Skip to main content

Proteomics Approaches in the Identification of Molecular Signatures of Mesenchymal Stem Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 129))

Abstract

Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xiao Y, Mareddy S, Crawford R (2010) Clonal characterization of bone marrow derived stem cells and their application for bone regeneration. Int J Oral Sci 2(3):127–135

    Google Scholar 

  2. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells–a critical review. APMIS 113(11–12):831–844

    Article  Google Scholar 

  3. Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R (2003) Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 249:133–143; discussion 43–47, 70–74, 239–241

    Google Scholar 

  4. Wu C, Zhang Y, Fan W, Ke X, Hu X, Zhou Y et al (2011) Casio microstructure modulating the in vitro and in vivo bioactivity of poly(lactide-co-glycolide) microspheres. J Biomed Mater Res A 98(1):122–131

    Google Scholar 

  5. Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y (2011) A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physicochemistry and in vivo osteogenesis. Acta Biomater 7(5):2229–2236

    Article  CAS  Google Scholar 

  6. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21(9):1045–1056

    Article  CAS  Google Scholar 

  7. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  CAS  Google Scholar 

  8. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314(9):1937–1944

    Article  CAS  Google Scholar 

  9. Sensebe L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87(9 Suppl):S49–S53

    Article  Google Scholar 

  10. Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7(3):560–568

    Article  CAS  Google Scholar 

  11. Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21(10):1226–1238

    Article  CAS  Google Scholar 

  12. Scott MA, Nguyen VT, Levi B, James AW (2011) Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 20(10):1793–1804

    Article  CAS  Google Scholar 

  13. Heino TJ, Hentunen TA (2008) Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr Stem Cell Res Ther 3(2):131–145

    Article  CAS  Google Scholar 

  14. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  15. Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R et al (2010) Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification. J Biomed Mater Res A 95(2):476–485

    Google Scholar 

  16. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J et al (2012) Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33(7):2076–2085

    Article  CAS  Google Scholar 

  17. Zhang Y, Fan W, Nothdurft L, Wu C, Zhou Y, Crawford R et al (2011) In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C Methods 17(8):789–797

    Article  CAS  Google Scholar 

  18. Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L et al (2007) VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41(4):516–522

    Article  CAS  Google Scholar 

  19. Lane CS (2005) Mass spectrometry-based proteomics in the life sciences. Cell Mol Life Sci 62(7–8):848–869

    Article  CAS  Google Scholar 

  20. Hause RJ, Kim HD, Leung KK, Jones RB (2011) Targeted protein-omic methods are bridging the gap between proteomic and hypothesis-driven protein analysis approaches. Expert Rev Proteomic 8(5):565–575

    Article  CAS  Google Scholar 

  21. Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286(29):25443–25449

    Article  CAS  Google Scholar 

  22. Arruda SC, Barbosa Hde S, Azevedo RA, Arruda MA (2011) Two-dimensional difference gel electrophoresis applied for analytical proteomics: fundamentals and applications to the study of plant proteomics. Analyst 136(20):4119–4126

    Article  CAS  Google Scholar 

  23. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomic 73(11):2064–2077

    Article  CAS  Google Scholar 

  24. Treumann A, Thiede B (2010) Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomic 7(5):647–653

    Article  CAS  Google Scholar 

  25. Simon ES (2011) Preparation of peptides from yeast cells for iTRAQ analysis. Cold Spring Harb Protoc 2011(6):670–675

    Google Scholar 

  26. Simon ES (2011) Labeling yeast peptides with the iTRAQ reagent. Cold Spring Harb Protoc 2011(6):676–680

    Google Scholar 

  27. Simon ES (2011) iTRAQ-labeled yeast peptide clean-up using a reversed-phase column. Cold Spring Harb Protoc 2011(6):681–685

    Google Scholar 

  28. Simon ES (2011) Isoelectric focusing of iTRAQ-labeled yeast. Cold Spring Harb Protoc 2011(6):686–694

    Google Scholar 

  29. Ghosh D, Yu H, Tan XF, Lim TK, Zubaidah RM, Tan HT et al (2011) Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 10(10):4373–4387

    Article  CAS  Google Scholar 

  30. Jankova L, Chan C, Fung CL, Song X, Kwun SY, Cowley MJ et al (2011) Proteomic comparison of colorectal tumours and non-neoplastic mucosa from paired patient samples using iTRAQ mass spectrometry. Mol BioSyst 7(11):2997–3005

    Article  CAS  Google Scholar 

  31. Gafken PR, Lampe PD (2006) Methodologies for characterizing phosphoproteins by mass spectrometry. Cell Commun Adhes 13(5–6):249–262

    Article  CAS  Google Scholar 

  32. Jones AM, Nuhse TS (2011) Phospho proteomics using iTRAQ. Methods Mol Biol 779:287–302

    Article  CAS  Google Scholar 

  33. Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE et al (2011) iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phospho proteomics. Mol Cell Proteomics 147(4):853–867

    Google Scholar 

  34. Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA (2012) Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics. Mol Cell Proteomics 11(2):M111 014613

    Google Scholar 

  35. Tian Y, Yao Z, Roden RB, Zhang H (2011) Identification of glycoproteins associated with different histological subtypes of ovarian tumors using quantitative glycoproteomics. Proteomics 11(24):4677–4687

    Article  CAS  Google Scholar 

  36. Zhang S, Liu X, Kang X, Sun C, Lu H, Yang P et al (2012) iTRAQ plus 18O: a new technique for target glycoprotein analysis. Talanta 91:122–127

    Article  CAS  Google Scholar 

  37. Zhang Y, Li N, Brown PW, Ozer JS, Lai Y (2011) Liquid chromatography/tandem mass spectrometry based targeted proteomics quantification of P-glycoprotein in various biological samples. Rapid Commun Mass Spectrom 25(12):1715–1724

    Article  CAS  Google Scholar 

  38. Emmerich CH, Schmukle AC, Walczak H (2011) The emerging role of linear ubiquitination in cell signaling. Sci Signal 4(204):re5

    Google Scholar 

  39. Wiener R, Zhang X, Wang T, Wolberger C (2012) The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483(7391):618–622

    Article  CAS  Google Scholar 

  40. Zeng X, King RW (2012) An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat Chem Biol 8(4):383–392

    Article  CAS  Google Scholar 

  41. Da Silva-Ferrada E, Torres-Ramos M, Aillet F, Campagna M, Matute C, Rivas C et al (2011) Role of monoubiquitylation on the control of IkappaBalpha degradation and NF-kappaB activity. PLoS One 6(10):e25397

    Article  CAS  Google Scholar 

  42. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    Article  CAS  Google Scholar 

  43. Akimov V, Rigbolt KT, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol BioSyst 7(12):3223–3233

    Article  CAS  Google Scholar 

  44. Jia H, Liu C, Ge F, Xiao C, Lu C, Wang T et al (2011) Identification of ubiquitinated proteins from human multiple myeloma U266 cells by proteomics. Biomed Environ Sci 24(4):422–430

    CAS  Google Scholar 

  45. Leach MD, Stead DA, Argo E, MacCallum DM, Brown AJ (2011) Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol Microbiol 79(6):1574–1593

    Article  CAS  Google Scholar 

  46. Argenzio E, Bange T, Oldrini B, Bianchi F, Peesari R, Mari S et al (2011) Proteomic snapshot of the EGF-induced ubiquitin network. Mol Syst Biol 7:462

    Article  CAS  Google Scholar 

  47. Zhou J, Bi D, Lin Y, Chen P, Wang X, Liang S (2012) Shotgun proteomics and network analysis of ubiquitin-related proteins from human breast carcinoma epithelial cells. Mol Cell Biochem 359(1–2):375–384

    Article  CAS  Google Scholar 

  48. Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC et al (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286(48):41530–41538

    Article  CAS  Google Scholar 

  49. Roche S, Delorme B, Oostendorp RA, Barbet R, Caton D, Noel D et al (2009) Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics 9(2):223–232

    Article  CAS  Google Scholar 

  50. Mareddy S, Crawford R, Brooke G, Xiao Y (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13(4):819–829

    Article  CAS  Google Scholar 

  51. Mareddy S, Broadbent J, Crawford R, Xiao Y (2009) Proteomic profiling of distinct clonal populations of bone marrow mesenchymal stem cells. J Cell Biochem 106(5):776–786

    Article  CAS  Google Scholar 

  52. Papoff G, Trivieri N, Crielesi R, Ruberti F, Marsilio S, Ruberti G (2010) FADD-calmodulin interaction: a novel player in cell cycle regulation. Biochim Biophys Acta 1803(8):898–911

    Article  CAS  Google Scholar 

  53. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108(6):739–742

    Article  CAS  Google Scholar 

  54. White CD, Li Z, Sacks DB (2011) Calmodulin binds HER2 and modulates HER2 signaling. Biochim Biophys Acta 1813(5):1074–1082

    Article  CAS  Google Scholar 

  55. Li L, Sacks DB (2007) Functional interactions between calmodulin and estrogen receptor-alpha. Cell Signal 19(3):439–443

    Article  CAS  Google Scholar 

  56. Graves CB, Goewert RR, McDonald JM (1985) The insulin receptor contains a calmodulin-binding domain. Science 230(4727):827–829

    Article  CAS  Google Scholar 

  57. Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88(1):1–35

    Article  CAS  Google Scholar 

  58. Ott CE, Leschik G, Trotier F, Brueton L, Brunner HG, Brussel W et al (2010) Deletions of the RUNX2 gene are present in about 10 % of individuals with cleidocranial dysplasia. Hum Mutat 31(8):E1587–E1593

    Article  CAS  Google Scholar 

  59. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771

    Article  CAS  Google Scholar 

  60. Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219(4):461–471

    Article  CAS  Google Scholar 

  61. Li G, Zhang XA, Wang H, Wang X, Meng CL, Chan CY et al (2009) Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 9(1):20–30

    Article  CAS  Google Scholar 

  62. Celebi B, Elcin AE, Elcin YM (2010) Proteome analysis of rat bone marrow mesenchymal stem cell differentiation. J Proteome Res 9(10):5217–5227

    Article  CAS  Google Scholar 

  63. Edwards CJ, Spector TD (2002) Statins as modulators of bone formation. Arthritis Res 4(3):151–153

    Article  CAS  Google Scholar 

  64. Choi YA, Lim J, Kim KM, Acharya B, Cho JY, Bae YC et al (2010) Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J Proteome Res 9(6):2946–2956

    Article  CAS  Google Scholar 

  65. Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res 24(11):2059–2071

    Article  CAS  Google Scholar 

  66. Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J et al (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18(3):456–462

    Article  CAS  Google Scholar 

  67. Lee HK, Lee BH, Park SA, Kim CW (2006) The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics 6(4):1223–1229

    Article  CAS  Google Scholar 

  68. Yu WH, Li FG, Chen XY, Li JT, Wu YH, Huang LH et al (2012) PPAR gamma suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int J Biochem Cell Biol 44(2):377–384

    Article  CAS  Google Scholar 

  69. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12):1417–1426

    Article  CAS  Google Scholar 

  70. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  Google Scholar 

  71. Fukuda K (2002) Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. C R Biol 325(10):1027–1038

    Article  CAS  Google Scholar 

  72. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R et al (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104(9):1046–1052

    Article  CAS  Google Scholar 

  73. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20

    Article  CAS  Google Scholar 

  74. Fan X, Li X, Lv S, Wang Y, Zhao Y, Luo G (2010) Comparative proteomics research on rat MSCs differentiation induced by Shuanglong Formula. J Ethnopharmacol 131(3):575–580

    Google Scholar 

  75. Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062

    Article  CAS  Google Scholar 

  76. Ye NS, Chen J, Luo GA, Zhang RL, Zhao YF, Wang YM (2006) Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev 15(5):665–676

    Google Scholar 

  77. Ye NS ZR, Zhao YF, Feng X, Wang YM, Luo GA (2006) Effect of 5-azacytidine on the protein expression of porcine bone marrow mesenchymal stem cells in vitro. Genomics Proteomic Bioinformatics 4(1):18–25

    Google Scholar 

  78. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3):392–402

    Article  CAS  Google Scholar 

  79. Wislet-Gendebien S LE, Neirinckx V, Alix P, Leprince P, Glejzer A, Poulet C, Hennuy B, Sommer L, Shakhova O, Rogister B (2012) Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences. Cell Mol Life Sci 2012. [Epub ahead of print]

    Google Scholar 

  80. Saulnier N, Lattanzi W, Puglisi MA, Pani G, Barba M, Piscaglia AC et al (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13(Suppl 1):71–78

    Google Scholar 

  81. Leelawat K, Narong S, Chaijan S, Sa-Ngiamsuntorn K, Disthabanchong S, Wongkajornsilp A, Hongeng S (2010) Proteomic profiles of mesenchymal stem cells induced by a liver differentiation protocol. Int J Mol Sci 11(12):4905–4915

    Google Scholar 

  82. Zanini C, Bruno S, Mandili G, Baci D, Cerutti F, Cenacchi G et al (2011) Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 6(12):e28175

    Article  CAS  Google Scholar 

  83. Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK et al (2010) Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol 30(8):1642–1648

    Article  CAS  Google Scholar 

  84. Wang D PJ, Chu JS, Krakowski A, Luo K, Chen DJ, Li S (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279(42):43725–43734

    Google Scholar 

  85. Seruya M, Shah A, Pedrotty D, du Laney T, Melgiri R, McKee JA et al (2004) Clonal population of adult stem cells: life span and differentiation potential. Cell Transplant 13(2):93–101

    Google Scholar 

  86. Bouffi C, Thomas O, Bony C, Giteau A, Venier-Julienne MC, Jorgensen C et al (2010) The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials 31(25):6485–6493

    Article  CAS  Google Scholar 

  87. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L et al (2010) Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs 192(3):158–166

    Article  CAS  Google Scholar 

  88. Kurpinski K CJ, Wang D, Li S (2009) Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-beta1. Cell Mol Bioeng 2(4):606–614

    Google Scholar 

  89. Auletta JJ, Zale EA, Welter JF, Solchaga LA (2011) Fibroblast growth factor-2 enhances expansion of human bone marrow-derived mesenchymal stromal cells without diminishing their immunosuppressive potential. Stem Cells Int 2011:235176

    Google Scholar 

  90. Gotoh N (2009) Control of stemness by fibroblast growth factor signaling in stem cells and cancer stem cells. Curr Stem Cell Res Ther 4(1):9–15

    Article  CAS  Google Scholar 

  91. Lee SK, Kim Y, Kim SS, Lee JH, Cho K, Lee SS et al (2009) Differential expression of cell surface proteins in human bone marrow mesenchymal stem cells cultured with or without basic fibroblast growth factor containing medium. Proteomics 9(18):4389–4405

    Article  CAS  Google Scholar 

  92. Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE et al (2005) Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev 14(4):395–401

    Article  CAS  Google Scholar 

  93. Riera MF, Meroni SB, Pellizzari EH, Cigorraga SB (2003) Assessment of the roles of mitogen-activated protein kinase and phosphatidyl inositol 3-kinase/protein kinase B pathways in the basic fibroblast growth factor regulation of sertoli cell function. J Mol Endocrinol 31(2):279–289

    Article  CAS  Google Scholar 

  94. Tasso R GM, Molino E, Cattaneo A, Monticone M, Bachi A, Cancedda R (2012) The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model. Biomaterials 33(7):2086–2096

    Google Scholar 

  95. Giusta MS, Andrade H, Santos AV, Castanheira P, Lamana L, Pimenta AM et al (2010) Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. Cytotherapy 12(4):478–490

    Article  CAS  Google Scholar 

  96. Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L et al (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314(7):1575–1584

    Article  CAS  Google Scholar 

  97. Kemoun P, Laurencin-Dalicieux S, Rue J, Farges JC, Gennero I, Conte-Auriol F et al (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329(2):283–294

    Article  CAS  Google Scholar 

  98. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52(4):541–552

    Article  Google Scholar 

  99. Yang B, Chen G, Li J, Zou Q, Xie D, Chen Y et al (2012) Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix—based scaffold. Biomaterials 33(8):2449–2461

    Article  CAS  Google Scholar 

  100. Beck HC, Petersen J, Felthaus O, Schmalz G, Morsczeck C (2011) Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Muller cells. Neurochem Res 36(11):2002–2007

    Article  CAS  Google Scholar 

  101. Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A et al (2012) Osteoblastic/Cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev 18(3):235–244

    Google Scholar 

  102. Silverio KG, Davidson KC, James RG, Adams AM, Foster BL, Nociti FH Jr (2011) et al. Wnt/beta-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J Periodontal Res 47(3):309–319

    Google Scholar 

  103. Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C (2012) The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev. doi:10.1089/scd.2011.0422

    Google Scholar 

  104. Viale-Bouroncle S, Bey B, Reichert TE, Schmalz G, Morsczeck C (2011) Beta-tricalcium-phosphate stimulates the differentiation of dental follicle cells. J Mater Sci Mater Med 22(7):1719–1724

    Article  CAS  Google Scholar 

  105. Morsczeck C, Petersen J, Vollner F, Driemel O, Reichert T, Beck HC (2009) Proteomic analysis of osteogenic differentiation of dental follicle precursor cells. Electrophoresis 30(7):1175–1184

    Article  CAS  Google Scholar 

  106. Balic A, Mina M (2010) Characterization of progenitor cells in pulps of murine incisors. J Dent Res 89(11):1287–1292

    Article  CAS  Google Scholar 

  107. D’ Alimonte I, Nargi E, Mastrangelo F, Falco G, Lanuti P, Marchisio M et al (2011) Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents 25(1):57–69

    Google Scholar 

  108. Atari M, Caballe-Serrano J, Gil-Recio C, Giner-Delgado C, Martinez-Sarra E, Garcia-Fernandez DA et al (2012) The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 50(4):930–941

    Article  CAS  Google Scholar 

  109. Kasap M, Karaoz E, Akpinar G, Aksoy A, Erman G (2011) A unique golgi apparatus distribution may be a marker for osteogenic differentiation of hDP-MSCs. Cell Biochem Funct 29(6):489–495

    Article  CAS  Google Scholar 

  110. Wei X, Wu L, Ling J, Liu L, Liu S, Liu W et al (2008) Differentially expressed protein profile of human dental pulp cells in the early process of odontoblast-like differentiation in vitro. J Endod 34(9):1077–1084

    Article  Google Scholar 

  111. Yu Y, Mu J, Fan Z, Lei G, Yan M, Wang S et al (2012) Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 137(4):513–525

    Article  CAS  Google Scholar 

  112. Wu L, Wei X, Ling J, Liu L, Liu S, Li M et al (2009) Early osteogenic differential protein profile detected by proteomic analysis in human periodontal ligament cells. J Periodontal Res 44(5):645–656

    Article  CAS  Google Scholar 

  113. Carlotti F, Zaldumbide A, Loomans CJ, van Rossenberg E, Engelse M, de Koning EJ et al (2010) Isolated human islets contain a distinct population of mesenchymal stem cells. Islets 2(3):164–173

    Article  Google Scholar 

  114. Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B et al (2007) Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25(12):3215–3222

    Article  CAS  Google Scholar 

  115. Limbert C, Path G, Ebert R, Rothhammer V, Kassem M, Jakob F et al (2011) PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages. Cytotherapy 13(7):802–813

    Article  CAS  Google Scholar 

  116. Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z et al (2011) Characterization of immortalized mesenchymal stem cells derived from foetal porcine pancreas. Cell Prolif 44(1):19–32

    Article  CAS  Google Scholar 

  117. Huang GP, Pan ZJ, Jia BB, Zheng Q, Xie CG, Gu JH et al (2007) Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood. Cell Transplant 16(6):579–585

    CAS  Google Scholar 

  118. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110

    Article  Google Scholar 

  119. Secco M, Zucconi E, Vieira NM, Fogaca LL, Cerqueira A, Carvalho MD et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26(1):146–150

    Article  CAS  Google Scholar 

  120. Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764(12):1823–1841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiao, Y., Chen, J. (2012). Proteomics Approaches in the Identification of Molecular Signatures of Mesenchymal Stem Cells. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_143

Download citation

Publish with us

Policies and ethics