Skip to main content

From Single Cells to Microbial Population Dynamics: Modelling in Biotechnology Based on Measurements of Individual Cells

  • Chapter
  • First Online:
High Resolution Microbial Single Cell Analytics

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 124))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann J-U, Müller S, Lösche A, Bley T et al (1995) Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. J Biotechnol 39:9–20

    Article  CAS  Google Scholar 

  2. Bailey JE, Ollis FD (1977) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  3. Bellgardt K-H (1994) Analysis of synchronous growth of baker’s yeast. Part i: development of a theoretical model for sustained oscillations. J Biotechnol 35:19–33

    Article  CAS  Google Scholar 

  4. Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I et al (1994) Generic modeling of cooperative growth patterns in bacterial colonies. Nature 368:46–49

    Article  CAS  Google Scholar 

  5. Bley T, Schmidt A (1980) A two state microbial growth model for continuous fermentation. Stud Biophys 78:11–12

    Google Scholar 

  6. Bley T, Heinritz B, Schmidt A (1984) Some stationary properties of a two-state microbial growth model for continuous fermentation derived from the smith and martin hypothesis. Stud Biophys 98:119–124

    Google Scholar 

  7. Bley T (1987) State-structure models of microbial growth. Acta Biotechnol 7:173–177

    Article  Google Scholar 

  8. Bley T, Wegner B (1988) Hopf bifurcation for a family of two-state microbial growth models. Acta Biotechnol 8:267–275

    Article  Google Scholar 

  9. Bley T (1990) State structure models––a base for efficient control of fermentation processes. Biotechnol Adv 8:233–259

    Article  CAS  Google Scholar 

  10. Bley T (1992) Delay-differential equations for modeling synchrony and periodic phenomena in microbial population dynamics. In: Karim MN, Stephanopoulos G (eds) Modeling and control of biotechnical processes. Pergamon Press, NY, pp 195–199

    Google Scholar 

  11. Bley T, Müller S (2002) How should microbial life be quantified to optimize bioprocesses. Acta Biotechnol 22:401–409

    Article  Google Scholar 

  12. Boschke E, Bley T (1998) Growth patterns of yeast colonies depending on nutrient supply. Acta Biotechnol 18:17–27

    Article  Google Scholar 

  13. Cazzador L, Mariani L, Martegani E, Alberghina L (1990) Structured segregated models and analysis of self-oscillating yeast continuous cultures. Bioprocess Eng 5:175–180

    Article  CAS  Google Scholar 

  14. Cipollina C, Vai M, Porro D, Hatzis C (2007) Towards understanding of the complex structure of growing yeast populations. J Biotechnol 128:393–402

    Article  CAS  Google Scholar 

  15. Cooper S (1979) A unifying model for the g1 period in prokaryotes and eukaryotes. Nature 280:17–19

    Article  CAS  Google Scholar 

  16. Dawson PSS (1972) Continuously synchronized growth. J Appl Chem Biotechnol 22:79–103

    CAS  Google Scholar 

  17. Deutsch A, Dress A, Rensing L (1993) Formation of morphological differentiation patterns in the ascomycete Neurospora crassa. Mech Dev 44:17–31

    Article  CAS  Google Scholar 

  18. Deutsch A, Dormann S (2005) Cellular automation modelling of biological pattern formation. Birkhauser, Boston

    Google Scholar 

  19. Eakman JM, Fredrickson AG, Tsuchiya HM (1966) Statistics and dynamics of microbial cell populations. Chem Eng Prog 62:37–49

    Google Scholar 

  20. Ferrer J, Prats C, López D (2008) Individual-based modelling: an essential tool for microbiology. J Biol Phys 34:19–37

    Article  Google Scholar 

  21. Fredrickson AG, Ramkrishna D, Tsuchiya HM (1967) Statistics and dynamics of procaryotic cell populations. Math Biosci 1:327–374

    Article  Google Scholar 

  22. Fredrickson AG, Mantzaris NV (2002) A new set of population balance equations for microbial and cell cultures. Chem Eng Sci 57:2265–2278

    Article  CAS  Google Scholar 

  23. Fritsch M, Starruss J, Loesche A, Mueller S et al (2005) Cell cycle synchronization of Cupriavidus necator by continuous phasing measured via flow cytometry. Biotechnol Bioeng 92:635–642

    Article  CAS  Google Scholar 

  24. Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton

    Google Scholar 

  25. Große-Uhlmann R, Bley T (1999) A modular approach to situation identification of the dynamics of bacterial populations synthesizing poly-β-hydroxybutyrate. Bioprocess Eng 21:191–200

    Article  Google Scholar 

  26. Gurney WS, Nisbet RM (1984) The systematic formulation of delay-differential models of age or size structured populations. Lect Notes Biomath 52:163–172

    Google Scholar 

  27. Hatzis C, Porro D (2006) Morphologically-structured models of growing budding yeast populations. J Biotechnol 124:420–438

    Article  CAS  Google Scholar 

  28. Hellweger FL, Bucci V (2009) A bunch of tiny individuals––individual-based modeling for microbes. Ecol Model 220:8–22

    Article  Google Scholar 

  29. Hjortso MA, Bailey JE (1982) Steady-state growth of budding yeast populations in well-mixed continuos-flow microbial reactors. Math Biosci 60:235–263

    Article  Google Scholar 

  30. Hjortso MA, Nielsen J (1995) Population balance models of autonomous microbial oscillations. J Biotechnol 42:255–269

    Article  CAS  Google Scholar 

  31. Kiefer J (1973) Zur Mathematischen Beschreibung der Zellproliferation. Biophysik 10:115–124

    Article  CAS  Google Scholar 

  32. Kreft J-U, Booth G, Wimpenny JWT (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287

    Article  CAS  Google Scholar 

  33. Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912

    CAS  Google Scholar 

  34. Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler–Lagrange methods: traveling along the lifelines of single cells. Ind Eng Chem Res 43:4647–4656

    Article  CAS  Google Scholar 

  35. Lapin A, Schmidt J, Reuss M (2006) Modelling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor—a structured-segregated approach. Chem Eng Sci 61:4783–4797.

    Article  CAS  Google Scholar 

  36. Lavric V, Graham DW (2010) Birth, growth and death as structuring operators in bacterial population dynamics. J Theor Biol 264:45–54

    Article  Google Scholar 

  37. Lee MW, Vassiliadis VS, Park JM (2009) Individual-based and stochastic modelling of cell population dynamics considering substrate dependency. Biotechnol Bioeng 103:891–899

    Article  CAS  Google Scholar 

  38. Mantzaris NV (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys J 92:4271–4288

    Article  CAS  Google Scholar 

  39. Mhaskar P, Hjortso MA, Henson MA (2002) Cell population modelling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Biotechnol Prog 18:1010–1026

    Article  CAS  Google Scholar 

  40. Möckel B, Bley T, Böhme B (1989) Cyclic control of continuous biotechnological processes on the basis of a hierarchical control system. Syst Anal Model Simul 6:181–196

    Google Scholar 

  41. Möckel B, Bley T, Böhme B (1990) Model simulation of an efficient periodic control strategy for continuous fermentation processes. Acta Biotechnol 10:395–400

    Article  Google Scholar 

  42. Müller S, Bley T, Babel W (1999) Adaptive responses of Ralstonia eutropha to feast and famine conditions analyzed by flow cytometry. J Biotechnol 75:81–97

    Article  Google Scholar 

  43. Müller S (2007) Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif 40:621–639

    Article  Google Scholar 

  44. Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113

    Article  Google Scholar 

  45. Nishimura Y, Bailey JE (1980) On the dynamics of Cooper-Helmstetter-Donachie populations. Math Biosci 51:305–328

    Article  CAS  Google Scholar 

  46. Noack S, Klöden W, Bley T (2008) Modelling synchronous growth of bacterial populations in phased cultivation. Bioprocess Biosyst Eng 31:435–443

    Article  CAS  Google Scholar 

  47. Porro D, Vai M, Vanoni M, Alberghina L et al (2009) Analysis and modeling of growing budding yeast populations at the single cell level. Cytometry 75A:114–120

    Article  Google Scholar 

  48. Prats C, López D, Giró A, Ferrer J et al (2006) Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. J Theor Biol 241:939–953

    Google Scholar 

  49. Priori L, Ubezio P (1996) Mathematical modelling and computer simulation of cell synchrony. Methods Cell Sci 18:83–91

    Article  Google Scholar 

  50. Sherer E, Tocce E, Hannemann RE, Rundell AF et al (2008) Identification of age-structured models: cell cycle phase transition. Biotechnol Bioeng 99:960–974

    Article  CAS  Google Scholar 

  51. Slater ML, Sharrow SO, Gart JJ (1977) Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc Natl Acad Sci USA 74:3850–3854

    Article  CAS  Google Scholar 

  52. Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70:1263–1267

    Article  CAS  Google Scholar 

  53. Srienc F (1999) Cytometric data as the basis for rigorous models of cell population dynamics. J Biotechnol 71:233–238

    Article  CAS  Google Scholar 

  54. Starruß J, Bley T, Sogaard-Andersen L, Deutsch A (2007) A new mechanism for collective migration in Myxococcus xanthus. J Stat Phys 128:269–286.

    Article  Google Scholar 

  55. Trucco E (1965) Mathematical models for cellular systems: the von Foerster equation. Part i and ii. Bull Math Biophys 27:285–304 (see also pp 449–471).

    Google Scholar 

  56. von Foerster H (1959) Some remarks on changing populations. In: Stohlman F (ed) The kinetics of cellular proliferation. Grune & Stratton, New York

    Google Scholar 

  57. Walther T, Reinsch H, Große A, Ostermann K et al (2004) Mathematical modeling of regulatory mechanisms in yeast colony development. J Theor Biol 229:327–338

    Article  CAS  Google Scholar 

  58. Walther T, Reinsch H, Ostermann K, Deutsch A et al (2005) Coordinated development of yeast colonies: B) quantitative modeling of diffusion-limited growth. Eng Life Sci 5:125–133.

    Article  CAS  Google Scholar 

  59. Walther Th, Reinsch H, Ostermann K, Deutsch A, Bley Th (2010) Applying dimorphic yeasts as model organisms to study mycelial growth: Part 2: application of mathematical models to identify different construction principles in yeast colonies. Bioprocess Biosyst Eng. doi:10.1007/s00449-010-0443-5. Accessed 15 June 2010

  60. Winfree AT (1990) The geometry of biological time. Springer, Berlin

    Google Scholar 

  61. Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA 104:876–881

    Article  CAS  Google Scholar 

  62. Zamamiri AM, Zhang Y, Henson MA, Hjortso MA (2002) Dynamics analysis of an age distribution model of oscillating yeast cultures. Chem Eng Sci 57:2169–2181

    Article  CAS  Google Scholar 

  63. Zhu G-Y, Zamamiri A, Henson MA, Hjortso MA (2000) Model predictive control of continuous yeast bioreactors using cell population balance models. Chem Eng Sci 55:6155–6167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Florian Centler, Andreas Deutsch, and Felix Lenk for their critical reading of the manuscript and their helpful notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bley, T. (2010). From Single Cells to Microbial Population Dynamics: Modelling in Biotechnology Based on Measurements of Individual Cells. In: Müller, S., Bley, T. (eds) High Resolution Microbial Single Cell Analytics. Advances in Biochemical Engineering / Biotechnology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_79

Download citation

Publish with us

Policies and ethics