Skip to main content

Multivariate Data Analysis Methods for the Interpretation of Microbial Flow Cytometric Data

  • Chapter
  • First Online:
High Resolution Microbial Single Cell Analytics

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 124))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  Google Scholar 

  2. Baumgarth N, Roederer M (2000) A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods 243:77–97

    Article  CAS  Google Scholar 

  3. Bigos M, Baumgarth N, Jager GC et al (1999) Nine color eleven parameter immunophenotyping using three laser flow cytometry. Cytometry 36:36–45

    Article  CAS  Google Scholar 

  4. Boddy L, Wilkins MF, Morris CW (2001) Pattern recognition in flow cytometry. Cytometry 44:195–209

    Article  CAS  Google Scholar 

  5. Bravata DM, Zaric GS, Holty JEC et al (2006) Reducing mortality from anthrax bioterrorism: strategies for stockpiling and dispensing medical and pharmaceutical supplies. Biosecur Bioterror-Biodef Strategy Pract Sci 4:244–262

    Article  Google Scholar 

  6. Chattopadhyay PK, Hogerkorp CM, Roederer M (2008) A chromatic explosion: the development and future of multiparameter flow cytometry. Immunology 125:441–449

    Article  CAS  Google Scholar 

  7. Clark AJ, Petty HR (2008) Observation of calcium microdomains at the uropod of living morphologically polarized human neutrophils using flash lamp-based fluorescence microscopy. Cytometry Part A 73A:673–678

    Article  CAS  Google Scholar 

  8. Dando M (1994) Biological warfare in the 21st century. Brassey’s, London

    Google Scholar 

  9. Davey HM (2010) Prospects for the automation of analysis and interpretation of flow cytometric data. Cytometry Part A 77A:3–5

    Google Scholar 

  10. Davey HM, Jones A, Shaw AD et al (1999) Variable selection and multivariate methods for the identification of microorganisms by flow cytometry. Cytometry 35:162–168

    Article  CAS  Google Scholar 

  11. Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations—the importance of single-cell analyses. Microbiol Rev 60:641–696

    CAS  Google Scholar 

  12. Davey HM, Kell DB (1997) Fluorescent brighteners: novel stains for the flow cytometric analysis of microorganisms. Cytometry 28:311–315

    Article  CAS  Google Scholar 

  13. Davey HM, Kell DB, Weichart DH et al (2004) Estimation of microbial viability using flow cytometry. In: Current Protocols in Cytometry (Supplement 29). Wiley, New York, pp 11.13.11–11.13.21

    Google Scholar 

  14. Day JP, Kell DB, Griffith GW (2002) Differentiation of Phytophthora infestans sporangia from other airborne biological particles by flow cytometry. Appl Environ Microbiol 68:37–45

    Article  CAS  Google Scholar 

  15. Demers S, Kim J, Legendre P et al (1992) Analyzing multivariate flow cytometric data in aquatic sciences. Cytometry 13:291–298

    Article  CAS  Google Scholar 

  16. Donalies UEB, Nguyen HTT, Stahl U et al (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv Biochem Eng Biotechnol 111:67–98

    CAS  Google Scholar 

  17. Frischmann U, Müller W (2006) Nine fluorescence parameter analysis on a four-color fluorescence activated flow cytometer. Cytometry Part A 69A:124–126

    Article  Google Scholar 

  18. Fry B (2008) Visualizing data: exploring and explaining data with the Processing environment. O’Reilly Books, Sebastopol

    Google Scholar 

  19. Haefner JW (2005) Modeling biological systems: principles and applications. Springer, New York

    Google Scholar 

  20. Hammes F, Egli T (2010) Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 397:1083–1095

    Article  CAS  Google Scholar 

  21. Hewitt CJ, Nebe-Von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biotechnol 89:197–223

    CAS  Google Scholar 

  22. Holty JEC, Kim RY, Bravata DM (2006) Anthrax: a systematic review of atypical presentations. Ann Emerg Med 48:200–211

    Article  Google Scholar 

  23. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441 and 498–520

    Google Scholar 

  24. Jolliffe IT (1986) Principal component analysis. Springer, Heidelberg

    Google Scholar 

  25. Kell DB, Sonnleitner B (1995) GMP-good modelling practice. Trends Biotechnol 13:481–492

    Article  CAS  Google Scholar 

  26. Klanten R, Bourquin N, Ehmann S et al (2008) Data flow: visualising information in graphic design. Die Gestalten Verlag

    Google Scholar 

  27. Kosugi Y, Ikebe J, Shitara N et al (1986) Graphical presentation of multidimensional flow histogram using hexagonal segmentation. Cytometry 7:294–294

    Google Scholar 

  28. Lee JA, Spidlen J, Boyce K et al (2008) MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry Part A 73A:926–930

    Article  Google Scholar 

  29. Lim DV, Simpson JM, Kearns EA et al (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583–607

    Article  CAS  Google Scholar 

  30. Lizard G (2007) Flow Cytometry analyses and bioinformatics: interest in new softwares to optimize novel technologies and to favor the emergence of innovative concepts in cell research. Cytometry Part A 71A:646–647

    Article  Google Scholar 

  31. Lo K, Brinkman RR, Gottardo R (2008) Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A 73A:321–332

    Article  Google Scholar 

  32. Lugli E, Pinti M, Nasi M et al (2007) Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry Part A 71A:334–344

    Article  CAS  Google Scholar 

  33. Martens H, Næs T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  34. McLaughlin BE, Baumgarth N, Bigos M et al (2008) Nine-color flow cytometry for accurate measurement of T cell subsets and cytokine responses. Part I: Panel design by an empiric approach. Cytometry Part A 73A:400–410

    Article  Google Scholar 

  35. Müller S, Davey H (2009) Recent advances in the analysis of individual microbial cells. Cytometry 75A:83–85

    Article  Google Scholar 

  36. Müller S, Nebe-von-Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    Google Scholar 

  37. Murphy RF, Chused TM (1984) A proposal for a flow cytometric data file standard. Cytometry 5:553–555

    Article  CAS  Google Scholar 

  38. Nebe-Von-Caron G (2009) Standardization in microbial cytometry. Cytometry Part A 75A:86–89

    Article  Google Scholar 

  39. Novo D, Perlmutter NG, Hunt RH et al (1999) Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35:55–63

    Article  CAS  Google Scholar 

  40. Pedreira CE, Costa ES, Barrena S et al (2008) Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry Part A 73A:834–846

    Article  Google Scholar 

  41. Priddy KL, Keller PE (2005) Artificial Neural Networks: an introduction. SPIE Publications, Washington

    Google Scholar 

  42. Pyne S, Hu X, Wang K et al (2009) Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci USA 106:8519–8524

    Article  CAS  Google Scholar 

  43. Reas C, Fry B (2007) Processing a programming handbook for visual designers and artists. MIT Press, Cambridge

    Google Scholar 

  44. Roederer M, Moody MA (2008) Polychromatic plots: graphical display of multidimensional data. Cytometry Part A 73A:868–874

    Article  Google Scholar 

  45. Seasholtz MB, Kowalski B (1993) The parsimony principle applied to multivariate calibration. Anal Chim Acta 277:165–177

    Article  CAS  Google Scholar 

  46. Shapiro HM (2003) Practical flow cytometry, 4th edn. Wiley, New York

    Book  Google Scholar 

  47. Shiffman D (2008) Learning processing. Morgan Kaufmann (Elsevier) Publishers, Burlington

    Google Scholar 

  48. Sinclair M (2009) Maps for these territories. Creative Review July (in press). http://www.creativereview.co.uk/backissues/creative-review/2009/july-2009/maps-for-these-territories

  49. Spidlen J, Moore W, Parks D et al (2010) Data file standard for flow cytometry, version FCS 3.1. Cytometry Part A 77A:97–100

    Google Scholar 

  50. Stopa PJ (2000) The flow cytometry of Bacillus anthracis spores revisited. Cytometry 41:237–244

    CAS  Google Scholar 

  51. Sychra JJ, Bartels PH, Bibbo M et al (1978) Dimensionality reducing displays in cell image analysis. Acta Cytol 21:747–752

    Google Scholar 

  52. Terzidis K (2009) Algorithms for visual design using the processing language. Wiley, Indianapolis

    Google Scholar 

  53. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  54. Want A, Thomas ORT, Kara B et al (2009) Studies related to antibody fragment (Fab) production in Escherichia coli W3110 fed-batch fermentation processes using multiparameter flow cytometry. Cytometry Part A 75A:148–154

    Article  CAS  Google Scholar 

  55. Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold, New York

    Google Scholar 

  56. Wilkins MF, Boddy L, Morris CW et al (1999) Identification of phytoplankton from flow cytometry data by using radial basis function neural networks. Appl Environ Microbiol 65:4404–4410

    CAS  Google Scholar 

  57. Xu R, Wunsch D (2010) Clustering. Wiley, Chichester

    Google Scholar 

  58. Zeng QT, Pratt JP, Pak J et al (2007) Feature-guided clustering of multi-dimensional flow cytometry datasets. J Biomed Inform 40:325–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel M. Davey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davey, H.M., Davey, C.L. (2010). Multivariate Data Analysis Methods for the Interpretation of Microbial Flow Cytometric Data. In: Müller, S., Bley, T. (eds) High Resolution Microbial Single Cell Analytics. Advances in Biochemical Engineering / Biotechnology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_80

Download citation

Publish with us

Policies and ethics