Skip to main content

Branched-Chain Higher Alcohols

  • Chapter
  • First Online:
Biotechnology in China III: Biofuels and Bioenergy

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 128))

Abstract

China’s energy requirements and environmental concerns have stimulated efforts toward developing alternative liquid fuels. Compared with fuel ethanol, branched-chain higher alcohols (BCHAs), including isopropanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, exhibit significant advantages, such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructures. However, BCHAs have not been synthesized economically using native organisms, and thus their microbial production based on metabolic engineering and synthetic biology offers an alternative approach, which presents great potential for improving production efficiency. We review the current status of production and consumption of BCHAs and research progress regarding their microbial production in China, especially with the combination of metabolic engineering and synthetic biology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An H, Wilhelm WE, Searcy SW (2011) Biofuel and petroleum-based fuel supply chain research: a literature review. Biomass Bioeng 35:3763–3774

    Article  Google Scholar 

  2. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  CAS  Google Scholar 

  3. Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3:1106–1133

    Article  CAS  Google Scholar 

  4. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  Google Scholar 

  5. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315

    Article  CAS  Google Scholar 

  6. Mainguet SE, Liao JC (2010) Bioengineering of microorganisms for C3 to C5 alcohols production. Biotechnol J 5:1297–1308

    Article  CAS  Google Scholar 

  7. Olson ES, Sharma RK, Aulich TR (2010) Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion. Appl Biochem Biotechnol 113–116:913–932

    Google Scholar 

  8. Zhuang D, Jiang D, Liu L, Huang Y (2011) Assessment of bioenergy potential on marginal land in China. Renew Sust Energ Rev 15:1050–1056

    Article  Google Scholar 

  9. Zhang XQ (2011) Annual report on bioindustry in China: 2010. Chemical Industry Press, Beijing

    Google Scholar 

  10. Wu ZJ (2011) The problems and suggestions for the development of biodiesel industry in China. China Biodiesel 2(2):5–6

    Google Scholar 

  11. Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechol 83(3):415–423

    Article  CAS  Google Scholar 

  12. Wang Q (2011) Time for commercializing non-food biofuel in China. Renew Sust Energ Rev 15:621–629

    Article  CAS  Google Scholar 

  13. Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186

    Article  CAS  Google Scholar 

  14. Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819

    Article  CAS  Google Scholar 

  15. Xiang M, Li D, Xiao H, Zhang J, Qi H, Li W, Zhong B, Sun Y (2008) Synthesis of higher alcohols from syngas over Fischer–Tropsch elements modified K/β-Mo2C catalysts. Fuel 87:599–603

    Article  CAS  Google Scholar 

  16. Ou X, Zhang X, Chang S (2010) Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy 38:406–418

    Article  CAS  Google Scholar 

  17. Hu Z, Tan P, Yan X, Lou D (2008) Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy 33:1654–1658

    Article  CAS  Google Scholar 

  18. Sun X, Wang X (2008) Status quo of restricted MTBE market worldwide. Chem Ind 26(6):16–22

    Google Scholar 

  19. Lin CW, Chiang SB, Lu SJ (2005) Investigation of MTBE and aromatic compound concentrations at a gas service station. Environ Monit Assess 105:327–339

    Article  CAS  Google Scholar 

  20. Lee I, Johnson LA, Hannond EG (1995) Use of branched chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc 72:1155–1160

    Article  CAS  Google Scholar 

  21. Cui XM (2008) Production technologies and market analysis of isopropanol. Shanghai Chem Ind 33:31–34

    Google Scholar 

  22. Cheng J, Jiang C (2007) Analysis on process technology and market situation of isobutyl alcohol worldwide. Chem Ind 25(10):28–31

    Google Scholar 

  23. Liu Y, Xue HF (2010) Domestic and international market analysis and suggestions for carbonyl alcohol technology. Chem Ind Eng Prog 29:970–975

    Google Scholar 

  24. Wutai Consulting (2011) Marketing research report of 3-Methy-1-butanol. http://www.timesprc.com.cn/jx/2120.htm

  25. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  Google Scholar 

  26. Ayres EE (1929) Amyl alcohols from the pentanes. Ind Eng Chem 21:899–904

    Article  CAS  Google Scholar 

  27. Faith ML, Clark RL, Donald B (1965) Keyes “industrial chemicals”. Wiley, New York

    Google Scholar 

  28. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  29. Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3

    Article  Google Scholar 

  30. Manzer LE (2010) Recent developments in the conversion of biomass to renewable fuels and chemicals. Top Catal 53:1193–1196

    Article  CAS  Google Scholar 

  31. Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  CAS  Google Scholar 

  32. Ma YH (2010) Development report of industrial biotechnology in China. Science Press, Beijing

    Google Scholar 

  33. Pei L, Schmidt M, Wei W (2011) Synthetic biology: an emerging research field in China. Biotechnol Adv. doi:10.1016/j.biotechadv

  34. Nielsen J (2011) Biofuels: chimeric synthetic pathways. Nat Chem Biol 7:195–196

    Article  CAS  Google Scholar 

  35. Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol. 86:419–434

    Article  CAS  Google Scholar 

  36. Derrick S, Large PJ (1993) Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. J Gen Microbiol 139:2783–2792

    CAS  Google Scholar 

  37. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Article  CAS  Google Scholar 

  38. Jojima T, Inui M, Yukawa H (2008) Production of isopropanol by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:1219–1224

    Article  CAS  Google Scholar 

  39. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21

    Article  CAS  Google Scholar 

  40. Minty JJ, Lesnefsky AA, Lin F, Chen Y, Zaroff TA, Veloso AB, Xie B, McConnell CA, Ward RJ, Schwartz DR, Rouillard JM, Gao Y, Gulari E, Lin XN (2011) Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb Cell Fact 10:18

    Article  CAS  Google Scholar 

  41. Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, Liao JC (2011) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449

    Google Scholar 

  42. Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577–589

    Article  CAS  Google Scholar 

  43. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  Google Scholar 

  44. Jia K, Zhang Y, Li Y (2010) Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci 10:422–429

    Article  CAS  Google Scholar 

  45. Chen J-S, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 8:371–376

    Article  CAS  Google Scholar 

  46. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085

    CAS  Google Scholar 

  47. Inokuma K, Liao JC, Okamoto M, Hanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110:696–701

    Article  CAS  Google Scholar 

  48. ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT, Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64:1303–1307

    CAS  Google Scholar 

  49. Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326:29–32

    Article  CAS  Google Scholar 

  50. Sentheshanmuganathan S (1960) The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae. Biochem J 74:568–576

    Google Scholar 

  51. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  CAS  Google Scholar 

  52. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733

    Article  CAS  Google Scholar 

  53. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  CAS  Google Scholar 

  54. Jia X, Li S, Xie S, Wen J (2011) Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Appl Biochem Biotechnol. doi: 10.1007/s12010-011-9268-1

  55. Abe F, Horikoshi K (2005) Enhanced production of isoamyl alcohol and isoamyl acetate by ubiquitination-deficient Saccharomyces cerevisiae mutants. Cell Mol Biol Lett 10:383–388

    CAS  Google Scholar 

  56. Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-YW-G-064) and the National Basic Research Program (973 Program, 2011CBA00806 and 2011CBA00807). X.-L.Z. and Q.-H.W. are supported by the Bairenjihhua Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Hong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, BW., Shi, AQ., Tu, R., Zhang, XL., Wang, QH., Bai, FW. (2011). Branched-Chain Higher Alcohols. In: Bai, FW., Liu, CG., Huang, H., Tsao, G. (eds) Biotechnology in China III: Biofuels and Bioenergy. Advances in Biochemical Engineering Biotechnology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_121

Download citation

Publish with us

Policies and ethics