Skip to main content

Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology

  • Chapter
  • First Online:
Fundamentals and Application of New Bioproduction Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine-5’-triphosphate

AzPhe:

p-azido-l-phenylalanine

AzPheRS:

Orthogonal mutant synthetase specific for AzPhe

BP:

Bandpass filter

CECF:

Continuous-exchange cell-free

CFCF:

Continuous-flow cell-free

CHO:

Chinese hamster ovary

CLSM:

Confocal laser scanning microscopy

CrPV:

Cricket paralysis virus

DDM:

n-dodecyl-ß-maltoside

DTT:

Dithiothreitol

E. coli :

Escherichia coli

EndoH:

Endoglycosidase H

E-PCR:

Expression-PCR

EPO:

Erythropoietin

ER:

Endoplasmic reticulum

eYFP:

Enhanced yellow fluorescent protein

Fab:

Fragment, antigen-binding

FITC:

Fluorescein isothiocyanate

Fv:

Antibody variable fragment

GTP:

Guanosine-5’-triphosphate

GUV:

Giant unilamellar vesicle

IGR:

Intergenic region

IRES:

Internal ribosome entry site

KD:

Association equilibrium constant

Mel:

Melittin

PAGE:

Polyacrylamide gel electrophoresis

PDI:

Protein disulfide isomerase

PI:

Protease inhibitors

PNGaseF:

N-glycosidase F

PTM:

Posttranslational modification

RU:

Resonance units

scFv:

Single-chain antibody fragment

SDS:

Sodium dodecyl sulfate

Sf21:

Spodoptera frugiperda 21

SN1:

Supernatant 1

SN2:

Supernatant 2

SPR:

Surface plasmon resonance

TCA:

Trichloroacetic acid

TM:

Translation mixture

tRNACUA :

Amber suppressor tRNA

VF1:

Vesicular fraction 1

VF2:

Vesicular fraction 2

References

  1. Nirenberg M, Matthaei J (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47:1588–1602

    Article  CAS  Google Scholar 

  2. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156

    Article  CAS  Google Scholar 

  3. Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485

    Article  CAS  Google Scholar 

  4. Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99:351–367

    Article  CAS  Google Scholar 

  5. Kanter G, Yang J, Voloshin A, Levy S, Swartz J, Levy R (2007) Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood 109:3393–3399

    Article  CAS  Google Scholar 

  6. Yang J, Kanter G, Voloshin A, Michel-Reydellet N, Velkeen H, Levy R, Swartz JR (2005) Rapid expression of vaccine proteins for B-cell lymphoma in a cell-free system. Biotechnol Bioeng 89:503–511

    Article  CAS  Google Scholar 

  7. Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578

    Article  CAS  Google Scholar 

  8. Gourdon P, Alfredsson A, Pedersen A, Malmerberg E, Nyblom M, Widell M, Berntsson R, Pinhassi J, Braiman M, Hansson Ö, Bonander N, Karlsson G, Neutze R (2008) Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump. Protein Expr Purif 58:103–113

    Article  CAS  Google Scholar 

  9. Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J Mol Biol 371:639–648

    Article  CAS  Google Scholar 

  10. Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Rüterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    Article  CAS  Google Scholar 

  11. Kubick S, Gerrits M, Merk H, Stiege W, Erdmann VA (2009) In vitro synthesis of posttranslationally modified membrane proteins. In: “Membrane Protein Crystallization” current topics in membranes, Chapter 2, vol 63. Elsevier, Burlington

    Google Scholar 

  12. Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S (2012) Synthesis of membrane proteins in eukaryotic cell-free systems. Eng Life Sci 12:1–10

    Google Scholar 

  13. Savage DF, Anderson CL, Robles-Colmenares Y, Newby ZE, Stroud RM (2007) Cell-free complements in vivo expression of the E. coli membrane proteome. Protein Sci 16:966–976

    Article  CAS  Google Scholar 

  14. von Groll U, Kubick S, Merk H, Stiege W, Schäfer F (2007) Advances in insect-based cell-free protein expression. In: Kudlicki W, Katzen F, Bennett P (eds) Cell-free protein expression. Landes Bioscience, Austin

    Google Scholar 

  15. Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, Andoh T, Iida Y, Ishikawa K, Ito E, Kagawa N, Kaminaga C, Kanehori K, Kawakami B, Kenmochi K, Kimura R, Kobayashi M, Kuroita T, Kuwayama H, Maruyama Y, Matsuo K, Minami K, Mitsubori M, Mori M, Morishita R, Murase A, Nishikawa A, Nishikawa S, Okamoto T, Sakagami N, Sakamoto Y, Sasaki Y, Seki T, Sono S, Sugiyama A, Sumiya T, Takayama T, Takayama Y, Takeda H, Togashi T, Yahata K, Yamada H, Yanagisawa Y, Endo Y, Imamoto F, Kisu Y, Tanaka S, Isogai T, Imai J, Watanabe S, Nomura N (2008) Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 5:1011–1017

    Article  CAS  Google Scholar 

  16. Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. Embo J 22:24–35

    Article  CAS  Google Scholar 

  17. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194

    Article  CAS  Google Scholar 

  18. Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2007) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369

    Article  CAS  Google Scholar 

  19. Chang H-C, Kaiser CM, Hartl FU, Barral JM (2005) De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria. J Mol Biol 353:397–409

    Article  CAS  Google Scholar 

  20. Hillebrecht JR, Chong S (2008) A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnol 8:1790–1793

    Google Scholar 

  21. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotech 21:255–261

    Article  CAS  Google Scholar 

  22. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  CAS  Google Scholar 

  23. Walter P, Blobel G (1983) Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol 96:84–93

    Article  CAS  Google Scholar 

  24. Kubick S, Schacherl J, Fleischer-Notter H, Royall E, Roberts LO, Stiege W (2003) In vitro translation in an insect-based cell-free system. In: Swartz JR (ed) Cell-free protein expression. Springer, Berlin, pp 209–217

    Google Scholar 

  25. Merk H, Gless C, Maertens B, Gerrits M, Stiege W (2012) Cell-free synthesis of functional and endotoxin-free antibody Fab fragments by translocation into microsomes. Biotechniques 53:153–160

    CAS  Google Scholar 

  26. Shaklee PM, Semrau S, Malkus M, Kubick S, Dogterom M, Schmidt T (2010) Protein incorporation in giant lipid vesicles under physiological conditions. Chembiochem 11:175–179

    Article  CAS  Google Scholar 

  27. Stech M, Merk H, Schenk J, Stöcklein W, Wüstenhagen D, Micheel B, Duschl C, Bier F, Kubick S (2012) Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 164:220–231

    Article  CAS  Google Scholar 

  28. Brödel AK, Raymond JA, Duman JG, Bier FF, Kubick S (2013) Functional evaluation of candidate ice structuring proteins using cell-free expression systems. J Biotechnol 163:301–310

    Article  Google Scholar 

  29. Khnouf R, Olivero D, Jin S, Coleman MA, Fan ZH (2010) Cell-Free expression of soluble and membrane proteins in an array device for drug screening. Anal Chem 82:7021–7026

    Article  CAS  Google Scholar 

  30. Casteleijn MG, Urtti A, Sarkhel S (2012) Expression without boundaries: cell-free protein synthesis in pharmaceutical research. Int J Pharm 440(1):39–47

    Google Scholar 

  31. Zanders ED, Kai L, Roos C, Haberstock S, Proverbio D, Ma Y, Junge F, Karbyshev M, Dötsch V, Bernhard F (2012) Systems for the cell-free synthesis of proteins, chemical genomics and proteomics. Humana Press, New York, pp 201–225

    Google Scholar 

  32. Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038

    Article  CAS  Google Scholar 

  33. Wuu JJ, Swartz JR (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim Biophys Acta 1778:1237–1250

    Google Scholar 

  34. Doyle S, Cappuccio J, Hinz A, Kuhn E, Fletcher J, Arroyo E, Henderson P, Blanchette C, Walsworth V, Corzett M, Law R, Pesavento J, Segelke B, Sulchek T, Chromy B, Katzen F, Peterson T, Bench G, Kudlicki W, Hoeprich P Jr, Coleman M (2009) Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform, high throughput protein expression and purification, Humana Press, Totowa, pp 273–295

    Google Scholar 

  35. Goren MA, Nozawa A, Makino S, Wrobel RL, Fox BG (2009) Cell-free translation of integral membrane proteins into unilamelar liposomes. Methods Enzymol 463:647–673

    Article  CAS  Google Scholar 

  36. Budisa N (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. ChemInform 43:6426–6463

    CAS  Google Scholar 

  37. Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  Google Scholar 

  38. Xie J, Schultz PG (2006) A chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol 7:775–782

    Article  CAS  Google Scholar 

  39. Wang Q, Parrish AR, Wang L (2009) Expanding the genetic code for biological studies. Chem Biol 16:323–336

    Article  CAS  Google Scholar 

  40. Hudson P, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134

    Article  CAS  Google Scholar 

  41. Goel A, Baranowska-Kortylewicz J, Hinrichs SH, Wisecarver J, Pavlinkova G, Augustine S, Colcher D, Booth BJM, Batra SK (2001) 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Medicine 42:1519–1527

    CAS  Google Scholar 

  42. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res 61(12):4750–4755

    Google Scholar 

  43. Souriau C, Hudson PJ (2001) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 1:845–855

    Article  CAS  Google Scholar 

  44. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  CAS  Google Scholar 

  45. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ (2001) Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 248:47–66

    Article  CAS  Google Scholar 

  46. Alzari P, Lascombe M, Poljak R (1988) Three-dimensional structure of antibodies. Annu Rev Immunol 6:555–580

    Article  CAS  Google Scholar 

  47. Davies D, Padlan E, Sheriff S (1990) Antibody-antigen complexes. Annu Rev Biochem 59:439–473

    Article  CAS  Google Scholar 

  48. Glockshuber R, Schmidt T, Plückthun A (1992) The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry 31:1270–1279

    Article  CAS  Google Scholar 

  49. Goto Y, Hamaguchi K (1979) The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain. J Biochem 86:1433–1441

    CAS  Google Scholar 

  50. Bundy BC, Swartz JR (2011) Efficient disulfide bond formation in virus-like particles. J Biotechnol 154:230–239

    Article  CAS  Google Scholar 

  51. Jiang X, Ookubo Y, Fujii I, Nakano H, Yamane T (2002) Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS Lett 514:290–294

    Article  CAS  Google Scholar 

  52. Kim D-M, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng 85:122–129

    Article  CAS  Google Scholar 

  53. Merk H, Stiege W, Tsumoto K, Kumagai I, Erdmann VA (1999) Cell-free expression of two single-chain monoclonal antibodies against lysozyme: effect of domain arrangement on the expression. J Biochem 125:328–333

    Article  CAS  Google Scholar 

  54. Oh I-S, Kim D-M, Kim T-W, Park C-G, Choi C-Y (2006) Providing an oxidizing environment for the cell-free expression of disulfide-containing proteins by exhausting the reducing activity of Escherichia coli S30 extract. Biotechnol Prog 22:1225–1228

    Article  CAS  Google Scholar 

  55. Oh I-S, Lee J-C, Lee M-s, Chung J-h, Kim D-M (2010) Cell-free production of functional antibody fragments. Bioprocess Biosyst Eng 33:127–132

    Google Scholar 

  56. Ryabova LA, Desplancq D, Spirin AS, Plückthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15:79–84

    Article  CAS  Google Scholar 

  57. Kawasaki T, Gouda MD, Sawasaki T, Takai K, Endo Y (2003) Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur J Biochem 270:4780–4786

    Article  CAS  Google Scholar 

  58. Ezure T, Suzuki T, Shikata M, Ito M, Ando E, Nishimura O, Tsunasawa S (2007) Expression of proteins containing disulfide bonds in an insect cell-free system and confirmation of their arrangements by MALDI-TOF MS. Proteomics 24:4424–4434

    Article  Google Scholar 

  59. Yin G, Swartz JR (2004) Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol Bioeng 86:188–195

    Article  CAS  Google Scholar 

  60. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    Article  CAS  Google Scholar 

  61. Bromley EHC, Channon K, Moutevelis E, Woolfson DN (2008) Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 3:38–50

    Article  CAS  Google Scholar 

  62. Tessier DC, Thomas DY, Khouri HE, Laliberié F, Vernet T (1991) Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene 98:177–183

    Article  CAS  Google Scholar 

  63. Spirin A, Baranov V, Ryabova L, Ovodov S, Alakhov Y (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  CAS  Google Scholar 

  64. Alakhov J, Baranov V, Ovodov S, Ryabova L, Spirin A, Morozov I (1995) Method of preparing polypeptides in cell-free translation system. Institute of Protein Research, Moscow

    Google Scholar 

  65. Kim D, Choi C (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    Article  CAS  Google Scholar 

  66. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110:166–168

    CAS  Google Scholar 

  67. Grandi G, Shirokov VA, Kommer A, Kolb VA, Spirin AS (2007) Continuous-exchange protein-synthesizing systems, In vitro transcription and translation protocols. Humana Press, pp 19–55

    Google Scholar 

  68. Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, Bernhard F (2011) Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N Biotechnol 28:262–271

    Article  CAS  Google Scholar 

  69. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106:1760–1765

    Article  CAS  Google Scholar 

  70. Fenz SF, Sengupta K (2012) Giant vesicles as cell models. Integr Biol 4:982–995

    Article  CAS  Google Scholar 

  71. Liu A, Fletcher D (2009) Biology under construction: in vitro reconstitution of cellular function. Nat Rev Mol Cell Biol 10:644–650

    Article  CAS  Google Scholar 

  72. Schwille P, Diez S (2009) Synthetic biology of minimal systems. Crit Rev Biochem Mol Biol 44:223–242

    Article  CAS  Google Scholar 

  73. Smith A-S (2010) Physics challenged by cells. Nat Phys 6:726–729

    Article  CAS  Google Scholar 

  74. Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. Chembiochem 11:848–865

    Article  CAS  Google Scholar 

  75. Girard P, Pecreaux J, Lenoir G, Falson P, Rigaud JL, Bassereau P (2004) A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys J 87:419–429

    Article  CAS  Google Scholar 

  76. Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142

    Article  CAS  Google Scholar 

  77. Kahya N, Pécheur E-I, de Boeij WP, Wiersma DA, Hoekstra D (2001) Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys J 81:1464–1474

    Article  CAS  Google Scholar 

  78. Kim J, Kim Y-G, Lee G (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  Google Scholar 

  79. Jayapal K, Wlaschin K, Hu W, Yap M (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  80. Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835

    Article  CAS  Google Scholar 

  81. Hershey J, Merrick WC (2000) The initiation pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 33–88

    Google Scholar 

  82. Swartz JR (2009) Universal cell-free protein synthesis. Nat Biotech 27:731–732

    Article  CAS  Google Scholar 

  83. Mureev S, Kovtun O, Nguyen UTT, Alexandrov K (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotech 27:747–752

    Article  CAS  Google Scholar 

  84. Fitzgerald KD, Semler BL (2009) Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta 1789:518–528

    Google Scholar 

  85. Wilson JE, Pestova TV, Hellen CUT, Sarnow P (2000) Initiation of protein synthesis from the a site of the ribosome. Cell 102:511–520

    Article  CAS  Google Scholar 

  86. Zeenko VV, Wang C, Majumder M, Komar AA, Snider MD, Merrick WC, Kaufman RJ, Hatzoglou M (2008) An efficient in vitro translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation. RNA 14:593–602

    Article  CAS  Google Scholar 

  87. Hertz MI, Thompson SR (2011) In vivo functional analysis of the Dicistroviridae intergenic region internal ribosome entry sites. Nucleic Acids Res 39(16):7276–7288

    Google Scholar 

  88. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    Article  CAS  Google Scholar 

  89. Higashiyama S, Abraham J, Miller J, Fiddes J, Klagsbrun M (1991) A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939

    Article  CAS  Google Scholar 

  90. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  CAS  Google Scholar 

  91. Kwok Y, Wong JT-F (1980) Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem 58:213–218

    Article  CAS  Google Scholar 

  92. Kudlicki WA, Katzen F, Bennett RP (2007) Cell-free protein expression. Landes Bioscience, Austin, Tex

    Google Scholar 

  93. Gerrits M (2010) Funktion und Effizienz von amber-Suppressor-tRNAs in der zellfreien Proteinbiosynthese, Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin, Freie Universität Berlin, Berlin

    Google Scholar 

  94. Noren CJ, Anthony-Cahill SJ, Noren KA, Griffith MC, Schultz PG (1990) In vitro suppression of an amber mutation by a chemically aminoacylated transfer RNA prepared by runoff transcription. Nucleic Acids Res 18:83–88

    Article  CAS  Google Scholar 

  95. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967

    Article  CAS  Google Scholar 

  96. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    Article  CAS  Google Scholar 

  97. Swartz JR (2003) Cell-free protein expression. Springer, New York

    Google Scholar 

  98. Miot M, Betton J-M (2010) Reconstitution of the Cpx signaling system from cell-free synthesized proteins. New Biotechnol 28:277–281

    Article  Google Scholar 

  99. Katzen F, Fletcher JE, Yang J-P, Kang D, Peterson TC, Cappuccio JA, Blanchette CD, Sulchek T, Chromy BA, Hoeprich PD, Coleman MA, Kudlicki W (2008) Insertion of membrane proteins into discoidal membranes using a cell-Free protein expression approach. J Proteome Res 7:3535–3542

    Article  CAS  Google Scholar 

  100. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27:455–460

    Article  CAS  Google Scholar 

  101. Orth JHC, Schorch B, Boundy S, Ffrench-Constant R, Kubick S, Aktories K (2011) Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon 57:199–207

    Article  CAS  Google Scholar 

  102. Merk H, Meschkat D, Stiege W (2003) Expression-PCR: from gene pools to purified proteins within 1 day. In: Swartz JR (ed) Cell-free protein expression. Springer, Berlin, pp 15–23

    Chapter  Google Scholar 

  103. Lee K, Lee K, Park J, Kim D (2012) Flexible programming of cell-free protein synthesis using magnetic bead-immobilized plasmids. PLoS One 7(3):e34429

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dipl.-Ing. Doreen Wüstenhagen, Dipl. Nutritional Scientist Conny Mascher, and Birgit Hollmann (Fraunhofer IBMT, Potsdam-Golm, Germany) for preparing cell-free extracts and in general, for keeping things running in our cell-free lab. Furthermore, we thank Dr. Walter Stöcklein (Fraunhofer IBMT, Potsdam-Golm, Germany) for his excellent support regarding SPR measurements as well as Prof. Burkhard Micheel (University of Potsdam, Germany) for providing the Anti-FITC monoclonal antibody. Moreover, we thank Jörg Schenk (Hybrotec GmbH, UP Transfer GmbH, Potsdam-Golm, Germany) for delivering the DNA template encoding the Anti-FITC scFv as well as for the scientific support and many fruitful discussions. Plasmids encoding the membrane proteins Hb-EGF, EGFR, and ETB were kindly provided by Prof. Michael Schaefer (Universität Leipzig, Germany). We also wish to express our considerable thanks to Dr. Susanne Fenz (Universität Würzburg, Germany) and Prof. Thomas Schmidt (Leiden University, The Netherlands) for their collaboration regarding the GVU formation process. Our special thanks go to Dipl.-Translator Marie Burger, Dipl.-Chem. Devid Mrusek, and Dipl.-Biochem. Christian Hoffmeister (Fraunhofer IBMT, Potsdam-Golm, Germany) for their careful revision of this manuscript. This research is supported by the German Ministry of Education and Research (BMBF No. 0312039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kubick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stech, M., Brödel, A.K., Quast, R.B., Sachse, R., Kubick, S. (2013). Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology. In: Zeng, AP. (eds) Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_185

Download citation

Publish with us

Policies and ethics