Skip to main content

Future of Medicine: Models in Predictive Diagnostics and Personalized Medicine

  • Chapter
  • First Online:
Molecular Diagnostics

Abstract

Molecular medicine is undergoing fundamental changes driving the whole area towards a revolution in modern medicine. The breakthrough was generated the fast-developing technologies in molecular biology since the first draft sequence of the human genome was published. The technological advances enabled the analysis of biological samples from cells and organs to whole organisms in a depth that was not possible before. These technologies are increasingly implemented in the medical and health care system to study diseases and refine diagnostics. As a consequence, the understanding of diseases and the health status of an individual patient is now based on an enormous amount of data that can only be interpreted in the context of the body as a whole. Systems biology as a new field in the life sciences develops new approaches for data integration and interpretation. Systems medicine as a specialized aspect of systems biology combines in an interdisciplinary approach all expertise necessary to decipher the human body in all its complexity. This created new challenges in the area of information and communication technologies to provide the infrastructure and technology needed to cope with the data flood that will accompany the next generation of medicine. The new initiative ‘IT Future of Medicine’ aims at driving this development even further and integrates not only molecular data (especially genomic information), but also anatomical, physiological, environmental, and lifestyle data in a predictive model approach—the ‘virtual patient’—that will allow the clinician or the general practitioner to predict and anticipate the optimal treatment for the individual patient. The application of the virtual patient model will allow truly personalized medicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Human Genome Sequencing Consortium Eric S. Lander et al (2001) Human genome—initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  2. Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  3. Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2

    Google Scholar 

  4. ITFoM Consortium (2011) ITFoM: IT future of medicine—an IT revolution in medicine and health care. ERCIM News 87:15

    Google Scholar 

  5. Tremblay J, Hamet P (2012) Role of genomics on the path to personalized medicine. Metabolism. doi:10.1016/j.metabol.2012.08.023

  6. Willard HF, Angrist M, Ginsburg GS (2005) Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc Lond B Biol Sci 360(1460):1543–1550

    Article  CAS  Google Scholar 

  7. Hong KW, Oh B (2010) Overview of personalized medicine in the disease genomic era. BMB Rep 43(10):643–648

    Article  CAS  Google Scholar 

  8. Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154(6):277–287

    Article  Google Scholar 

  9. Lehrach H, Subrak R, Boyle P et al (2011) ITFoM—the IT future of medicine. Procedia Comput Sci 7:26–29

    Article  Google Scholar 

  10. Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7(5):201–204

    Article  CAS  Google Scholar 

  11. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 29(6):613–624

    Google Scholar 

  12. Auffray C, Charron D, Hood L (2012) Predictive, preventive, personalized and participatory medicine: back to the future. Genome Med 2(8):57

    Google Scholar 

  13. Wang K, Lee I, Carlson G, Hood L, Galas D (2012) Systems biology and the discovery of diagnostic biomarkers. Dis Markers 28(4):199–207

    Article  CAS  Google Scholar 

  14. Zenil H, Marshall JAR, Some computational aspects of essential properties of evolution and life. arXiv:1206.0375

    Google Scholar 

  15. Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol XII:139–163

    Google Scholar 

  16. Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Article  CAS  Google Scholar 

  17. De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  Google Scholar 

  18. Srivastava S (2008) Move over proteomics, here comes glycomics. J Proteome Res 7(5):1799

    Article  CAS  Google Scholar 

  19. Wada J, Azadi P, Costello CE et al (2007) Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17(4):411–422

    Article  CAS  Google Scholar 

  20. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    Article  CAS  Google Scholar 

  21. Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3(4):655–663

    Article  CAS  Google Scholar 

  22. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470(7333):198–203

    Google Scholar 

  23. Hunter P (2009) Reading the metabolic fine print. The application of metabolomics to diagnostics, drug research and nutrition might be integral to improved health and personalized medicine. EMBO Rep 10(1):20–23

    Article  CAS  Google Scholar 

  24. Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A, Burgard M, Grzesiak A, Teichert A, Brandenburg A, Koger B, Albers J, Nebling E, Bier FF (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12:464–473

    Article  CAS  Google Scholar 

  25. Montuschi P, Mores N, Trové A, Mondino C, Barnes PJ (2013) The electronic nose in respiratory medicine. Respiration 85(1):72–84

    Google Scholar 

  26. Ledet EH, D’Lima D, Westerhoff P, Szivek JA, Wachs RA, Bergmann G (2012) Implantable sensor technology: from research to clinical practice. J Am Acad Orthop Surg 20(6):383–392

    Article  Google Scholar 

  27. Botha CP, Preim B, Kaufman A, Takahashi S, Ynnerman A (2012) From individual to population: challenges in medical visualization. arXiv:1206.1148v2

    Google Scholar 

  28. Zaidi H (2006) Recent developments and future trends in nuclear medicine instrumentation. Z Med Phys 16(1):5–17

    Google Scholar 

  29. Zaidi H, Prasad R (2009) Advances in multimodality molecular imaging. J Med Phys 34(3):122–128

    Article  Google Scholar 

  30. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    Article  Google Scholar 

  31. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Google Scholar 

  32. Hood L (2012) Tackling the microbiome. Science 336(6086):1209

    Google Scholar 

  33. Lehrach H et al (2011) ITFoM—the IT future of medicine. Sci Direct, Procedia Comput Sci 7:26–29

    Article  Google Scholar 

  34. Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. Nat Rev Genet 7(8):593–605

    Article  CAS  Google Scholar 

  35. Chuang H-Y, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Google Scholar 

  36. Jones AR, Miller M, Aebersold R, Apweiler R, Ball CA, Brazma A, Degreef J, Hardy N, Hermjakob H, Hubbard SJ, Hussey P, Igra M, Jenkins H, Julian RK Jr, Laursen K, Oliver SG, Paton NW, Sansone SA, Sarkans U, Stoeckert CJ Jr, Taylor CF, Whetzel PL, White JA, Spellman P, Pizarro A (2007) The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nat Biotechnol 25(10):1127–1133

    Article  CAS  Google Scholar 

  37. Wierling C, Herwig R, Lehrach H (2007) Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic 6(3):240–251

    Article  CAS  Google Scholar 

  38. Bois FY (2010) Physiologically based modelling and prediction of drug interactions. Basic Clin Pharmacol Toxicol 106(3):154–161

    Article  CAS  Google Scholar 

  39. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239

    Google Scholar 

  40. Klipp E, Wade RC, Kummer U (2010) Biochemical network-based drug-target prediction. Curr Opin Biotechnol 21(4):511–516

    Article  CAS  Google Scholar 

  41. Ahn AC, Tewari M, Poon CS, Phillips RS (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6):e208

    Article  Google Scholar 

  42. Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41:1–10

    Article  CAS  Google Scholar 

  43. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  Google Scholar 

  44. Ioannou P, Sun J (1995) Robust adaptive control. Prentice Hall, Upper Saddle River, 848 pp

    Google Scholar 

  45. Lehrach H for The IT Future of Medicine consortium (2012) A revolution in healthcare: challenges and opportunities for personalized medicine. Pers Med 9(2):105–108

    Google Scholar 

  46. Schiepers C, Dahlbom M (2011) Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging. Eur Radiol 21(3):548–554

    Article  Google Scholar 

  47. Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J (2006) Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 175(5):1605–1612

    Article  Google Scholar 

  48. Ami O, Chabrot P, Rabischong B, Rocas D, Delmas V, Boyer L, Mage G (2010) Tridimensional vector animation from fetal MRI as a simulation of delivery. J Radiol 91(4):515–517

    Article  CAS  Google Scholar 

  49. Holzhütter H-G, Drasdo D, Preusser T, Lippert J, Henney AM (2012) The virtual liver: a multidisciplinary, multilevel challenge for systems biology. WIREs Syst Biol Med. doi:10.1002/wsbm.1158

  50. Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401

    Article  Google Scholar 

  51. Wierling C, Kühn A, Hache H, Daskalaki A, Maschke-Dutz E, Peycheva S, Li J, Herwig R, Lehrach H (2012) Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment. Mutat Res 746(2):163–170

    Google Scholar 

  52. Kühn A, Lehrach H (2012) The “Virtual Patient” system: modeling cancer using deep sequencing technologies for personalized cancer treatment. J Cons Prot Food Safety 7(1):55–62

    Google Scholar 

  53. Hanahan D, Weinberg RA (2000) The hallmarks in cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  54. Hanahan D, Weinberg RA (2011) Hallmarks in cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  55. Friedewald M, Da Costa O (2003) Science and technology roadmapping: ambient intelligence in everyday life (AmI@Life). JRC/IPTS—ESTO Study

    Google Scholar 

  56. Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7(7):112

    Article  Google Scholar 

  57. Swan M (2009) Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health 6(2):492–525

    Article  Google Scholar 

  58. Pilloni V, Atzori L (2011) Deployment of distributed applications in wireless sensor networks. Sensors (Basel, Switzerland) 11(8):7395–7419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hans Lehrach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regierer, B., Zazzu, V., Sudbrak, R., Kühn, A., Lehrach, H., for the ITFoM Consortium. (2013). Future of Medicine: Models in Predictive Diagnostics and Personalized Medicine. In: Seitz, H., Schumacher, S. (eds) Molecular Diagnostics. Advances in Biochemical Engineering/Biotechnology, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_176

Download citation

Publish with us

Policies and ethics