Skip to main content

General Principles for the Regeneration of Bone and Cartilage

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 130))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi YA, Kim DK, Bang OS, Kang SS, Jin EJ (2010) Secretory phospholipase A2 promotes MMP-9-mediated cell death by degrading type I collagen via the ERK pathway at an early stage of chondrogenesis. Biol Cell/under Auspices Europ Cell Biol Organ 102:107–19

    CAS  Google Scholar 

  2. Widuchowski W, Widuchowski J, Faltus R et al (2011) Long-term clinical and radiological assessment of untreated severe cartilage damage in the knee: a natural history study. Scand J Med Sci Sports 21:106–10

    Article  CAS  Google Scholar 

  3. Cain EL, Clancy WG (2001) Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 20:321–42

    Article  CAS  Google Scholar 

  4. Salzmann GM, Niemeyer P, Steinwachs M, Kreuz PC, Sudkamp NP, Mayr HO (2011) Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg 131:283–91

    Article  Google Scholar 

  5. Hollister SJ (2009) Scaffold engineering: a bridge to where? Biofabrication 1:012001

    Article  Google Scholar 

  6. Jager M, Herten M, Fochtmann U et al (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29:173–80

    Article  Google Scholar 

  7. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept–open questions. Injury 39(Suppl 2):S5–8

    Article  Google Scholar 

  8. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–6

    Article  Google Scholar 

  9. Schmidmaier G, Schwabe P, Strobel C, Wildemann B (2008) Carrier systems and application of growth factors in orthopaedics. Injury 39(Suppl 2):S37–43

    Article  Google Scholar 

  10. Brighton CT, Hunt RM (1991) Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am Vol 73:832–47

    CAS  Google Scholar 

  11. Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G (2011) Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A 17:311–21

    Article  Google Scholar 

  12. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Molec Ther J Am Soc Gene Ther 18:1026–34

    Article  CAS  Google Scholar 

  13. Gil-Albarova J, Salinas AJ, Bueno-Lozano AL et al (2005) The in vivo behaviour of a sol-gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials 26:4374–82

    Article  CAS  Google Scholar 

  14. Vaccaro AR (2002) The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 25:s571–8

    Google Scholar 

  15. Schwartz Z, Hyzy SL, Moore MA et al (2011) Osteoinductivity of demineralized bone matrix is independent of donor bisphosphonate use. J Bone Joint Surg Am Vol 93:2278–86

    Article  Google Scholar 

  16. Pietrzak WS, Dow M, Gomez J, Soulvie M, Tsiagalis G (2011) The in vitro elution of BMP-7 from demineralized bone matrix. Cell and tissue banking 2011

    Google Scholar 

  17. Gorschewsky O, Browa A, Vogel U, Stauffer E (2002) Klinisch-histologischer Vergleich des allogenen und autologen Patellarsehnendrittels (Bone-Tendon-Bone) zur Rekonstruktion des vorderen Kreuzbands. Unfallchirurg 105:703–14

    Article  CAS  Google Scholar 

  18. Tadic D, Epple M (2004) A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25:987–94

    Article  CAS  Google Scholar 

  19. Sutton JM, Dickinson J, Walker JT, Raven ND (2006) Methods to minimize the risks of Creutzfeldt-Jakob disease transmission by surgical procedures: where to set the standard? Clin Infect Dis Official Publ Infect Dis Soc America 43:757–64

    Article  Google Scholar 

  20. Dehoux E, Madi K, Fourati E, Mensa C, Segal P (2005) Valgisation tibiale par ouverture mediale utilisant un coin de ceramique de phosphate tricalcique: a propos de 70 cas revus avec un recul moyen de 18 mois. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur 91:143–8

    Article  CAS  Google Scholar 

  21. Bucholz RW (2002) Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res 395:44–52

    Google Scholar 

  22. Giannoni P, Mastrogiacomo M, Alini M et al (2008) Regeneration of large bone defects in sheep using bone marrow stromal cells. J Tissue Eng Regen Med 2:253–62

    Article  CAS  Google Scholar 

  23. Cancedda R, Giannoni P, Mastrogiacomo M (2007) A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 28:4240–50

    Article  CAS  Google Scholar 

  24. Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17:459–74

    Article  Google Scholar 

  25. Augat P, Merk J, Ignatius A, et al. (1996) Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop Relat Res 328:194–202

    Google Scholar 

  26. Claes L, Reusch M, Gockelmann M et al (2011) Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J Orthop Res 29:425–32

    Article  Google Scholar 

  27. Stavropoulos A, Kostopoulos L, Mardas N, Karring T (2003) Influence of demineralized bone matrix’s embryonic origin on bone formation: an experimental study in rats. Clin Implant Dent Relat Res 5:184–92

    Article  Google Scholar 

  28. Hente R, Fuchtmeier B, Schlegel U, Ernstberger A, Perren SM (2004) The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res 22:709–15

    Article  CAS  Google Scholar 

  29. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. NEnglJMed 344:385–6

    Article  CAS  Google Scholar 

  30. Marcacci M, Kon E, Moukhachev V et al (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13:947–55

    Article  CAS  Google Scholar 

  31. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing–an update. Injury 38(Suppl 1):S3–10

    Article  Google Scholar 

  32. Friedlaender GE (2001) OP-1 clinical studies. J Bone Joint Surg Am 83(A Suppl 1):S160–161

    Google Scholar 

  33. Friedlaender GE, Perry CR, Cole JD, et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83(A Suppl 1):S151–158

    Google Scholar 

  34. Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. The journal of clinical endocrinology and metabolism 2012

    Google Scholar 

  35. Hesse E, Kluge G, Atfi A et al (2010) Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone 46:1457–63

    Article  Google Scholar 

  36. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. The Orthop Clinic North America 41:27–37. Table of contents

    Google Scholar 

  37. Klaue K, Knothe U, Anton C et al (2009) Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 40(Suppl 4):S95–102

    Article  Google Scholar 

  38. Jager M, Westhoff B, Wild A, Krauspe R (2005) Knochenspanentnahme am Becken. Techniken und Probleme. Der Orthopade 34:976–982, 84, 86–90, 92–94

    Google Scholar 

  39. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends MolMed 7:259–64

    Article  CAS  Google Scholar 

  40. Jager M, Hernigou P, Zilkens C et al (2010) Cell therapy in bone healing disorders. Orthop Rev 2:e20

    Article  Google Scholar 

  41. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    Google Scholar 

  42. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 87:896–902

    Article  CAS  Google Scholar 

  43. Gobbi A (2012) One-step full-thickness knee chondral lesions repair with BMAC and collagen matrix. In: Annual meeting of the AAOS, San Francisco

    Google Scholar 

  44. Lacitignola L, Crovace A, Rossi G, Francioso E (2008) Cell therapy for tendinitis, experimental and clinical report. Vet Res Commun 32(Suppl 1):S33–8

    Article  Google Scholar 

  45. Cooper K, Viswanathan C (2011) Establishment of a mesenchymal stem cell bank. Stem Cells Int 2011:905621

    Article  Google Scholar 

  46. Colnot C (2011) Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev 17:449–57

    Article  CAS  Google Scholar 

  47. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–37

    Article  CAS  Google Scholar 

  48. Rucker M, Laschke MW, Junker D et al (2008) Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. J Biomed Mater Res A 86:1002–11

    Article  Google Scholar 

  49. Holtorf HL, Jansen JA, Mikos AG (2005) Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Biomaterials 26:6208–16

    Article  CAS  Google Scholar 

  50. Kandziora F, Schmidmaier G, Schollmeier G, et al. (2002) IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine. Spine (Phila Pa 1976) 27:1710–1723

    Google Scholar 

  51. Jagodzinski M, Breitbart A, Haasper C, Hankemeier S, Hurschler C, Zeichen J (2006) Effects of cyclic compression and perfusion on bone marrow stromal cells in a three dimensional matrix-bioreactor system. In: 2006 2006/10/03/; 70th annual meeting of the german trauma society, Berlin

    Google Scholar 

  52. Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS (2005) Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol 31:703–8

    Article  Google Scholar 

  53. Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ (2010) High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med 42:510–8

    Article  Google Scholar 

  54. Jagodzinski M, Breitbart A, Wehmeier M et al (2008) Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech 41:1885–91

    Article  CAS  Google Scholar 

  55. Altman GH, Horan RL, Martin I et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–2

    CAS  Google Scholar 

  56. Jagodzinski M, Berding G, Baillot G, Liodakis E, Knobloch K, Krettek C (2012) Therapie von Segmentdefekten der Röhrenknochen mit Stammzellkonzentraten: Eine klinische und nuklearmedizinische Analyse. In: Deutscher Kongress für Orthopädie und Unfallchirurgie. Berlin

    Google Scholar 

  57. Schieker M, Heiss C, Mutschler W (2008) Knochenersatzmaterialien. Unfallchirurg 111:613–619. quiz 20

    Google Scholar 

  58. Caplan AI (1991) Mesenchymal Stem Cells. J Orthop Res 9:641–50

    Article  CAS  Google Scholar 

  59. Yoo JU, Barthel TS, Nishimura K et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. JBone Joint SurgAm 80:1745–57

    CAS  Google Scholar 

  60. Malgieri A, Kantzari E, Patrizi MP, Gambardella S (2010) Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med, In, pp 248–69

    Google Scholar 

  61. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. ExpCell Res 238:265–72

    Article  CAS  Google Scholar 

  62. Nöth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol, In, pp 371–80

    Google Scholar 

  63. Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M (2008) Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39(Suppl 1):S66–76

    Article  Google Scholar 

  64. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7

    Article  CAS  Google Scholar 

  65. Indrawattana N, Chen G, Tadokoro M et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–9

    Article  CAS  Google Scholar 

  66. Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. OsteoarthritisCartilage 13:527–36

    CAS  Google Scholar 

  67. Stevens MM, Marini RP, Martin I, Langer R, Prasad SV (2004) FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis. J Orthop Res 22:1114–9

    Article  CAS  Google Scholar 

  68. Anders S (2011) AMIC versis ACT: Gibt es einen Unterschied im funkitonellen Ergebnis? In: Lunchsymposium im Rahmen des 28 Kongresses der Deutschsprachigen Arbeitsgemeinschaft für Arthroskopie (AGA), Thieme, Regensburg

    Google Scholar 

  69. Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32

    Google Scholar 

  70. Knutsen G, Drogset JO, Engebretsen L et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–12

    Article  Google Scholar 

  71. Knutsen G, Engebretsen L, Ludvigsen TC et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86A:455–464

    Google Scholar 

  72. Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M (2009) Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 37:33–41

    Article  Google Scholar 

  73. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37:2053–63

    Article  Google Scholar 

  74. Pascual-Garrido C, Slabaugh MA, L’Heureux DR, Friel NA, Cole BJ (2009) Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am J Sports Med 37(Suppl 1):33S–41S

    Article  Google Scholar 

  75. Schneider U, Rackwitz L, Andereya S et al (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39:2558–65

    Article  Google Scholar 

  76. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–84

    Article  Google Scholar 

  77. de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P (2010) Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. In: Injury, pp 1172–1177

    Google Scholar 

  78. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–55

    Article  CAS  Google Scholar 

  79. Angele P, Yoo JU, Smith C et al (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–7

    Article  CAS  Google Scholar 

  80. Madry H, Cucchiarini M (2011) Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J 52(3):245–261

    Google Scholar 

  81. Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R, et al. (2005) Gene transfer to human joints: progress toward a gene therapy of arthritis. G Proc Natl Acad Sci U S A 102:8698–8703

    Google Scholar 

  82. Kon E, Filardo G, Delcogliano M et al (2009) Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper’s knee. Injury 40:598–603

    Article  Google Scholar 

  83. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell transplantation 13:595–600

    Article  Google Scholar 

  84. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil/OARS Osteoarthr Res Soc 10:199–206

    Article  CAS  Google Scholar 

  85. Schnettler R, Dingeldein E, Herr G (1998) Defektaufbau mit demineralisierter Knochenmatrix. Experimentelle Untersuchungen beim Minischwein. Der Orthopade 27:80–8

    CAS  Google Scholar 

  86. Acharya NK, Kumar RJ, Varma HK, Menon VK (2008) Hydroxyapatite-bioactive glass ceramic composite as stand-alone graft substitute for posterolateral fusion of lumbar spine: a prospective, matched, and controlled study. J Spinal Disord Tech 21:106–11

    Article  Google Scholar 

  87. Kasten P, Luginbuhl R, Vogel J et al (2004) Induktion von Knochengewebe auf unterschiedlichen Matrizes: Eine In vitro- und In vivo-Pilotstudie in der SCID Maus. Zeitschrift fur Orthopadie und ihre Grenzgebiete 142:467–75

    Article  CAS  Google Scholar 

  88. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: a harmony of optimal biology and optimal fixation? Injury 38(Suppl 4):S1–2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Jagodzinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 2013

About this chapter

Cite this chapter

Jagodzinski, M., Haasper, C. (2012). General Principles for the Regeneration of Bone and Cartilage. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_145

Download citation

Publish with us

Policies and ethics