Skip to main content

Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

  • Chapter
  • First Online:
Bioreactor Systems for Tissue Engineering II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 123))

Abstract

The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM-MSCs:

Bone marrow derived mesenchymal stem cells

BMSCs:

Bone marrow derived stem cells

HSCs:

Hematopoietic stem cells

MSCs:

Mesenchymal stem cells

References

  1. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  Google Scholar 

  2. Assmus B, Rolf A, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Tillmanns H, Yu J, Corti R, Mathey DG, Hamm CW, Süselbeck T, Tonn T, Dimmeler S, Dill T, Zeiher AM, Schächinger V, REPAIR-AMI Investigators (2010) Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 3(1):89–96

    Article  Google Scholar 

  3. Tendera M, Wojakowski W, Ruzyłło W, Chojnowska L, Kepka C, Tracz W, Musiałek P, Piwowarska W, Nessler J, Buszman P, Grajek S, Breborowicz P, Majka M, Ratajczak MZ, REGENT Investigators (2009) Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J 30(11):1313–21

    Article  Google Scholar 

  4. Beitnes JO, Hopp E, Lunde K, Solheim S, Arnesen H, Brinchmann JE, Forfang K, Aakhus S (2009) Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart 95(24):1983–1989

    Article  CAS  Google Scholar 

  5. Plewka M, Krzemińska-Pakuła M, Lipiec P, Peruga JZ, Jezewski T, Kidawa M, Wierzbowska-Drabik K, Korycka A, Robak T, Kasprzak JD (2009) Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction. Am J Cardiol 104(10):1336–1342

    Article  Google Scholar 

  6. George JC (2010) Stem cell therapy in acute myocardial infarction: a review of clinical trials. Transl Res 155:10–19

    Article  CAS  Google Scholar 

  7. Hou D, Youssef EA, Brinton TJ et al (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(Suppl):I150–I156

    Google Scholar 

  8. Krause K, Jaquet K, Schneider C, Haupt S, Lioznov MV, Otte K-M, Kuck K-H (2009) Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in man study. Heart 95:1145–1152

    Article  CAS  Google Scholar 

  9. Herbots L, D'hooge J, Eroglu E, Thijs D, Ganame J, Claus P, Dubois C, Theunissen K, Bogaert J, Dens J, Kalantzi M, Dymarkowski S, Bijnens B, Belmans A, Boogaerts M, Sutherland G, Van de Werf F, Rademakers F, Janssens S (2009) Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study. Eur Heart J 30(6):662–670

    Article  Google Scholar 

  10. Guhathakurta S, Subramanyan UR, Balasundari R, Das CHK, Madhusankar N, Cherian KM (2009) Stem cell experiments and initial clinical trial of cellular cardiomyoplasty. Asian Cardiovasc Thorac Ann 17:581–586

    Google Scholar 

  11. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  Google Scholar 

  12. Schächinger V, Assmus B, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Yu J, Corti R, Mathey DG, Hamm CW, Tonn T, Dimmeler S, Zeiher AM, REPAIR-AMI investigators (2009) Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur J Heart Fail 11(10):973–979

    Article  Google Scholar 

  13. Singh S, Arora R, Handa K, Khraisat A, Nagajothi N, Molnar J, Khosla S (2009) Stem cells improve left ventricular function in acute myocardial infarction. Clin Cardiol 32(4):176–180

    Article  Google Scholar 

  14. Blum A, Childs RW, Smith A, Patibandla S, Zalos G, Samsel L, McCoy JP, Calandra G, Csako G, Cannon RO 3rd (2009) Targeted antagonism of CXCR4 mobilizes progenitor cells under investigation for cardiovascular disease. Cytotherapy 11(8):1016–1019

    Article  CAS  Google Scholar 

  15. Assis ACM, Carvalho JL, Jacoby BA, Ferreira RLB, Castanheira P, Diniz SOF, Cardoso VN, Goes AM, Ferreira AJ (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant. doi: 10.3727/096368909X479677

  16. Chan Ch KF, Chen Ch-Ch, Luppen CA, Kraft DL, Kim J-B, DeBoer A, Wei K, Weissman IL (2009) Endochondral ossification is required for hematopoietic stem cell niche formation. Nature 457(7228):490–494

    Article  CAS  Google Scholar 

  17. Kang HJ, Kim HS, Zhang SY et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte- colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    Article  CAS  Google Scholar 

  18. Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, Schächinger V, Tonn T, Martin H, Dimmeler S, Zeiher AM (2009) A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2(5):417–423

    Article  CAS  Google Scholar 

  19. Subramaniyam V, Waller EK, Murrow JR, Manatunga A, Lonial S, Kasirajan K, Sutcliffe D, Harris W, Taylor WR, Alexander RW, Quyyumi AA (2009) Bone marrow mobilization with granulocyte macrophage colony-stimulating factor improves endothelial dysfunction and exercise capacity in patients with peripheral arterial disease. Am Heart J 158(1):53–60

    Article  CAS  Google Scholar 

  20. Yeo C, Mathur A (2009) Autologous bone marrow-derived stem cells for ischemic heart failure: REGENERATE-IHD trial. Regen Med 4(1):119–127

    Article  Google Scholar 

  21. Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29

    Article  Google Scholar 

  22. Abdallah BM, Kassem M (2009) The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J Cell Physiol 218:9–12

    Article  CAS  Google Scholar 

  23. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  Google Scholar 

  24. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, Ljungman P, Lönnies H, Nava S, Ringden O (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733–1738

    Article  Google Scholar 

  25. Sueblinvong V, Weiss DJ (2009) Cell therapy approaches for lung diseases: current status. Curr Opin Pharmacol 9(3):268–273

    Article  CAS  Google Scholar 

  26. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27(6):1421–1432

    Article  CAS  Google Scholar 

  27. Bohgaki T, Atsumi T, Bohgaki M, Furusaki A, Kondo M, Sato-Matsumura KC, Abe R, Kataoka H, Horita T, Yasuda S, Amasaki Y, Nishio M, Sawada K, Shimizu H, Koike T (2009) Immunological reconstitution after autologous hematopoietic stem cell transplantation in patients with systemic sclerosis: relationship between clinical benefits and intensity of immunosuppression. J Rheumatol 36(6):1240–1248

    Article  CAS  Google Scholar 

  28. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 155(2):62–70

    Article  CAS  Google Scholar 

  29. Deda H, Inci MC, Kürekçi AE, Sav A, Kayihan K, Ozgün E, Ustünsoy GE, Kocabay S (2009) Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11(1):18–25

    Article  CAS  Google Scholar 

  30. Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM, Báez-Martín MM, Sánchez-Catasús C, Carballo-Barreda M, Rodríguez-Rojas R, Gómez-Fernández L, Alberti-Amador E, Macías-Abraham C, Balea ED, Rosales LC, Del Valle PL, Ferrer BB, González RM, Bergado JA (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci 27(3):151–161

    Google Scholar 

  31. Wechsler L, Steindler D, Borlongan C, Chopp M, Savitz S, Deans R, Caplan L, Hess D, Mays RW, Boltze J, Boncoraglio G, Borlongan CV, Caplan LR, Carmichael ST, Chopp M, Davidoff AW, Deans RJ, Fisher M, Hess DC, Kondziolka D, Mays RW, Norrving B, Parati E, Parent J, Reynolds BA, Gonzalez-Rothi LJ, Savitz S, Sanberg P, Schneider D, Sinden JD et al (2009) Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40:510–515

    Article  Google Scholar 

  32. Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM, Madeira MI, Malmegrim KC, Foss-Freitas MC, Simões BP, Martinez EZ, Foss MC, Burt RK, Voltarelli JC (2009) C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 301(15):1573–1579

    Article  CAS  Google Scholar 

  33. Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma RR, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S (2009) Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18(10):1407–1416

    Article  CAS  Google Scholar 

  34. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12(5):359–366

    Article  CAS  Google Scholar 

  35. Bueno EM, Glowacki JM (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5(12):685–697

    Article  Google Scholar 

  36. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  Google Scholar 

  37. Marcacci M, Kon EV, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

    Article  CAS  Google Scholar 

  38. Mastrogiacomo M, Corsi A, So EF, Di Comite MS, Monetti F, Scaglione S, Favia A, Crovace A, Bianco P, Cancedda R (2006) Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng 12(5):1–13

    Article  Google Scholar 

  39. Komlev VS, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009) X-ray synchrotron radiation pseudo holotomography as a new imaging technique to investigate angio- and microvasculogenesis with no usage of contrast agents. Tissue Eng C 15:1–6

    Article  Google Scholar 

  40. Filho Cerruti H, Kerkis I, Kerkis A, Tatsui NH, da Costa Neves A, Bueno DF, da Silva MC (2007) Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports. Artif Organs 31(4):268–273

    Google Scholar 

  41. Yamada Y, Nakamura S, Ito K, Kohgo T, Hibi H, Nagasaka T, Ueda M (2008) Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation: clinical application report from a 2–6-year follow-up. Tissue Eng A 14(10):1699–1707

    Article  CAS  Google Scholar 

  42. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N (2008) Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold. Oral Med Oral Pathol Oral Radiol Endod 106:203–209

    Article  Google Scholar 

  43. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Khoshzaban A, Keshel SH, Atashi R (2009) Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e1–e6

    Google Scholar 

  44. Meijer GJ, De Bruijn JD, Koole R, Van Blitterswijk CA (2008) Cell based bone tissue engineering in jaw defects. Biomaterials 29:3053–3061

    Article  CAS  Google Scholar 

  45. Dawson JI, Oreffo ROC (2008) Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473:124–131

    Article  CAS  Google Scholar 

  46. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941–950

    Article  CAS  Google Scholar 

  47. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  Google Scholar 

  48. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    Article  CAS  Google Scholar 

  49. Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A 15(2):205–219

    Article  CAS  Google Scholar 

  50. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Paolo Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  CAS  Google Scholar 

  51. Mankani MH, Kuznetsov SA, Robey PG (2007) Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density. Exp Hematol 35:995–1004

    Article  CAS  Google Scholar 

  52. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 3(12):e3922

    Article  Google Scholar 

  53. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  54. Tavian M, Péault B (2005) Embryonic development of the human hematopoietic system. Int J Dev Biol 49:243–250

    Article  CAS  Google Scholar 

  55. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    Article  CAS  Google Scholar 

  56. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  Google Scholar 

  57. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  58. Eliasson P, Jönsson J-I (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22

    Article  CAS  Google Scholar 

  59. Zhang J, Niu Ch, Ye L, Huang H, He X, Tong W-G, Ross J, Haug J, Johnson T, Feng Jq, Harris S, Wiedemann Lm, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):778–779

    Google Scholar 

  60. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101

    Article  CAS  Google Scholar 

  61. Kiel MJ, Acar M, Radice GL, Morrison SJ (2009) Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4(2):170–179

    Article  CAS  Google Scholar 

  62. Pallotta I, Lovett M, Rice W, Kaplan DL, Balduini A (2009) Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One 4(12):e8359

    Article  Google Scholar 

  63. Askmyr M, Sims NA, Martin TJ, Purton LE (2009) What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab 20(6):303–309

    Article  CAS  Google Scholar 

  64. Chang S Ch-N, Tai Ch-L, Chung H-Y, Lin T-M, Jeng L-B (2009) Bone marrow mesenchymal stem cells form ectopic woven bone in vivo through endochondral bone formation. Artif Organs 33(4):301–308

    Article  Google Scholar 

  65. Farrell E, van der Jagt OP, Koevoet W, Kops N, van Manen ChJ, Hellingman CA, Jahr H, O’Brien FJ, Verhaar JAN, Weinans H, van Osch GJVM (2009) Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng C 15(2):285–295

    Article  CAS  Google Scholar 

  66. Tortelli F, Tasso R, Loiacono F, Cancedda R (2010) The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 31:242–249

    Article  CAS  Google Scholar 

  67. Janicki P, Kasten P, Kleinschmidt K, Luginbuehl R, Richter W (2010) Chondrogenic preinduction of human mesenchymal stem cells on β-TCP: enhanced bone quality by endochondral heterotopic bone formation, Acta Biomater. doi: 10.1016/j.actbio.2010.01.037

  68. Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, Havens A, Schneider A, Ge C, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS (2008) Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26:2042–2051

    Article  Google Scholar 

  69. Jing D, Fonseca A-V, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R (2010) Hematopoietic stem cells in coculture with mesenchymal stromal cells – modelling the niche compartments in vitro. Haematologica. doi: 10.3324/haematol.2009.010736

  70. Alakel N, Jing D, Muller K, Bornhauser M, Ehninger G, Ordemann R (2009) Direct contact with mesenchymal stromal cells affects migratory behavior and gene expression profile of CD133+ hematopoietic stem cells during ex vivo expansion. Exp Hematol 37(4):504–513

    Article  CAS  Google Scholar 

  71. Valtieri M, Sorrentino A (2008) The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol 217(2):296–300

    Article  CAS  Google Scholar 

  72. Ahn JY, Park G, Shim JS, Lee JW, Oh IH (2010) Intramarrow injection of beta-catenin-activated, but not naïve mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow. Exp Mol Med 42(2):122–131

    Article  CAS  Google Scholar 

  73. De Barros AP, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MI (2010) Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One 5(2):e9093

    Article  Google Scholar 

  74. Kubota Y, Takubo K, Suda T (2008) Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 366(2):335–339

    Article  CAS  Google Scholar 

  75. Lévesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25(8):1954–1965

    Article  Google Scholar 

  76. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Müller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  Google Scholar 

  77. Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of Dkk1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24:986–991

    Article  CAS  Google Scholar 

  78. Kuznetsova SA, Mankani MH, Bianco P, Robey PG (2009) Enumeration of the colony-forming units fibroblast from mouse and human bone marrow in normal and pathological conditions. Stem Cell Res 2(1):83–94

    Article  Google Scholar 

  79. Charbord P, Livne E, Gross G, Häupl Th, Neves NM, Marie P, Bianco P, Jorgensen Ch (2010) Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev Rep. doi: 10.1007/s12015-010-9125-6

  80. Chen Ch-W, Montelatici E, Crisan M, Corselli M, Huard J, Lazzari L, Péault B (2009) Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 20:429–434

    Article  CAS  Google Scholar 

  81. Chen L, Tredget EE, Liu C, Wu Y (2009) Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS One 4(9):e7119

    Article  Google Scholar 

  82. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630

    Article  CAS  Google Scholar 

  83. Gillette JM, Larochelle A, Dunbar CE, Lippincott-Schwartz J (2009) Intercellular transfer to signaling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol 11(3):303–311

    Article  CAS  Google Scholar 

  84. Deregibus MC, Tetta C, Camussi G (2010) The dynamic stem cell microenvironment is orchestrated by microvesicle-mediated transfer of genetic information. Histol Histopathol 25(3):397–404

    CAS  Google Scholar 

  85. Si Y, Tsou CL, Croft K, Charo IF (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Invest 120(4):1192–1203

    Article  CAS  Google Scholar 

  86. Massberg S, von Andrian UH (2009) Novel trafficking routes for hematopoietic stem and progenitor cells hematopoietic stem cells VII. Ann NY Acad Sci 1176:87–93

    Article  CAS  Google Scholar 

  87. Lu C, Li XY, Hu Y, Rowe RG, Weiss SJ (2010) MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115(2):221–229

    Article  CAS  Google Scholar 

  88. Kollar K, Cook MM, Atkinson K, Brooke G (2009) Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. Int J Cell Biol. doi: 10.1155/2009/904682

  89. Liu Z-J, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991

    Article  CAS  Google Scholar 

  90. Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522

    Article  CAS  Google Scholar 

  91. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM (2009) Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 4:62–72

    Article  CAS  Google Scholar 

  92. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell–derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823

    Article  CAS  Google Scholar 

  93. He X, Ma J, Jabbari E (2010) Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate) hydrogels. Int J Pharm 390(2):107–116

    Article  CAS  Google Scholar 

  94. Tang Y, Wul X, Lei W, Pang L, Wan Ch, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X (2009) TGF-b1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15(7):757–766

    Article  CAS  Google Scholar 

  95. Chanda D, Kumar S, Ponnazhagan S (2010) Therapeutic potential of adult bone marrow derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem. doi: 10.1002/jcb.22701

  96. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  Google Scholar 

  97. Meirelles LD, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Article  CAS  Google Scholar 

  98. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RCh, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  CAS  Google Scholar 

  99. Zhang GW, Liu XC, Li-Ling J, Luan Y, Ying YN, Wu XS, Zhao CH, Liu TJ, Lü F (2010) Mechanisms of the protective effects of BMSCs promoted by TMDR with heparinized bFGF-incorporated stent in pig model of acute myocardial ischemia. J Cell Mol Med. Apr 7. [Epub ahead of print]

    Google Scholar 

  100. Psaltis PJ, Paton S, See F, Arthur A, Martin S, Itescu S, Worthley SG, Gronthos S, Zannettino ACW (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223:530–540

    CAS  Google Scholar 

  101. Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song Y-H, Sobel BE, Delafontaine P, Prockop DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354(3):700–706

    Article  CAS  Google Scholar 

  102. Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296:H1888–H1897

    Article  CAS  Google Scholar 

  103. Giannoni P, Scaglione S, Daga A, Ilengo C, Cilli M, Quarto R (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng A 16(2):489–499

    Article  CAS  Google Scholar 

  104. Tasso R, Augello A, Boccardo S, Salvi S, Carida M, Postiglione F, Fais F, Truini M, Cancedda R, Pennesi G (2009) Recruitment of a host’s osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng A 15(8):2203–2212

    Article  CAS  Google Scholar 

  105. Tasso R, Fais F, Reverberi D, Tortelli F, Cancedda R (2010) The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model. Biomaterials 31:2121–2129

    Article  CAS  Google Scholar 

  106. Graziano A, d’Aquino R, Laino G, Proto A, Giuliano MT, Pirozzi G, De Rosa A, Di Napoli D, Papaccio G (2008) Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41:1–11

    Article  CAS  Google Scholar 

  107. Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng A 15:1–11

    Article  Google Scholar 

  108. Duffy GP, Ahsan T, O’Brien T, Barry F, Nerem RM (2009) Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Eng A 15(9):2459–2470

    Article  CAS  Google Scholar 

  109. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng. Apr 20 [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranieri Cancedda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Backly, R.M.E., Cancedda, R. (2010). Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_78

Download citation

Publish with us

Policies and ethics