Skip to main content

Migratory Properties of Mesenchymal Stem Cells

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 129))

Abstract

Mesenchymal stem cells raise great expectations in regenerative medicine due to their capacity to regenerate damaged tissues, thereby restoring organ tissue integrity and functionality. Even though it is not yet clear how mesenchymal stem cells are guided to injured tissue it is generally assumed that the directed migration of these cells is facilitated by the same soluble factors that also recruit immune competent cells to inflamed tissue areas. Tumor tissue represents another type of (chronically) inflamed tissue and because of that mesenchymal stem cells are highly attracted. Although some data indicate that esenchymal stem cells might have a beneficial effect on tumor growth due to anti-tumor effects the plethora of data suggest that tumor tissue recruited mesenchymal stem cells rather promote tumor growth and metastasis formation. Nonetheless, the enhanced tumor tropism of mesenchymal stem cells makes them ideal candidates for novel anti-cancer strategies. Like Trojan Horses genetically modified mesenchymal stem cells will deliver their deadly cargo, such as anti-tumor cytokines or oncolytic viruses, into cancerous tissues, thereby destroying the tumor form within. In this chapter we will summarize the current concepts of genetic modification of mesenchymal stem cells for future anti-cancer therapies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranwal S, Alahari SK (2009) Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 384:6–11

    Article  CAS  Google Scholar 

  2. Guarino M (2007) Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 39:2153–2160

    Article  CAS  Google Scholar 

  3. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

    Article  CAS  Google Scholar 

  4. Savagner P (2010) The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol 21(Suppl 7):vii89–92

    Google Scholar 

  5. Al Saleh S, Sharaf LH, Luqmani YA (2011) Signalling pathways involved in endocrine resistance in breast cancer and associations with epithelial to mesenchymal transition (Review). Int J Oncol 38:1197–1217

    Google Scholar 

  6. Voss MJ, Moller MF, Powe DG, Niggemann B, Zanker KS, Entschladen F (2011) Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism. BMC Cancer 11:158

    Article  CAS  Google Scholar 

  7. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4:e6146

    Article  CAS  Google Scholar 

  8. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544

    Article  CAS  Google Scholar 

  9. Chen MH, Yip GW, Tse GM, Moriya T, Lui PC, Zin ML, Bay BH, Tan PH (2008) Expression of basal keratins and vimentin in breast cancers of young women correlates with adverse pathologic parameters. Mod Pathol 21:1183–1191

    Article  CAS  Google Scholar 

  10. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, Bertucci F (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284

    Article  CAS  Google Scholar 

  11. Agelopoulos K, Greve B, Schmidt H, Pospisil H, Kurtz S, Bartkowiak K, Andreas A, Wieczorek M, Korsching E, Buerger H, Brandt B (2010) Selective regain of egfr gene copies in CD44 +/CD24-/low breast cancer cellular model MDA-MB-468. BMC Cancer 10:78

    Article  CAS  Google Scholar 

  12. Bartkowiak K, Wieczorek M, Buck F, Harder S, Moldenhauer J, Effenberger KE, Pantel K, Peter-Katalinic J, Brandt BH (2009) Two-dimensional differential gel electrophoresis of a cell line derived from a breast cancer micrometastasis revealed a stem/progenitor cell protein profile. J Proteome Res 8:2004–2014

    Article  CAS  Google Scholar 

  13. Iorns E, Hnatyszyn HJ, Seo P, Clarke J, Ward T, Lippman M (2010) The role of SATB1 in breast cancer pathogenesis. J Natl Cancer Inst 102:1284–1296

    Article  CAS  Google Scholar 

  14. Shankar S, Davis R, Singh KP, Kurzrock R, Ross DD, Srivastava RK (2009) Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice. Mol Cancer Ther 8:1596–1605

    Article  CAS  Google Scholar 

  15. Xu HN, Nioka S, Glickson JD, Chance B, Li LZ (2010) Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J Biomed Opt 15:036010

    Article  CAS  Google Scholar 

  16. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180:2581–2587

    CAS  Google Scholar 

  17. Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR (2010) Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 14:1494–1508

    Article  Google Scholar 

  18. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  CAS  Google Scholar 

  19. Stagg J, Pommey S (2009) Properties of mesenchymal stem cells to consider for cancer cell therapy. In: Dittmar T, Zänker KS (eds) Stem cell biology in health and disease. Springer, Dordrecht, The netherlands, pp 79–100

    Chapter  Google Scholar 

  20. Uchida D, Begum NM, Almofti A, Nakashiro K, Kawamata H, Tateishi Y, Hamakawa H, Yoshida H, Sato M (2003) Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res 290:289–302

    Article  CAS  Google Scholar 

  21. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  Google Scholar 

  22. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–738

    Article  CAS  Google Scholar 

  23. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  Google Scholar 

  24. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  Google Scholar 

  25. Dittmar T, Zänker KS, Schmidt A (eds.) (2006) Infection and inflammation: impacts on oncogenesis. In: Schmidt A, Herwald H (ed.) Contributions to microbiology. vol. 13, Karger, Basel

    Google Scholar 

  26. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  Google Scholar 

  27. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264

    Article  CAS  Google Scholar 

  28. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  CAS  Google Scholar 

  29. Kassmer SH, Niggemann B, Punzel M, Mieck C, Zanker KS, Dittmar T (2008) Cytokine combinations differentially influence the SDF-1alpha-dependent migratory activity of cultivated murine hematopoietic stem and progenitor cells. Biological Chem 389:863–872

    CAS  Google Scholar 

  30. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  CAS  Google Scholar 

  31. Karp JM (2009) Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  CAS  Google Scholar 

  32. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  CAS  Google Scholar 

  33. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    Article  CAS  Google Scholar 

  34. Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2:566–575

    Article  CAS  Google Scholar 

  35. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O’Brien T, Kerin MJ (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13:5020–5027

    Article  CAS  Google Scholar 

  36. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67:11687–11695

    Article  CAS  Google Scholar 

  37. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, Straube A (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83:241–247

    Article  CAS  Google Scholar 

  38. Zielske SP, Livant DL, Lawrence TS (2009) Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys 75:843–853

    Article  CAS  Google Scholar 

  39. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C, Sittinger M (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101:135–146

    Article  CAS  Google Scholar 

  40. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS, Chang JW, Oh W, Jeun SS (2010) Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28:2217–2228

    Article  Google Scholar 

  41. Li Y, Yu X, Lin S, Li X, Zhang S, Song YH (2007) Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 356:780–784

    Article  CAS  Google Scholar 

  42. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745

    Article  CAS  Google Scholar 

  43. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  Google Scholar 

  44. Ling X, Marini F, Konopleva M, Schober W, Shi Y, Burks J, Clise-Dwyer K, Wang RY, Zhang W, Yuan X, Lu H, Caldwell L, Andreeff M (2010) Mesenchymal Stem Cells Overexpressing IFN-beta Inhibit Breast Cancer Growth and Metastases through Stat3 Signaling in a Syngeneic Tumor Model. Cancer Microenviron 3:83–95

    Article  CAS  Google Scholar 

  45. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11:7749–7756

    Article  CAS  Google Scholar 

  46. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Nat Acad Sci USA 106:4822–4827

    Article  CAS  Google Scholar 

  47. Doucette T, Rao G, Yang Y, Gumin J, Shinojima N, Bekele BN, Qiao W, Zhang W, Lang FF (2011) Mesenchymal stem cells display tumor-specific tropism in an RCAS/Ntv-a glioma model. Neoplasia 13:716–725

    CAS  Google Scholar 

  48. Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV, Lesniak MS (2011) A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 8:1559–1572

    Article  CAS  Google Scholar 

  49. Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69:4134–4142

    Article  CAS  Google Scholar 

  50. Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, Ponnazhagan S (2008) Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther 15:1446–1453

    Article  CAS  Google Scholar 

  51. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18:500–507

    Article  CAS  Google Scholar 

  52. Qiao L, Zhao TJ, Wang FZ, Shan CL, Ye LH, Zhang XD (2008) NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol Sin 29:333–340

    Article  CAS  Google Scholar 

  53. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269:67–77

    Article  CAS  Google Scholar 

  54. Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C, Li SF, Long D, Tan WD, Mao YQ, Zhang J, Li YP, Cheng JQ (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7:245–251

    Article  CAS  Google Scholar 

  55. Li L, Tian H, Chen Z, Yue W, Li S, Li W (2011) Inhibition of lung cancer cell proliferation mediated by human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43:143–148

    Article  CAS  Google Scholar 

  56. Tian LL, Yue W, Zhu F, Li S, Li W (2011) Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 226:1860–1867

    Article  CAS  Google Scholar 

  57. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  CAS  Google Scholar 

  58. Rhodes LV, Muir SE, Elliott S, Guillot LM, Antoon JW, Penfornis P, Tilghman SL, Salvo VA, Fonseca JP, Lacey MR, Beckman BS, McLachlan JA, Rowan BG, Pochampally R, Burow ME (2010) Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat 121:293–300

    Article  CAS  Google Scholar 

  59. Rhodes LV, Antoon JW, Muir SE, Elliott S, Beckman BS, Burow ME (2010) Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Molecular Cancer 9:295

    Article  CAS  Google Scholar 

  60. De Giorgi U, Cohen EN, Gao H, Mego M, Lee BN, Lodhi A, Cristofanilli M, Lucci A, Reuben JM (2011) Mesenchymal stem cells expressing GD2 and CD271 correlate with breast cancer-initiating cells in bone marrow. Cancer Biol Ther 11:812–815

    Article  CAS  Google Scholar 

  61. Comsa S, Ciuculescu F (2012) Raica M. Mesenchymal stem cell-tumor cell cooperation in breast cancer vasculogenesis, Mol Med Report

    Google Scholar 

  62. Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281:32–41

    Article  CAS  Google Scholar 

  63. Tsukamoto S, Honoki K, Fujii H, Tohma Y, Kido A, Mori T, Tsujiuchi T, Tanaka Y (2012) Mesenchymal stem cells promote tumor engraftment and metastatic colonization in rat osteosarcoma model. Int J Oncol 40:163–169

    CAS  Google Scholar 

  64. Mohseny AB, Szuhai K, Romeo S, Buddingh EP (2009) Briaire-de Bruijn I, de Jong D, van Pel M, Cleton-Jansen AM, Hogendoorn PC. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. Journal of Pathology 219:294–305

    Article  CAS  Google Scholar 

  65. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039

    CAS  Google Scholar 

  66. Dittmar T, Nagler C, Niggemann B, Zänker KS (2012) The dark side of stem cells: triggering cancer progression by cell fusion. Current molecular medicine 2012. Accepted

    Google Scholar 

  67. Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zanker KS (2009) Recurrence cancer stem cells–made by cell fusion? Med Hypotheses 73:542–547

    Article  CAS  Google Scholar 

  68. Dittmar T, Zänker KS (2011) Cell Fusion in health and disease. Advances in experimental medicine and biology, vol. 1. Cohen IR et al. (ed.) Springer, Dordrecht, The Netherlands

    Google Scholar 

  69. Wang Y, Fan H, Zhou B, Ju Z, Yu L, Guo L, Han J, Lu S (2012) Fusion of human umbilical cord mesenchymal stem cells with esophageal cells. Int J Oncol 40:370–377

    CAS  Google Scholar 

  70. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25:371–379

    Google Scholar 

  71. Foudah D, Redaelli S, Donzelli E, Bentivegna A, Miloso M, Dalpra L, Tredici G (2009) Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Res 17:1025–1039

    Article  CAS  Google Scholar 

  72. Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, Kim DW, Yoon YS (2011) Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 108:1340–1347

    Article  CAS  Google Scholar 

  73. Grimm W-D, Arnold WH, Becher S, Dannan A, Gassmann G, Philippou S, Dittmar T, Varga G (2009) Does the chronically inflamed periodontium harbour cancer stem cells? In: Dittmar T, Zänker KS (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht, The Netherlands, pp 251–280

    Chapter  Google Scholar 

  74. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  Google Scholar 

  75. Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 41:909–922

    Article  CAS  Google Scholar 

  76. Poloni A, Maurizi G, Babini L, Serrani F, Berardinelli E, Mancini S, Costantini B, Discepoli G, Leoni P (2011) Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant 20:643–654

    Article  Google Scholar 

  77. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97:744–754

    Article  CAS  Google Scholar 

  78. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  Google Scholar 

  79. Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–16

    Article  CAS  Google Scholar 

  80. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  Google Scholar 

  81. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    CAS  Google Scholar 

  82. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    Article  CAS  Google Scholar 

  83. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65:3307–3318

    CAS  Google Scholar 

  84. Bitsika V, Roubelakis MG, Zagoura D, Trohatou O, Makridakis M, Pappa KI, Marini FC, Vlahou A, Anagnou NP (2011) Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. stem cells and development 2011

    Google Scholar 

  85. Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608

    Article  CAS  Google Scholar 

  86. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, Bizen A, Honmou O, Niitsu Y, Hamada H (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11:1155–1164

    Article  CAS  Google Scholar 

  87. Elzaouk L, Moelling K, Pavlovic J (2006) Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 15:865–874

    Article  CAS  Google Scholar 

  88. Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, Kan B, Du L, Wang B, Wei Y, Liu Y, Zhao X (2008) A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 16:749–756

    Article  CAS  Google Scholar 

  89. Eliopoulos N, Francois M, Boivin MN, Martineau D, Galipeau J (2008) Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68:4810–4818

    Article  CAS  Google Scholar 

  90. Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87:3877–3882

    CAS  Google Scholar 

  91. Sgadari C, Angiolillo AL, Cherney BW, Pike SE, Farber JM, Koniaris LG, Vanguri P, Burd PR, Sheikh N, Gupta G, Teruya-Feldstein J, Tosato G (1996) Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Nat Acad Sci USA 93:13791–13796

    Article  CAS  Google Scholar 

  92. Ryu CH, Park SH, Park SA, Kim SM, Lim JY, Jeong CH, Yoon WS, Oh WI, Sung YC, Jeun SS (2011) Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22:733–743

    Article  CAS  Google Scholar 

  93. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Nat Acad Sci USA 100:15178–15183

    Article  CAS  Google Scholar 

  94. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  Google Scholar 

  95. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  Google Scholar 

  96. Huff CA, Matsui W, Smith BD, Jones RJ (2006) The paradox of response and survival in cancer therapeutics. Blood 107:431–434

    Article  CAS  Google Scholar 

  97. Nagler C, Zanker KS, Dittmar T (2011) Cell Fusion, Drug Resistance and Recurrence CSCs. Adv Exp Med Biol 714:173–182

    Article  CAS  Google Scholar 

  98. Tang C, Ang BT, Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. FASEB J 21:3777–3785

    Article  CAS  Google Scholar 

  99. Goncalves MA, de Vries AA (2006) Adenovirus: from foe to friend. Rev Med Virol 16:167–186

    Article  CAS  Google Scholar 

  100. Goncalves MA, Holkers M, van Nierop GP, Wieringa R, Pau MG, de Vries AA (2008) Targeted chromosomal insertion of large DNA into the human genome by a fiber-modified high-capacity adenovirus-based vector system. PLoS One 3:e3084

    Article  CAS  Google Scholar 

  101. Jager L, Ehrhardt A (2007) Emerging adenoviral vectors for stable correction of genetic disorders. Curr Gene Ther 7:272–283

    Article  CAS  Google Scholar 

  102. Goncalves MA (2005) Adeno-associated virus: from defective virus to effective vector. Virol J 2:43

    Article  CAS  Google Scholar 

  103. Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22:649–657

    Article  CAS  Google Scholar 

  104. Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B, Schmidt M, von Kalle C, Howe S, Thrasher AJ, Aiuti A, Ferrari G, Recchia A, Mavilio F (2007) Hot spots of retroviral integration in human CD34 + hematopoietic cells. Blood 110:1770–1778

    Article  CAS  Google Scholar 

  105. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C (2006) Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, Naldini L. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  Google Scholar 

  106. Kinoshita Y, Kamitani H, Mamun MH, Wasita B, Kazuki Y, Hiratsuka M, Oshimura M, Watanabe T (2010) A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol Res 32:429–437

    Article  Google Scholar 

  107. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science 274:373–376

    Article  CAS  Google Scholar 

  108. Xia X, Ji T, Chen P, Li X, Fang Y, Gao Q, Liao S, You L, Xu H, Ma Q, Wu P, Hu W, Wu M, Cao L, Li K, Weng Y, Han Z, Wei J, Liu R, Wang S, Xu G, Wang D, Zhou J, Ma D (2011) Mesenchymal stem cells as carriers and amplifiers in CRAd delivery to tumors. Molecular Cancer 10:134

    Article  CAS  Google Scholar 

  109. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS (2008) Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26:831–841

    Article  CAS  Google Scholar 

  110. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT (2007) Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105:157–167

    Article  Google Scholar 

  111. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5:755–766

    Article  CAS  Google Scholar 

  112. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, Bogler O, Andreeff M, Lang FF (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 69:8932–8940

    Article  CAS  Google Scholar 

  113. Garcia-Castro J, Alemany R, Cascallo M, Martinez-Quintanilla J, Arriero Mdel M, Lassaletta A, Madero L, Ramirez M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Therapy 17:476–483

    Google Scholar 

Download references

Acknowledgments

T.D. and F.E. are supported by the Fritz Bender Foundation, Munich (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dittmar, T., Entschladen, F. (2012). Migratory Properties of Mesenchymal Stem Cells. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_144

Download citation

Publish with us

Policies and ethics