

Indian hedgehog

Dhh:

Desert Hedgehog

References

  1. Yancik R, Ries LA (2000) Aging and cancer in America. Demographic and epidemiologic perspectives. Hematol Oncol Clin North Am 14:17–23

    CAS  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  5. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    CAS  Google Scholar 

  6. Gey GO, Coffman W, Kubicek MT (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265

    Google Scholar 

  7. Masters JR (2002) HeLa cells 50 years on: The good, the bad and the ugly. Nat Rev Cancer 2:315–319

    CAS  Google Scholar 

  8. Yamagiwa K, Ichikawa K (1918) Experimental study of the pathogenesis of carcinoma. J Cancer Res 3:1–29

    Google Scholar 

  9. Morgan TH (1910) Sex limited inheritance in drosophila. Science 32:120–122

    CAS  Google Scholar 

  10. Sturtevant AH (1913) The linear arrangement of six sex-linked factors in drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Google Scholar 

  11. Bridges CB (1916) Non-disjunction as proof of the chromosome theory of heredity (concluded). Genetics 1:107–163

    CAS  Google Scholar 

  12. Muller HJ (1928) The measurement of gene mutation rate in drosophila, its high variability, and its dependence upon temperature. Genetics 13:279–357

    CAS  Google Scholar 

  13. Hartenstein V (1993) Atlas of drosophila development cold spring harbor laboratory press. Plainview, New York

    Google Scholar 

  14. Poulson D (1945) Chromosomal control of embryogenesis in drosophila. Am Nat 79:340–363

    Google Scholar 

  15. Poulson D (1950) Histogenesis, organogenesis and differentiation in the embryo of drosophila melanogaster meigen. Biol Drosophila :168–274

    Google Scholar 

  16. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Google Scholar 

  17. Lewis EB (1978) A gene complex controlling segmentation in drosophila. Nature 276:565–570

    CAS  Google Scholar 

  18. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in drosophila. Nature 287:795–801

    CAS  Google Scholar 

  19. Spencer FA, Hoffmann FM, Gelbart WM (1982) Decapentaplegic: a gene complex affecting morphogenesis in drosophila melanogaster. Cell 28:451–461

    CAS  Google Scholar 

  20. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    CAS  Google Scholar 

  21. Sharma RP, Chopra VL (1976) Effect of the wingless (wg1) mutation on wing and haltere development in drosophila melanogaster. Dev Biol 48:461–465

    CAS  Google Scholar 

  22. Logan CY, Nusse R (2004) The wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    CAS  Google Scholar 

  23. Perrimon N (1984) Clonal analysis of dominant female-sterile, germline-dependent mutations in DROSOPHILA MELANOGASTER. Genetics 108:927–939

    CAS  Google Scholar 

  24. Binari R, Perrimon N (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative jak family tyrosine kinase in drosophila. Genes Dev 8:300–312

    CAS  Google Scholar 

  25. Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84:411–419

    CAS  Google Scholar 

  26. Siegfried E, Wilder EL, Perrimon N (1994) Components of wingless signalling in drosophila. Nature 367:76–80

    CAS  Google Scholar 

  27. Pan D (2010) The Hippo signaling pathway in development and cancer. Dev Cell 19:491–505

    CAS  Google Scholar 

  28. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the drosophila homolog of YAP. Cell 122:421–434

    CAS  Google Scholar 

  29. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    CAS  Google Scholar 

  30. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA et al (2007) Elucidation of a universal size-control mechanism in drosophila and mammals. Cell 130:1120–1133

    CAS  Google Scholar 

  31. Woodhouse E, Hersperger E, Stetler-Stevenson WG, Liotta LA, Shearn A (1994) Increased type IV collagenase in lgl-induced invasive tumors of drosophila. Cell Growth Differ 5:151–159

    CAS  Google Scholar 

  32. Bilder D, Li M, Perrimon N (2000) Cooperative regulation of cell polarity and growth by drosophila tumor suppressors. Science 289:113–116

    CAS  Google Scholar 

  33. Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L (2006) Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 119:1285–1290

    CAS  Google Scholar 

  34. Grifoni D, Garoia F, Schimanski CC, Schmitz G, Laurenti E, Galle PR et al (2004) The human protein hugl-1 substitutes for drosophila lethal giant larvae tumour suppressor function in vivo. Oncogene 23:8688–8694

    CAS  Google Scholar 

  35. Livneh E, Glazer L, Segal D, Schlessinger J, Shilo BZ (1985) The drosophila EGF receptor gene homolog: Conservation of both hormone binding and kinase domains. Cell 40:599–607

    CAS  Google Scholar 

  36. Read RD, Cavenee WK, Furnari FB, Thomas JB (2009) A drosophila model for EGFR-ras and PI3K-dependent human glioma. PLoS Genet 5:e1000374

    Google Scholar 

  37. Vlahopoulos S, Zoumpourlis VC (2004) JNK: a key modulator of intracellular signaling. Biochemistry (Mosc) 69:844–854

    CAS  Google Scholar 

  38. Ip YT, Davis RJ (1998) Signal transduction by the c-jun N-terminal kinase (JNK) — from inflammation to development. Curr Opin Cell Biol 10:205–219

    CAS  Google Scholar 

  39. Arbouzova NI, Zeidler MP (2006) JAK/STAT signalling in drosophila: Insights into conserved regulatory and cellular functions. Development 133:2605–2616

    CAS  Google Scholar 

  40. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211

    CAS  Google Scholar 

  41. Atreya R, Neurath MF (2008) Signaling molecules: The pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 9:369–374

    CAS  Google Scholar 

  42. Mocellin S, Nitti D (2008) TNF and cancer: the two sides of the coin. Front Biosci 13:2774–2783

    CAS  Google Scholar 

  43. Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T (2009) Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in drosophila. Dev Cell 16:458–465

    CAS  Google Scholar 

  44. Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M (2010) Oncogenic ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18:999–1011

    CAS  Google Scholar 

  45. Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67:701–716

    CAS  Google Scholar 

  46. Rubin GM, Spradling AC (1982) Genetic transformation of drosophila with transposable element vectors. Science 218:348–353

    CAS  Google Scholar 

  47. Handler AM, Harrell RA (1999) Germline transformation of drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457

    CAS  Google Scholar 

  48. Venken KJ, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: A BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    CAS  Google Scholar 

  49. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  Google Scholar 

  50. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in drosophila. Science 302:1765–1768

    Google Scholar 

  51. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: A repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548

    CAS  Google Scholar 

  52. Lee T (2009) New genetic tools for cell lineage analysis in drosophila. Nat Methods 6:566–568

    CAS  Google Scholar 

  53. del Valle Rodriguez A, Didiano D, Desplan C (2011) Power tools for gene expression and clonal analysis in drosophila. Nat Methods 9:47–55

    Google Scholar 

  54. Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4:21–30

    CAS  Google Scholar 

  55. Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888

    CAS  Google Scholar 

  56. Bryant PJ (1971) Regeneration and duplication following operations in situ on the imaginal discs of drosophila melanogaster. Dev Biol 26:637–651

    CAS  Google Scholar 

  57. Hadorn E (1968) Transdetermination in cells. Sci Am 219:110, 4 passim

    Google Scholar 

  58. Hadorn E, Gsell R, Schultz J (1970) Stability of a position-effect variegation in normal and transdetermined larval blastemas from drosophila melanogaster. Proc Natl Acad Sci U S A 65:633–637

    CAS  Google Scholar 

  59. McClure KD, Schubiger G (2007) Transdetermination: Drosophila imaginal disc cells exhibit stem cell-like potency. Int J Biochem Cell Biol 39:1105–1118

    CAS  Google Scholar 

  60. Maves L, Schubiger G (2003) Transdetermination in drosophila imaginal discs: A model for understanding pluripotency and selector gene maintenance. Curr Opin Genet Dev 13:472–479

    CAS  Google Scholar 

  61. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    CAS  Google Scholar 

  62. Vries RGJ, Huch M, Clevers H (2010) Stem cells and cancer of the stomach and intestine. Mol Oncol 4:373–384

    Google Scholar 

  63. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H et al (2009) Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell 16:358–373

    CAS  Google Scholar 

  64. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the drosophila wing disc requires activity of the apical cell death caspase dronc in a nonapoptotic role. Curr Biol 14:1262–1266

    CAS  Google Scholar 

  65. Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. the cell is dead. long live the cell! Trends Cell Biol 18:467–473

    CAS  Google Scholar 

  66. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866

    CAS  Google Scholar 

  67. Jager R, Fearnhead HO (2012) “Dead cells talking”: The silent form of cell death is not so quiet. Biochem Res Int 2012:453838

    Google Scholar 

  68. Morata G, Ripoll P (1975) Minutes: Mutants of drosophila autonomously affecting cell division rate. Dev Biol 42:211–221

    CAS  Google Scholar 

  69. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116

    Google Scholar 

  70. Moreno E, Basler K, Morata G (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in drosophila wing development. Nature 416:755–759

    CAS  Google Scholar 

  71. Rhiner C, Lopez-Gay JM, Soldini D, Casas-Tinto S, Martin FA, Lombardia L et al (2010) Flower forms an extracellular code that reveals the fitness of a cell to its neighbors in drosophila. Dev Cell 18:985–998

    CAS  Google Scholar 

  72. Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129:1215–1225

    CAS  Google Scholar 

  73. Lolo FN, Casas-Tinto S, Moreno E (2012) Cell competition time line: Winners kill losers, which are extruded and engulfed by hemocytes. Cell Rep 2:526–539

    CAS  Google Scholar 

  74. Petrova E, Lopez-Gay JM, Rhiner C, Moreno E (2012) Flower-deficient mice have reduced susceptibility to skin papilloma formation. Dis Model Mech 5:553–561

    CAS  Google Scholar 

  75. Portela M, Casas-Tinto S, Rhiner C, Lopez-Gay JM, Dominguez O, Soldini D et al (2010) Drosophila SPARC is a self-protective signal expressed by loser cells during cell competition. Dev Cell 19:562–573

    CAS  Google Scholar 

  76. Baker NE (2011) Cell competition. Curr Biol 21:R11–R15

    CAS  Google Scholar 

  77. Wu M, Pastor-Pareja JC, Xu T (2010) Interaction between ras(V12) and scribbled clones induces tumour growth and invasion. Nature 463:545–548

    CAS  Google Scholar 

  78. Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS (2011) The drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabolism 13:139–148

    Google Scholar 

  79. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    CAS  Google Scholar 

  80. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    CAS  Google Scholar 

  81. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    CAS  Google Scholar 

  82. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165

    CAS  Google Scholar 

  83. Vidal M, Cagan RL (2006) Drosophila models for cancer research. Curr Opin Genet Dev 16:10–16

    CAS  Google Scholar 

  84. Rudrapatna VA, Cagan RL, Das TK (2012) Drosophila cancer models. Dev Dyn 241:107–118

    CAS  Google Scholar 

  85. Busygina V, Suphapeetiporn K, Marek LR, Stowers RS, Xu T, Bale AE (2004) Hypermutability in a drosophila model for multiple endocrine neoplasia type 1. Hum Mol Genet 13:2399–2408

    CAS  Google Scholar 

  86. Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL (2005) A drosophila model of multiple endocrine neoplasia type 2. Genetics 171:1057–1081

    CAS  Google Scholar 

  87. Read RD, Bach EA, Cagan RL (2004) Drosophila C-terminal src kinase negatively regulates organ growth and cell proliferation through inhibition of the src, jun N-terminal kinase, and STAT pathways. Mol Cell Biol 24:6676–6689

    CAS  Google Scholar 

  88. Geisbrecht ER, Montell DJ (2002) Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol 4:616–620

    CAS  Google Scholar 

  89. Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D et al (2004) Lessons from border cell migration in the drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A 101:8144–8149

    CAS  Google Scholar 

  90. Hackstein JH (1992) The lethal prune/Killer-of-prune interaction of drosophila causes a syndrome resembling human neurofibromatosis (NF1). Eur J Cell Biol 58:429–444

    CAS  Google Scholar 

  91. Jawad N, Direkze N, Leedham SJ (2011) Inflammatory bowel disease and colon cancer. Recent Results Cancer Res 185:99–115

    CAS  Google Scholar 

  92. Bangi E, Pitsouli C, Rahme LG, Cagan R, Apidianakis Y (2012) Immune response to bacteria induces dissemination of ras-activated drosophila hindgut cells. EMBO Rep 13:569–576

    CAS  Google Scholar 

  93. Zhang C, Liu B, Li G, Zhou L (2011) Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in drosophila. J Genet Genomics 38:453–460

    CAS  Google Scholar 

  94. Fedi P, Tronick S, Aaronson S (1997) Growth factors. Cancer Med 41–64

    Google Scholar 

  95. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    CAS  Google Scholar 

  96. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    CAS  Google Scholar 

  97. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    CAS  Google Scholar 

  98. Adams JM, Cory S (2007) The bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  Google Scholar 

  99. McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG (2000) The neurofibromatosis-2 homologue, merlin, and the tumor suppressor expanded function together in drosophila to regulate cell proliferation and differentiation. Development 127:1315–1324

    CAS  Google Scholar 

  100. Hay BA, Guo M (2003) Coupling cell growth, proliferation, and death: Hippo weighs in. Dev Cell 5:361–363

    CAS  Google Scholar 

  101. Brumby AM, Richardson HE (2005) Using drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5:626–639

    CAS  Google Scholar 

  102. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL et al (2002) Hid, rpr and grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4:416–424

    CAS  Google Scholar 

  103. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S et al (2003) Buffy, a drosophila bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22:3568–3579

    CAS  Google Scholar 

  104. Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    CAS  Google Scholar 

  105. Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F et al (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710–6718

    CAS  Google Scholar 

  106. Montero JC, Chen X, Ocaña A, Pandiella A (2012) Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: Therapeutic implications. Mol Cancer Ther 11:1342–1352

    CAS  Google Scholar 

  107. Ramos A, Camargo FD (2012) The Hippo signaling pathway and stem cell biology. Trends Cell Biol 22:339–346

    CAS  Google Scholar 

  108. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC et al (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103:12405–12410

    CAS  Google Scholar 

  109. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W et al (2008) A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68:2592–2598

    CAS  Google Scholar 

  110. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult drosophila midgut epithelium. Nature 439:475–479

    CAS  Google Scholar 

  111. Ohlstein B, Spradling A (2006) The adult drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    CAS  Google Scholar 

  112. Lin G, Xu N, Xi R (2008) Paracrine wingless signalling controls self-renewal of drosophila intestinal stem cells. Nature 455:1119–1123

    CAS  Google Scholar 

  113. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359

    CAS  Google Scholar 

  114. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909

    CAS  Google Scholar 

  115. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al (1997) Constitutive transcriptional activation by a beta-catenin-tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    CAS  Google Scholar 

  116. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al (1997) Activation of beta-catenin-tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    CAS  Google Scholar 

  117. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    CAS  Google Scholar 

  118. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH et al (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36

    CAS  Google Scholar 

  119. Sun P, Quan Z, Zhang B, Wu T, Xi R (2010) TSC1/2 tumour suppressor complex maintains drosophila germline stem cells by preventing differentiation. Development 137:2461–2469

    CAS  Google Scholar 

  120. Saini N, Reichert H (2012) Neural stem cells in drosophila: Molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells Int 2012:486169

    Google Scholar 

  121. Cox DN, Chao A, Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514

    CAS  Google Scholar 

  122. Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ et al (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the drosophila ovary. Development 131:1353–1364

    CAS  Google Scholar 

  123. Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the drosophila ovary. Proc Natl Acad Sci USA 99:14813–14818

    CAS  Google Scholar 

  124. King FJ, Szakmary A, Cox DN, Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the drosophila ovary. Mol Cell 7:497–508

    CAS  Google Scholar 

  125. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    CAS  Google Scholar 

  126. Shivdasani AA, Ingham PW (2003) Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in drosophila spermatogenesis. Curr Biol 13:2065–2072

    CAS  Google Scholar 

  127. Kawase E, Wong MD, Ding BC, Xie T (2004) Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the drosophila testis. Development 131:1365–1375

    CAS  Google Scholar 

  128. Ebens AJ, Garren H, Cheyette BN, Zipursky SL (1993) The drosophila anachronism locus: A glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74:15–27

    CAS  Google Scholar 

  129. Dumstrei K, Wang F, Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in drosophila larval brain development. J Neurosci 23:3325–3335

    CAS  Google Scholar 

  130. Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M et al (2003) Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 253:247–257

    CAS  Google Scholar 

  131. Zhu CC, Boone JQ, Jensen PA, Hanna S, Podemski L, Locke J et al (2008) Drosophila activin- and the activin-like product dawdle function redundantly to regulate proliferation in the larval brain. Development 135:513–521

    CAS  Google Scholar 

  132. Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of drosophila neuroblasts. Genes Dev 20:3453–3463

    CAS  Google Scholar 

  133. Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of drosophila adult hindgut stem cells is controlled by wnt and hh signalling. Nature 454:651–655

    CAS  Google Scholar 

  134. Blasco MA (2005) Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet 6:611–622

    CAS  Google Scholar 

  135. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  Google Scholar 

  136. Mason JM, Biessmann H (1995) The unusual telomeres of drosophila. Trends Genet 11:58–62

    CAS  Google Scholar 

  137. Savitsky M, Kwon D, Georgiev P, Kalmykova A, Gvozdev V (2006) Telomere elongation is under the control of the RNAi-based mechanism in the drosophila germline. Genes Dev 20:345–354

    CAS  Google Scholar 

  138. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    CAS  Google Scholar 

  139. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    CAS  Google Scholar 

  140. Raica M, Cimpean AM, Ribatti D (2009) Angiogenesis in pre-malignant conditions. Eur J Cancer 45:1924–1934

    CAS  Google Scholar 

  141. Mortimer NT, Moberg KH (2009) Regulation of drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 329:294–305

    CAS  Google Scholar 

  142. Katsuma S, Daimon T, Mita K, Shimada T (2006) Lepidopteran ortholog of drosophila breathless is a receptor for the baculovirus fibroblast growth factor. J Virol 80:5474–5481

    CAS  Google Scholar 

  143. Katoh M, Katoh M (2006) FGF signaling network in the gastrointestinal tract (review). Int J Oncol 29:163–168

    CAS  Google Scholar 

  144. Wagner C, Isermann K, Roeder T (2009) Infection induces a survival program and local remodeling in the airway epithelium of the fly. FASEB J 23:2045–2054

    CAS  Google Scholar 

  145. Woodhouse E, Hersperger E, Shearn A (1998) Growth, metastasis, and invasiveness of drosophila tumors caused by mutations in specific tumor suppressor genes. Dev Genes Evol 207:542–550

    CAS  Google Scholar 

  146. Pagliarini RA, Xu T (2003) A genetic screen in drosophila for metastatic behavior. Science 302:1227–1231

    CAS  Google Scholar 

  147. Brumby AM, Richardson HE (2003) Scribble mutants cooperate with oncogenic ras or notch to cause neoplastic overgrowth in drosophila. EMBO J 22:5769–5779

    CAS  Google Scholar 

  148. Uhlirova M, Bohmann D (2006) JNK- and fos-regulated Mmp1 expression cooperates with ras to induce invasive tumors in drosophila. EMBO J 25:5294–5304

    CAS  Google Scholar 

  149. Ferres-Marco D, Gutierrez-Garcia I, Vallejo DM, Bolivar J, Gutierrez-Avino FJ, Dominguez M (2006) Epigenetic silencers and notch collaborate to promote malignant tumours by rb silencing. Nature 439:430–436

    CAS  Google Scholar 

  150. Hooper JE, Scott MP (1989) The drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59:751–765

    CAS  Google Scholar 

  151. Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10:33–44

    CAS  Google Scholar 

  152. Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in drosophila. Science 330:1824–1827

    CAS  Google Scholar 

  153. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  Google Scholar 

  154. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    CAS  Google Scholar 

  155. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: Cancer’s achilles’ heel. Cancer Cell 13:472–482

    CAS  Google Scholar 

  156. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Google Scholar 

  157. Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–333

    Google Scholar 

  158. Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control. Trends Cell Biol 13:79–85

    CAS  Google Scholar 

  159. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila’s insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2:239–249

    CAS  Google Scholar 

  160. Ellisen LW (2005) Growth control under stress: MTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502

    CAS  Google Scholar 

  161. Dekanty A, Lavista-Llanos S, Irisarri M, Oldham S, Wappner P (2005) The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in drosophila by promoting nuclear localization of HIF-alpha/Sima. J Cell Sci 118:5431–5441

    CAS  Google Scholar 

  162. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    CAS  Google Scholar 

  163. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    CAS  Google Scholar 

  164. Sekelsky JJ, Brodsky MH, Burtis KC (2000) DNA repair in drosophila: Insights from the drosophila genome sequence. J Cell Biol 150:F31–F36

    CAS  Google Scholar 

  165. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    CAS  Google Scholar 

  166. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene 29:1093–1102

    CAS  Google Scholar 

  167. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Google Scholar 

  168. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  Google Scholar 

  169. Kuraishy A, Karin M, Grivennikov SI (2011) Tumor promotion via injury- and death-induced inflammation. Immunity 35:467–477

    CAS  Google Scholar 

  170. Christofi T, Apidianakis Y (2012) Ras-oncogenic drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites. Gut Microbes 4:1–6

    Google Scholar 

  171. Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S (2010) Role for sumoylation in systemic inflammation and immune homeostasis in drosophila larvae. PLoS Pathog 6:e1001234

    CAS  Google Scholar 

  172. Kalamarz ME, Paddibhatla I, Nadar C, Govind S (2012) Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in drosophila melanogaster larvae. Biology Open 1:161–172

    CAS  Google Scholar 

  173. Huang L, Ohsako S, Tanda S (2005) The lesswright mutation activates rel-related proteins, leading to overproduction of larval hemocytes in drosophila melanogaster. Dev Biol 280:407–420

    CAS  Google Scholar 

  174. Gladstone M, Su TT (2011) Chemical genetics and drug screening in drosophila cancer models. J Genet Genomics 38:497–504

    CAS  Google Scholar 

  175. Edwards A, Gladstone M, Yoon P, Raben D, Frederick B, Su TT (2011) Combinatorial effect of maytansinol and radiation in drosophila and human cancer cells. Dis Model Mech 4:496–503

    CAS  Google Scholar 

  176. Bangi E, Garza D, Hild M (2011) In vivo analysis of compound activity and mechanism of action using epistasis in drosophila. J Chem Biol 4:55–68

    Google Scholar 

  177. Dar AC, Das TK, Shokat KM, Cagan RL (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486:80–84

    CAS  Google Scholar 

  178. Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in drosophila. Dis Model Mech 1:144–154; discussion 153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiorgos Apidianakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christofi, T., Apidianakis, Y. (2013). Drosophila and the Hallmarks of Cancer. In: Vilcinskas, A. (eds) Yellow Biotechnology I. Advances in Biochemical Engineering/Biotechnology, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_190

Download citation

Publish with us

Policies and ethics