Skip to main content

An Advanced Monitoring Platform for Rational Design of Recombinant Processes

  • Chapter
  • First Online:
Measurement, Monitoring, Modelling and Control of Bioprocesses

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 132))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial neural networks

amu:

Atomic mass unit

CER:

Carbon dioxide evolution rate

CRP:

Catabolite regulation protein

CDM:

Cell dry mass

cAMP:

Cyclic adenosine monophosphate

DC:

Dead cells

EMA:

European medicines agency

GFP:

Green fluorescent protein

ppGpp:

Guanosine tetraphosphate

HCDC:

High-cell-density cultivation

ICH:

International conference on harmonisation

IPTG:

Isopropyl β-D-thiogalactopyranoside

MVDA:

Multivariate data analysis

MS:

Mass spectrometry

NIR:

Near-infrared

OUR:

Oxygen uptake rate

ppmV:

Parts per million volume

pptV:

Parts per trillion volume

PLS:

Partial least squares

PCN:

Plasmid copy number

PTR-MS:

Proton transfer reaction mass spectrometry

QbD:

Quality by design

RBF-NN:

Radial basis function neural network

RT-PCR:

Real-time polymerase chain reaction

RQ:

Respiration quotient

RMSEP:

Root-mean-square error of prediction

SOD:

Superoxide dismutase

TCN:

Total cell number

FDA:

US food and drug administration

VOC:

Volatile organic compound

References

  1. Food and Drug Administration HHS (2009) International conference on harmonisation; guidance on Q8(R1) pharmaceutical development; addition of annex; availability, vol 200974. pp 27325–27326

    Google Scholar 

  2. Kourti T (2006) The process analytical technology initiative and multivariate process analysis, monitoring and control. Anal Bioanal Chem 384:1043–1048

    Article  CAS  Google Scholar 

  3. Sonnleitner B (1997) Bioprocess automation and bioprocess design. J Biotechnol 52:175–179

    Article  CAS  Google Scholar 

  4. Sonnleitner B (2000) Instrumentation of biotechnological processes. Bioanalysis Biosensors Bioprocess Monit 66:1–64

    Google Scholar 

  5. Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85:149–173

    Article  Google Scholar 

  6. Ritzka A, Sosnitza P, Ulber R, Scheper T (1997) Fermentation monitoring and process control. Curr Opin Biotechnol 8:160–164

    Article  CAS  Google Scholar 

  7. Jørgensen P, Pedersen JG, Jensen EP, Esbensen KH (2004) On-line batch fermentation process monitoring (NIR)—introducing ‘biological process time’. J Chemom 18:81–91

    Article  Google Scholar 

  8. Read EK, Shah RB, Riley BS, Park JT, Brorson KA, Rathore AS (2010) Process analytical technology (PAT) for biopharmaceutical products: part II. Concepts and applications. Biotechnol Bioeng 105:285–295

    Article  CAS  Google Scholar 

  9. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44:683–700

    Article  CAS  Google Scholar 

  10. Lindemann C, Marose S, Nielsen HO, Scheper T (1998) 2-Dimensional fluorescence spectroscopy for on-line bioprocess monitoring. Sens Actuators B Chem 51:273–277

    Article  Google Scholar 

  11. Hisiger S, Jolicoeur M (2005) A multiwavelength fluorescence probe: is one probe capable for on-line monitoring of recombinant protein production and biomass activity? J Biotechnol 117:325–336

    Article  CAS  Google Scholar 

  12. Hisiger S, Jolicoeur M (2005) Plant cell culture monitoring using an in situ multiwavelength fluorescence probe. Biotechnol Prog 21:580–589

    Article  CAS  Google Scholar 

  13. Marose S, Lindemann C, Scheper T (1998) Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring. Biotechnol Prog 14:63–74

    Article  CAS  Google Scholar 

  14. Markx GH, ten Hoopen HJ, Meijer JJ, Vinke KL (1991) Dielectric spectroscopy as a novel and convenient tool for the study of the shear sensitivity of plant cells in suspension culture. J Biotechnol 19:145–157

    Article  CAS  Google Scholar 

  15. Noll T, Biselli M (1998) Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J Biotechnol 63:187–198

    Article  CAS  Google Scholar 

  16. Clementschitsch F, Bayer K (2006) Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Fact 5:19

    Article  Google Scholar 

  17. Warth B, Rajkai G, Mandenius CF (2010) Evaluation of software sensors for on-line estimation of culture conditions in an Escherichia coli cultivation expressing a recombinant protein. J Biotechnol 147:37–45

    Article  CAS  Google Scholar 

  18. Schügerl K, Seidel G (1998) Monitoring of the concentration of [beta]-lactam antibiotics and their precursors in complex cultivation media by high-performance liquid chromatography. J Chromatogr A 812:179–189

    Article  Google Scholar 

  19. Pons MN, Engasser JM (1998) Monitoring of alcoholic fed-batch cultures by gas chromatography via a gas-permeable membrane. Anal Chim Acta 213:231–236

    Article  Google Scholar 

  20. Oeggerli A, Heinzle E (1994) On-line exhaust gas analysis of volatiles in fermentation using mass spectrometry. Biotechnol Prog 10:284–290

    Article  CAS  Google Scholar 

  21. Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154:240–247

    Article  CAS  Google Scholar 

  22. Sitton G, Srienc F (2008) Growth dynamics of mammalian cells monitored with automated cell cycle staining and flow cytometry. Cytometry A 73:538–545

    Google Scholar 

  23. Harms P, Kostov Y, Rao G (2002) Bioprocess monitoring. Curr Opin Biotechnol 13:124–127

    Article  CAS  Google Scholar 

  24. Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8:370–383

    Article  CAS  Google Scholar 

  25. Barman TE, Bellamy SR, Gutfreund H, Halford SE, Lionne C (2006) The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique. Cell Mol Life Sci 63:2571–2583

    Article  CAS  Google Scholar 

  26. Luttmann R, Bracewell DG, Cornelissen G, Gernaey KV, Glassey J, Hass VC, Kaiser C, Preusse C, Striedner G, Mandenius CF (2012) Soft sensors in bioprocessing: a status report and recommendations. Biotechnol J 7(8):1040–1048

    Google Scholar 

  27. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  Google Scholar 

  28. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  CAS  Google Scholar 

  29. Diaz Ricci JC, Hernández ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20:79–108

    Article  CAS  Google Scholar 

  30. Hoffmann F, Rinas U (2000) Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Biotechnol Prog 16:1000–1007

    Article  CAS  Google Scholar 

  31. Hoffmann FRU (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng/Biotechnol 89:73–92

    Google Scholar 

  32. Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45

    CAS  Google Scholar 

  33. Kiviharju K, Salonen K, Moilanen U, Eerikäinen T (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J Ind Microbiol Biotechnol 35:657–665

    Article  CAS  Google Scholar 

  34. Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T (2007) On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. J Ind Microbiol Biotechnol 34:561–566

    Article  CAS  Google Scholar 

  35. Sonnleitner B, Locher G, Fiechter A (1992) Biomass determination. J Biotechnol 25:5–22

    Article  CAS  Google Scholar 

  36. Yardley JE, Todd R, Nicholson DJ, Barrett J, Kell DB, Davey CL (2000) Correction of the influence of baseline artefacts and electrode polarisation on dielectric spectra. Bioelectrochemistry 51:53–65

    Article  CAS  Google Scholar 

  37. Yardley JE, Kell DB, Barrett J, Davey CL (2000) On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnol Genet Eng Rev 17:3–35

    Article  CAS  Google Scholar 

  38. Clementschitsch F, Kern J, Pötschacher F, Bayer K (2005) Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 120:183–196

    Article  CAS  Google Scholar 

  39. Weigang F (1987) Off-line Fermentationskontrolle mit Hilfe der High Performance Liquid chromatography. Dissertation, University of Natural Resources and Life Sciences, Vienna

    Google Scholar 

  40. Luchner M, Gutmann R, Bayer K, Dunkl J, Hansel A, Herbig J, Singer W, Strobl F, Winkler K, Striedner G (2012) Implementation of proton transfer reaction-mass spectrometry (PTR-MS) for advanced bioprocess monitoring. Biotechnol Bioeng 224:384–393

    Google Scholar 

  41. Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom 149–150:609–619

    Article  Google Scholar 

  42. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354

    Article  CAS  Google Scholar 

  43. Achmüller C, Kaar W, Ahrer K, Wechner P, Hahn R, Werther F, Schmidinger H, Cserjan-Puschmann M, Clementschitsch F, Striedner G, Bayer K, Jungbauer A, Auer B (2007) N(pro) fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4:1037–1043

    Article  Google Scholar 

  44. Reischer H, Schotola I, Striedner G, Pötschacher F, Bayer K (2004) Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes. J Biotechnol 108:115–125

    Article  CAS  Google Scholar 

  45. Porstmann T, Wietschke R, Schmechta H, Grunow R, Porstmann B, Bleiber R, Pergande M, Stachat S, von Baehr R (1988) A rapid and sensitive enzyme immunoassay for Cu/Zn superoxide dismutase with polyclonal and monoclonal antibodies. Clin Chim Acta 171:1–10

    Article  CAS  Google Scholar 

  46. Kramer W, Elmecker G, Weik R, Mattanovich D, Bayer K (1996) Kinetics studies for the optimization of recombinant protein formation. Ann N Y Acad Sci 782:323–333

    Article  CAS  Google Scholar 

  47. Dürrschmid K, Marzban G, Dürrschmid E, Striedner G, Clementschitsch F, Cserjan-Puschmann M, Bayer K (2003) Monitoring of protein profiles for the optimization of recombinant fermentation processes using public domain databases. Electrophoresis 24:303–310

    Google Scholar 

  48. Dürrschmid K (2006) Application of transcriptome and proteome profiling for accelerated process optimization of E.coli host/vector systems. University of natural resources and life sciences, Vienna

    Google Scholar 

  49. Breuer S, Marzban G, Cserjan-Puschman M, Dürrschmid E, Bayer K (1998) Off-line quantitative monitoring of plasmid copy number in bacterial fermentation by capillary electrophoresis. Electrophoresis 19:2474–2478

    Article  CAS  Google Scholar 

  50. Dürrschmid K, Reischer H, Schmidt-Heck W, Hrebicek T, Guthke R, Rizzi A, Bayer K (2008) Monitoring of transcriptome and proteome profiles to investigate the cellular response of E. coli towards recombinant protein expression under defined chemostat conditions. J Biotechnol 135:34–44

    Article  Google Scholar 

  51. Cserjan-Puschmann M, Kramer W, Duerrschmid E, Striedner G, Bayer K (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. Appl Microbiol Biotechnol 53:43–50

    Article  CAS  Google Scholar 

  52. Mairhofer J, Cserjan-Puschmann M, Striedner G, Nöbauer K, Razzazi-Fazeli E, Grabherr R (2010) Marker-free plasmids for gene therapeutic applications—lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol 146:130–137

    Article  CAS  Google Scholar 

  53. Leparc GG, Tüchler T, Striedner G, Bayer K, Sykacek P, Hofacker IL, Kreil DP (2009) Model-based probe set optimization for high-performance microarrays. Nucleic Acids Res 37:e18

    Article  Google Scholar 

  54. Rustici G, Kapushesky M, Kolesnikov N, Parkinson H, Sarkans U, Brazma A (2008) Data storage and analysis in ArrayExpress and Expression Profiler. Curr Protoc Bioinformatics Chapter 7:Unit 7.13

    Google Scholar 

  55. Scharl T, Striedner G, Pötschacher F, Leisch F, Bayer K (2009) Interactive visualization of clusters in microarray data: an efficient tool for improved metabolic analysis of E. coli. Microb Cell Fact 8:37

    Article  Google Scholar 

  56. Nemecek S, Marisch K, Juric R, Bayer K (2008) Design of transcriptional fusions of stress sensitive promoters and GFP to monitor the overburden of Escherichia coli hosts during recombinant protein production. Bioprocess Biosyst Eng 31:47–53

    Article  CAS  Google Scholar 

  57. Mandenius C-F (2004) Recent developments in the monitoring, modeling and control of biological production systems. Bioprocess Biosyst Eng 26:347–351

    Article  CAS  Google Scholar 

  58. Striedner G, Cserjan-Puschmann M, Pötschacher F, Bayer K (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog 19:1427–1432

    Article  CAS  Google Scholar 

  59. Lin-Chao S, Wong TT, McDowall KJ, Cohen SN (1994) Effects of nucleotide sequence on the specificity of rne-dependent and RNase E-mediated cleavages of RNA I encoded by the pBR322 plasmid. J Biol Chem 269:10797–10803

    CAS  Google Scholar 

  60. Merlin S, Polisky B (1995) Assessment of quantitative models for plasmid ColE1 copy number control. J Mol Biol 248:211–219

    CAS  Google Scholar 

  61. Tomizawa J (1990) Control of ColE1 plasmid replication. Interaction of Rom protein with an unstable complex formed by RNA I and RNA II. J Mol Biol 212:695–708

    Article  CAS  Google Scholar 

  62. Tomizawa J (1990) Control of ColE1 plasmid replication. Intermediates in the binding of RNA I and RNA II. J Mol Biol 212:683–694

    Article  CAS  Google Scholar 

  63. Wróbel B, Wegrzyn G (1998) Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli. Plasmid 39:48–62

    Article  Google Scholar 

  64. Yavachev L, Ivanov I (1988) What does the homology between E. coli tRNAs and RNAs controlling ColE1 plasmid replication mean? J Theor Biol 131:235–241

    Article  CAS  Google Scholar 

  65. Grabherr R, Nilsson E, Striedner G, Bayer K (2002) Stabilizing plasmid copy number to improve recombinant protein production. Biotechnol Bioeng 77:142–147

    Article  CAS  Google Scholar 

  66. Striedner G, Pfaffenzeller I, Markus L, Nemecek S, Grabherr R, Bayer K (2010) Plasmid-free T7-based Escherichia coli expression systems. Biotechnol Bioeng 105:786–794

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Striedner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Striedner, G., Bayer, K. (2012). An Advanced Monitoring Platform for Rational Design of Recombinant Processes. In: Mandenius, CF., Titchener-Hooker, N. (eds) Measurement, Monitoring, Modelling and Control of Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_169

Download citation

Publish with us

Policies and ethics