Skip to main content

Clinical Application of Stem Cells in the Cardiovascular System

  • Chapter
  • First Online:
Book cover Bioreactor Systems for Tissue Engineering II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 123))

Abstract

Regenerative medicine encompasses “tissue engineering” – the in vitro fabrication of tissues and/or organs using scaffold material and viable cells – and “cell therapy” – the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann T, Biermann J, Erbel R, Neumann A, Wasem J, Ertl G et al (2009) Heart failure: the commonest reason for hospital admission in Germany: medical and economic perspectives. Dtsch Arztebl Int 106(16):269–275

    Google Scholar 

  2. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  Google Scholar 

  3. Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S et al (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204(2):405–420

    Article  CAS  Google Scholar 

  4. Menard C, Hagege AA, Agbulut O, Barro M, Morichetti MC, Brasselet C et al (2005) Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366(9490):1005–1012

    Article  Google Scholar 

  5. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  6. Stamm C, Choi YH, Nasseri B, Hetzer R (2009) A heart full of stem cells: the spectrum of myocardial progenitor cells in the postnatal heart. Ther Adv Cardiovasc Dis 3(3):215–229

    Article  Google Scholar 

  7. Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653

    Article  CAS  Google Scholar 

  8. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  CAS  Google Scholar 

  9. Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90(10):1044–1054

    Article  CAS  Google Scholar 

  10. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272(1 Pt 2):H220–H226

    CAS  Google Scholar 

  11. Meckert PC, Rivello HG, Vigliano C, Gonzalez P, Favaloro R, Laguens R (2005) Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res 67(1):116–123

    Article  CAS  Google Scholar 

  12. Stamm C, Nasseri B, Choi YH, Hetzer R (2009) Cell therapy for heart disease: great expectations, as yet unmet. Heart Lung Circ 18(4):245–256

    Article  Google Scholar 

  13. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    Article  CAS  Google Scholar 

  14. Du YY, Zhou SH, Zhou T, Su H, Pan HW, Du WH et al (2008) Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy 10(5):469–478

    Article  CAS  Google Scholar 

  15. Molina EJ, Palma J, Gupta D, Torres D, Gaughan JP, Houser S et al (2009) Reverse remodeling is associated with changes in extracellular matrix proteases and tissue inhibitors after mesenchymal stem cell (MSC) treatment of pressure overload hypertrophy. J Tissue Eng Regen Med 3(2):85–91

    Article  CAS  Google Scholar 

  16. Jin B, Luo XP, Ni HC, Li Y, Shi HM (2009) Cardiac matrix remodeling following intracoronary cell transplantation in dilated cardiomyopathic rabbits. Mol Biol Rep

    Google Scholar 

  17. Lai VK, Ang KL, Rathbone W, Harvey NJ, Galinanes M (2009) Randomized controlled trial on the cardioprotective effect of bone marrow cells in patients undergoing coronary bypass graft surgery. Eur Heart J 30(19):2354–2359

    Article  Google Scholar 

  18. Lai VK, Linares-Palomino J, Nadal-Ginard B, Galinanes M (2009) Bone marrow cell-induced protection of the human myocardium: characterization and mechanism of action. J Thorac Cardiovasc Surg 138(6):1400–1408

    Google Scholar 

  19. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100(2):193–202

    Article  CAS  Google Scholar 

  20. Chiu RC, Zibaitis A, Kao RL (1995) Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 60(1):12–18

    CAS  Google Scholar 

  21. Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC (1992) Cell transplantation for myocardial repair: an experimental approach. Cell Transplant 1(6):383–390

    CAS  Google Scholar 

  22. Scorsin M, Hagege AA, Marotte F, Mirochnik N, Copin H, Barnoux M et al (1997) Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96(9 Suppl):II-188–II-193

    Google Scholar 

  23. Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA (2003) Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 35(6):607–613

    Article  CAS  Google Scholar 

  24. Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y et al (2002) Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105(20):2435–2441

    Article  Google Scholar 

  25. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA (1996) Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94(9 Suppl):II332–II336

    CAS  Google Scholar 

  26. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    Article  CAS  Google Scholar 

  27. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8):929–933

    Article  CAS  Google Scholar 

  28. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  Google Scholar 

  29. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    Article  CAS  Google Scholar 

  30. Rota M, Kajstura J, Hosoda T, Bearzi C, Vitale S, Esposito G et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104(45):17783–17788

    Article  CAS  Google Scholar 

  31. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  Google Scholar 

  32. Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T et al (2002) Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 105(3):380–386

    Article  CAS  Google Scholar 

  33. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  Google Scholar 

  34. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115(2):326–338

    CAS  Google Scholar 

  35. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280

    Article  CAS  Google Scholar 

  36. Hagege AA, Marolleau JP, Vilquin JT, Alheritiere A, Peyrard S, Duboc D et al (2006) Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 114(1 Suppl):I108–I113

    Google Scholar 

  37. Rubart M, Soonpaa MH, Nakajima H, Field LJ (2004) Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest 114(6):775–783

    CAS  Google Scholar 

  38. Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R et al (2005) Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112(12):1748–1755

    Article  Google Scholar 

  39. Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB et al (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41(5):879–888

    Article  Google Scholar 

  40. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148(3):531–537

    Article  Google Scholar 

  41. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  Google Scholar 

  42. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV et al (2001) Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 126(34–35):932–938

    Article  CAS  Google Scholar 

  43. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  Google Scholar 

  44. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10):1287–1294

    Article  Google Scholar 

  45. Schaefer A, Meyer GP, Fuchs M, Klein G, Kaplan M, Wollert KC et al (2006) Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur Heart J 27(8):929–935

    Article  Google Scholar 

  46. Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T et al (2007) Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD registry. Circ Res 100(8):1234–1241

    Article  CAS  Google Scholar 

  47. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355(12):1222–1232

    Article  CAS  Google Scholar 

  48. Schachinger V, Tonn T, Dimmeler S, Zeiher AM (2006) Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Pract Cardiovasc Med 3 Suppl 1:S23–S28

    Article  Google Scholar 

  49. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44(8):1690–1699

    Article  Google Scholar 

  50. Erbs S, Linke A, Schachinger V, Assmus B, Thiele H, Diederich KW et al (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116(4):366–374

    Article  Google Scholar 

  51. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H et al (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27(23):2775–2783

    Article  Google Scholar 

  52. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  Google Scholar 

  53. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209

    Article  CAS  Google Scholar 

  54. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221

    Article  CAS  Google Scholar 

  55. Lunde K, Solheim S, Aakhus S, Arnesen H, Moum T, Abdelnoor M et al (2007) Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial. Am Heart J 154(4):710e1–710e8

    Article  Google Scholar 

  56. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110(11 Suppl 1):II213–II218

    Google Scholar 

  57. Brehm M, Strauer BE (2006) Stem cell therapy in postinfarction chronic coronary heart disease. Nat Clin Pract Cardiovasc Med 3 Suppl 1:S101–S104

    Article  Google Scholar 

  58. Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT study. J Am Coll Cardiol 46(9):1651–1658

    Article  Google Scholar 

  59. Galinanes M, Loubani M, Davies J, Chin D, Pasi J, Bell PR (2004) Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 13(1):7–13

    Google Scholar 

  60. Nasseri BA, Kukucka M, Dandel M, Knosalla C, Choi YH, Ebell W et al (2009) Two-dimensional speckle tracking strain analysis for efficacy assessment of myocardial cell therapy. Cell Transplant 18(3):361–370

    Article  Google Scholar 

  61. Ang KL, Chin D, Leyva F, Foley P, Kubal C, Chalil S et al (2008) Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med 5(10):663–670

    Article  Google Scholar 

  62. Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C, Liu XK, Miki T et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells (Dayton, Ohio) 26(10):2644–2653

    Article  Google Scholar 

  63. Suzuki K, Murtuza B, Suzuki N, Smolenski RT, Yacoub MH (2001) Intracoronary infusion of skeletal myoblasts improves cardiac function in doxorubicin-induced heart failure. Circulation 104(12 Suppl 1):I213–I217

    CAS  Google Scholar 

  64. Ishida M, Tomita S, Nakatani T, Fukuhara S, Hamamoto M, Nagaya N et al (2004) Bone marrow mononuclear cell transplantation had beneficial effects on doxorubicin-induced cardiomyopathy. J Heart Lung Transplant 23(4):436–445

    Article  Google Scholar 

  65. Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S et al (2009) A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2(5):417–423

    Article  CAS  Google Scholar 

  66. Stamm C, Kleine HD, Choi YH, Dunkelmann S, Lauffs JA, Lorenzen B et al (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133(3):717–725

    Article  Google Scholar 

  67. Patel AN, Geffner L, Vina RF, Saslavsky J, Urschel HC Jr, Kormos R et al (2005) Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg 130(6):1631–1638

    Article  Google Scholar 

  68. Povsic TJ, Zavodni KL, Kelly FL, Zhu S, Goldschmidt-Clermont PJ, Dong C et al (2007) Circulating progenitor cells can be reliably identified on the basis of aldehyde dehydrogenase activity. J Am Coll Cardiol 50(23):2243–2248

    Article  CAS  Google Scholar 

  69. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  Google Scholar 

  70. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97(8):756–762

    Article  CAS  Google Scholar 

  71. Erbs S, Linke A, Schuler G, Hambrecht R (2006) Intracoronary administration of circulating blood-derived progenitor cells after recanalization of chronic coronary artery occlusion improves endothelial function. Circ Res 98(5):e48

    Article  CAS  Google Scholar 

  72. Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C, Nienaber CA et al (2004) CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 52(3):152–158

    Article  CAS  Google Scholar 

  73. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46

    Article  Google Scholar 

  74. Pompilio G, Cannata A, Peccatori F, Bertolini F, Nascimbene A, Capogrossi MC et al (2004) Autologous peripheral blood stem cell transplantation for myocardial regeneration: a novel strategy for cell collection and surgical injection. Ann Thorac Surg 78(5):1808–1812

    Article  Google Scholar 

  75. Pompilio G, Cannata A, Pesce M, Capogrossi MC, Biglioli P (2005) Long-lasting improvement of myocardial perfusion and chronic refractory angina after autologous intramyocardial PBSC transplantation. Cytotherapy 7(6):494–496

    Article  CAS  Google Scholar 

  76. Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115(25):3165–3172

    Article  Google Scholar 

  77. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98(18):10344–10349

    Article  CAS  Google Scholar 

  78. Honold J, Lehmann R, Heeschen C, Walter DH, Assmus B, Sasaki K et al (2006) Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol 26(10):2238–2243

    Article  CAS  Google Scholar 

  79. Ince H, Stamm C, Nienaber CA (2006) Cell-based therapies after myocardial injury. Curr Treat Options Cardiovasc Med 8(6):484–495

    Article  Google Scholar 

  80. Prahalad AK, Hock JM (2009) Proteomic characteristics of ex vivo-enriched adult human bone marrow mononuclear cells in continuous perfusion cultures. J Proteome Res 8(4):2079–2089

    Article  CAS  Google Scholar 

  81. Gastens MH, Goltry K, Prohaska W, Tschope D, Stratmann B, Lammers D et al (2007) Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy. Cell Transplant 16(7):685–696

    Google Scholar 

  82. Kuci S, Wessels JT, Buhring HJ, Schilbach K, Schumm M, Seitz G et al (2003) Identification of a novel class of human adherent CD34-stem cells that give rise to SCID-repopulating cells. Blood 101(3):869–876

    Article  CAS  Google Scholar 

  83. Handgretinger R, Gordon PR, Leimig T, Chen X, Buhring HJ, Niethammer D et al (2003) Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci 996:141–151

    Article  CAS  Google Scholar 

  84. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ (2007) Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 39(1):11–23

    Article  CAS  Google Scholar 

  85. Koestenbauer S, Zisch A, Dohr G, Zech NH (2009) Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant 18(10):1059–1068

    Article  Google Scholar 

  86. Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A et al (2004) Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 32(6):547–555

    Article  CAS  Google Scholar 

  87. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  CAS  Google Scholar 

  88. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  89. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525

    Article  CAS  Google Scholar 

  90. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479

    Article  CAS  Google Scholar 

  91. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150

    Article  CAS  Google Scholar 

  92. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Jon Mohr T et al (2010) Cryopreserved mesenchymal stromal cell treatment is safe and feasible for severe dilated ischemic cardiomyopathy. Cytotherapy 12:31–37

    Article  CAS  Google Scholar 

  93. Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B et al (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18(11):552–556

    Google Scholar 

  94. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286

    Article  CAS  Google Scholar 

  95. Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15:86–91

    Article  Google Scholar 

  96. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230

    Article  CAS  Google Scholar 

  97. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  Google Scholar 

  98. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201

    Article  CAS  Google Scholar 

  99. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–2127

    Article  CAS  Google Scholar 

  100. Maurel A, Azarnoush K, Sabbah L, Vignier N, Le Lorc’h M, Mandet C et al (2005) Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 80(5):660–665

    Article  Google Scholar 

  101. Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B et al (2009) Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg 88(3):1036–1043

    Article  Google Scholar 

  102. Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C et al (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci USA 103(39):14537–14541

    Article  CAS  Google Scholar 

  103. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD et al (2004) Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110(19):3136–3142

    Article  CAS  Google Scholar 

  104. Westenbrink BD, Lipsic E, van der Meer P, van der Harst P, Oeseburg H, Du Marchie Sarvaas GJ et al (2007) Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 28(16):2018–2027

    Article  CAS  Google Scholar 

  105. Aicher A, Heeschen C, Sasaki K, Urbich C, Zeiher AM, Dimmeler S (2006) Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114(25):2823–2830

    Article  Google Scholar 

  106. Nurzynska D, Di Meglio F, Castaldo C, Arcucci A, Marlinghaus E, Russo S et al (2008) Shock waves activate in vitro cultured progenitors and precursors of cardiac cell lineages from the human heart. Ultrasound Med Biol 34(2):334–342

    Article  Google Scholar 

  107. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44(3):654–660

    Article  CAS  Google Scholar 

  108. Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A (2008) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85(3):901–908

    Article  Google Scholar 

  109. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  CAS  Google Scholar 

  110. Klein HM, Ghodsizad A, Borowski A, Saleh A, Draganov J, Poll L et al (2004) Autologous bone marrow-derived stem cell therapy in combination with TMLR. A novel therapeutic option for endstage coronary heart disease: report on 2 cases. Heart Surg Forum 7(5):E416–E419

    Article  Google Scholar 

  111. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B et al (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66(1):45–54

    Article  CAS  Google Scholar 

  112. Oh W, Kim DS, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251(2):116–123

    Article  CAS  Google Scholar 

  113. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I et al (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells (Dayton, Ohio) 26(11):2865–74

    Article  CAS  Google Scholar 

  114. Prather WR, Toren A, Meiron M, Ofir R, Tschope C, Horwitz EM (2009) The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy 11(4):427–434

    Article  CAS  Google Scholar 

  115. Rupp S, Bauer J, Tonn T, Schachinger V, Dimmeler S, Zeiher AM et al (2009) Intracoronary administration of autologous bone marrow-derived progenitor cells in a critically ill two-yr-old child with dilated cardiomyopathy. Pediatr Transplant 13(5):620–623

    Article  Google Scholar 

  116. Rupp S, Zeiher AM, Dimmeler S, Tonn T, Bauer J, Jux C et al (2010) A regenerative strategy for heart failure in hypoplastic left heart syndrome: intracoronary administration of autologous bone marrow-derived progenitor cells. J Heart Lung Transplant 29(5):574–577

    Article  Google Scholar 

  117. Nasseri BA, Kukucka M, Dandel M, Knosalla C, Potapov E, Lehmkuhl HB et al (2007) Intramyocardial delivery of bone marrow mononuclear cells and mechanical assist device implantation in patients with end-stage cardiomyopathy. Cell Transplant 16(9):941–949

    Article  Google Scholar 

  118. Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T (2006) Catheter-based delivery of cells to the heart. Nat Clin Pract Cardiovasc Med 3 Suppl 1:S57–S64

    Article  Google Scholar 

  119. American College of Cardiology (2007) First human trial tests stem-cell-based treatment for heart attacks. ScienceDaily. Retrieved September 26, 2008, from http://209.85.135.104/search?q=cache:2bHT8K26Ug0J:www.sciencedaily.com/releases/2007/03/070326121246.htm+American+College+of+Cardiology+Innovation+in+Intervention:+i2+Summit+hare&hl=de&ct=clnk&cd=2&gl=de

  120. Yau TM, Kim C, Ng D, Li G, Zhang Y, Weisel RD et al (2005) Increasing transplanted cell survival with cell-based angiogenic gene therapy. Ann Thorac Surg 80(5):1779–1786

    Article  Google Scholar 

  121. Mayhew TM, Pharaoh A, Austin A, Fagan DG (1997) Stereological estimates of nuclear number in human ventricular cardiomyocytes before and after birth obtained using physical disectors. J Anat 191(Pt 1):107–115

    Article  Google Scholar 

  122. Stamm C, Nasseri B, Drews T, Hetzer R (2008) Cardiac cell therapy: a realistic concept for elderly patients? Exp Gerontol 43(7):679–690

    Article  CAS  Google Scholar 

  123. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426

    CAS  Google Scholar 

  124. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  Google Scholar 

  125. Yamahara K, Min KD, Tomoike H, Kangawa K, Kitamura S, Nagaya N (2009) Pathological role of angiostatin in heart failure: an endogenous inhibitor of mesenchymal stem-cell activation. Heart (British Cardiac Society) 95(4):283–289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Stamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stamm, C., Klose, K., Choi, YH. (2010). Clinical Application of Stem Cells in the Cardiovascular System. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_77

Download citation

Publish with us

Policies and ethics