Skip to main content

Resolution of Natural Microbial Community Dynamics by Community Fingerprinting, Flow Cytometry, and Trend Interpretation Analysis

  • Chapter
  • First Online:
High Resolution Microbial Single Cell Analytics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  Google Scholar 

  2. Aksoy M (1985) Benzene as a leukemogenic and carcinogenic agent. Am J Ind Med 8:9–20

    Google Scholar 

  3. Beller HR, Kane SR, Legler TC, McKelvie JR, Sherwood Lollar B, Pearson F, Balser L, MacKay DM (2008) Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 42:6065–6072

    Article  CAS  Google Scholar 

  4. Bombach P, Chatzinotas A, Neu TR, Kästner M, Lueders T, Vogt C (2010a) Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol Ecol 71:237–246

    Article  CAS  Google Scholar 

  5. Bombach P, Richnow HH, Kästner M, Fischer A (2010b) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852

    Article  CAS  Google Scholar 

  6. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  7. Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70:4720–4726

    Article  CAS  Google Scholar 

  8. EEA (2007) Progress in management of contaminated sites. European Environment Agency

    Google Scholar 

  9. Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    Article  CAS  Google Scholar 

  10. Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Sublette KL, Kästner M (2005) In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ Sci Technol 39:4983–4989

    Article  CAS  Google Scholar 

  11. Günther S, Hübschmann T, Rudolf M, Eschenhagen M, Röske I, Harms H, Müller S (2008) Fixation procedures for flow cytometric analysis of environmental bacteria. J Microbiol Methods 75:127–134

    Article  Google Scholar 

  12. Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, Harms H, Müller S (2009) Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol 75:2111–2121

    Article  Google Scholar 

  13. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12:401–411

    Article  CAS  Google Scholar 

  14. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: Combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889

    Article  CAS  Google Scholar 

  15. Jehmlich N, Schmidt F, Taubert M, Seifert J, von Bergen M, Richnow HH, Vogt C (2009) Comparison of methods for simultaneous identification of bacterial species and determination of metabolic activity by protein-based stable isotope probing (protein-SIP) experiments. Rapid Commun Mass Spectrom 23:1871–1878

    Article  CAS  Google Scholar 

  16. Jindrova E, Chocova M, Demnerova K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47:83–93

    Article  CAS  Google Scholar 

  17. Kasai Y, Takahata Y, Manefield M, Watanabe K (2006) RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 72:3586–3592

    Article  CAS  Google Scholar 

  18. Kästner M, Fischer A, Nijenhuis I, Geyer R, Stelzer N, Bombach P, Tebbe CC, Richnow HH (2006) Assessment of microbial in situ activity in contaminated aquifers. Eng Life Sci 6:234–251

    Article  Google Scholar 

  19. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542

    Article  CAS  Google Scholar 

  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 11–175

    Google Scholar 

  21. Li T, Wu T-D, Mazéas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  CAS  Google Scholar 

  22. Liou JS-C, DeRito CM, Madsen EL (2008) Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ Microbiol 10:1964–1977

    Article  CAS  Google Scholar 

  23. Lonergan DJ, Jenter HL, Coates JD, Phillips EJP, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408

    CAS  Google Scholar 

  24. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy-metabolism—organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  25. Lovley DR (2001) Bioremediation: anaerobes to the rescue. Science 293:1444–1446

    Article  CAS  Google Scholar 

  26. Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nat Rev Microbiol 3:439–446

    Article  CAS  Google Scholar 

  27. Maher N, Dillon HK, Vermund SH, Unnasch TR (2001) Magnetic bead capture eliminates PCR inhibitors in samples collected from the airborne environment, permitting detection of Pneumacystis carinii DNA. Appl Environ Microbiol 67:449–452

    Article  CAS  Google Scholar 

  28. Mandelbaum RT, Shati MR, Ronen D (1997) In situ microcosms in aquifer bioremediation studies. FEMS Microbiol Rev 20:489–502

    Article  CAS  Google Scholar 

  29. Mou XZ, Moran MA, Stepanauskas R, Gonzalez JM, Hodson RE (2005) Flow-cytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopropionate transformations. Appl Environ Microbiol 71:1405–1416

    Article  CAS  Google Scholar 

  30. Mueller S et al. (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033

    Article  CAS  Google Scholar 

  31. Müller S, Vogt C, Laube M, Harms H, Kleinsteuber S (2009) Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions. FEMS Microbiol Ecol 70:586–596

    Article  Google Scholar 

  32. Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113

    Article  Google Scholar 

  33. Müller S, Nebe-von-Caron G (2010) Functional single-cell analyses: Flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    Google Scholar 

  34. Neufeld J, Dumont M, Vohra J, Murrell J (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53:435–442

    Article  CAS  Google Scholar 

  35. Nielsen DR, McLellan PJ, Daugulis AJ (2006) Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnol Lett 28:1293–1298

    Article  CAS  Google Scholar 

  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RG, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) vegan: Community ecology package. R package version 1.17-1. http://cran.R-project.Org/package=vegan

  37. Peacock AD, Chang YJ, Istok JD, Krumholz L, Geyer R, Kinsall B, Watson D, Sublette KL, White DC (2004) Utilization of microbial biofilms as monitors of bioremediation. Microb Ecol 47:284–292

    Article  CAS  Google Scholar 

  38. Porter J, Edwards C, Morgan JAW, Pickup RW (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow-cytometry and cell sorting. Appl Environ Microbiol 59:3327–3333

    CAS  Google Scholar 

  39. Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413

    Article  Google Scholar 

  40. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108:501–507

    Article  CAS  Google Scholar 

  41. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328:393–407

    Article  Google Scholar 

  42. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253

    Article  CAS  Google Scholar 

  43. Spormann AM, Widdel F (2001) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    Article  Google Scholar 

  44. Strevett K, Davidova I, Suflita JM (2002) A comprehensive review of the screening methodology for anaerobic biodegradability of surfactants. Rev Environ Sci Biotechnol 1:143–167

    Article  CAS  Google Scholar 

  45. Talbot G, Topp E, Palin MF, Masse DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res. 42:513–537

    Article  CAS  Google Scholar 

  46. US-EPA (2004) Cleaning up the nation’s waste sites: Markets and technology trends. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  47. van Agteren MH, Keuning S, Janssen DB (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  48. VerBerkmoes NC, Hervey WJ, Shah M, Land M, Hauser L, Larimer FW, Van Berkel GJ, Goeringer DE (2005) Evaluation of “Shotgun” Proteomics for identification of biological threat agents in complex environmental matrixes: experimental simulations. Anal Chem 77:923–932

    Article  CAS  Google Scholar 

  49. Vieth A, Kästner M, Schirmer M, Weiss H, Gödeke S, Meckenstock RU, Richnow HH (2005) Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environ Toxicol Chem 24:51–60

    Article  CAS  Google Scholar 

  50. Vogt C, Lösche A, Kleinsteuber S, Müller S (2005) Population profiles of a stable, commensalistic bacterial culture grown with toluene under sulphate-reducing conditions. Cytometry Part A 66A:91–102

    Article  CAS  Google Scholar 

  51. Wang YY, Hammes F, Boon N, Chami M, Egli T (2009) Isolation and characterization of low nucleic acid (LNA)-content bacteria. ISME J 3:889–902

    Article  CAS  Google Scholar 

  52. Wiacek C, Mueller S, Benndorf D (2006) A cytomic approach reveals population heterogeneity of Cupriavidus necator in response to harmful phenol concentrations. Proteomics 6:5983–5994

    Article  CAS  Google Scholar 

  53. Wiedemeier TD, Rifai HS, Newell CJ, Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley Inc., London

    Google Scholar 

Download references

Acknowledgments

This work is integrated in the internal research and development program of the UFZ as well as the SAFIRA project (Remediation research in regionally contaminated aquifers) and the CITE program (Chemicals in the environment). We acknowledge Annett Ohlendorf and Christine Süring for assistance in development of the cell detachment procedure, Werner Kletzander for assistance with the field work, Ute Lohse for technical assistance with the molecular biological analysis and Helga Engewald for technical assistance in the flow cytometric laboratory. We are grateful to Kenneth Wasmund for proofreading and Lorenz Adrian for discussing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bombach, P. et al. (2010). Resolution of Natural Microbial Community Dynamics by Community Fingerprinting, Flow Cytometry, and Trend Interpretation Analysis. In: Müller, S., Bley, T. (eds) High Resolution Microbial Single Cell Analytics. Advances in Biochemical Engineering / Biotechnology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_82

Download citation

Publish with us

Policies and ethics