Skip to main content

Fiber-Optic Based Cell Sensors

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 117))

Abstract

Different whole cell fiber optic based biosensors have been developed to detect the total effect of a wide range of environmental pollutants, providing results within a very short period. These biosensors are usually built from three major components, the biorecognition element (whole-cells) intimately attached to a transducer (optic fiber) using a variety of techniques (adsorption, covalent binding, polymer trapping, etc). Even with a great progress in the field of biosensors, there is still a serious lack of commercial applications, capable of competing with traditional analytical tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 1.Environmental Working Group (2005) A national assessment of tap water quality. EPA, California, USA

    Google Scholar 

  2. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    CAS  Google Scholar 

  3. De Meulenaer B et al (2002) Development of an enzyme-linked immunosorbent assay for bisphenol a using chicken immunoglobulins. J Agric Food Chem 50(19):5273–5282

    CAS  Google Scholar 

  4. Eltzov E, Kushmaro A, Marks RS (2008) Biosensors and related techniques for endocrine disruptors. In: Shaw (ed) Endocrine disrupting chemicals in food. Woodhead, Cambridge, UK

    Google Scholar 

  5. Sonnenschein C, Soto AM (1998) An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 65(1/6):143–150

    CAS  Google Scholar 

  6. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305

    CAS  Google Scholar 

  7. Franklin NM et al (2001) Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol 40(4):469–480

    CAS  Google Scholar 

  8. Riches CJ, Robinson PK, Rolph CE (1996) Effect of heavy metals on lipids from the freshwater alga Selenastrum capricornutum. Biochem Soc Trans 24(2):174S

    CAS  Google Scholar 

  9. Cotelle S, Ferard JF (1996) Effects of algae frozen at different temperatures on chronic assessment endpoints observed with Daphnia magna. Ecotoxicol Environ Saf 33(2):137–142

    CAS  Google Scholar 

  10. Orvos DR et al (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21(7):1338–1349

    CAS  Google Scholar 

  11. Chen HC et al (1996) Neoplastic response in Japanese medaka and channel catfish exposed to N-methyl-N’-nitro-N-nitrosoguanidine. Toxicol Pathol 24(6):696–706

    CAS  Google Scholar 

  12. Hawkins WE et al (1998) Carcinogenic effects of 1,2-dibromoethane (ethylene dibromide; EDB) in Japanese medaka (Oryzias latipes). Mutat Res 399(2):221–232

    CAS  Google Scholar 

  13. Walker WW et al (1985) Development of aquarium fish models for environmental carcinogenesis: an intermittent-flow exposure system for volatile, hydrophobic chemicals. J Appl Toxicol 5(4):255–260

    CAS  Google Scholar 

  14. Ren Z et al (2007) The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ Monit Assess 134(1/3):373–383

    CAS  Google Scholar 

  15. Borcherding J, Wolf J (2001) The influence of suspended particles on the acute toxicity of 2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on the valve movement response of the zebra mussel (Dreissena polymorpha). Arch Environ Contam Toxicol 40(4):497–504

    CAS  Google Scholar 

  16. De Hoogh CJ et al (2006) HPLC-DAD and Q-TOF MS techniques identify cause of Daphnia biomonitor alarms in the River Meuse. Environ Sci Technol 40(8):2678–2685

    CAS  Google Scholar 

  17. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18(8):1015–1021

    CAS  Google Scholar 

  18. Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 21(2):96–115

    CAS  Google Scholar 

  19. Bulich A (1986) Introduction and review of microbial and biochemical toxicity screening procedures. In: Toxicity testing using microorganisms, vol. 2. CRC, Boca Raton

    Google Scholar 

  20. Ribo JM, Kaiser KLE (1987) Photobacterium phosphoreum toxicity bioassay. I. Test procedures and applications. Toxic Assess 2:305–323

    CAS  Google Scholar 

  21. Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Qual Res J Can 26(3):361–431

    CAS  Google Scholar 

  22. Rodriguez-Mozaz S et al (2005) Biosensors for environmental monitoring – a global perspective. Talanta 65(2):291–297

    CAS  Google Scholar 

  23. Marks RS et al (2007) Handbook of biosensors and biochips. Wiley, New York

    Google Scholar 

  24. Collings AF, Caruso F (1997) Biosensors: recent advances. Rep Prog Phys 60(11):1397–1445

    CAS  Google Scholar 

  25. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Google Scholar 

  26. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366(6/7):540–551

    CAS  Google Scholar 

  27. Leunga A, Shankarb PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Actuators B Chem 125:688–703

    Google Scholar 

  28. Marks RS et al (1997) Chemiluminescent optical ber immunosensor for detecting cholera antitoxin. Opt Eng 36(12):3258–3264

    CAS  Google Scholar 

  29. Polyak B et al (2000) Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci Technol 42(1/2):305–311

    Google Scholar 

  30. Biran I, Yu X, Walt DR (2008) Optrode-based fiber optic biosensors (bio-optrode). In: Ligler FS, Taitt CR (eds) Optical biosensors: today and tomorrow. Elsevier, Amsterdam, The Netherlands, pp 3–82

    Google Scholar 

  31. Premkumar JR et al (2002) Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate. Anal Chim Acta 462(1):11–23

    Google Scholar 

  32. Elisseeff J et al (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51(2):164–171

    CAS  Google Scholar 

  33. Polyak B et al (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sens Actuators B Chem 74(1/3):18–26

    Google Scholar 

  34. Polyak B, Geresh S, Marks RS (2004) Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5(2):389–396

    CAS  Google Scholar 

  35. Tombs M, Harding SE (1998) An introduction to polysaccharide biotechnology. Taylor and Francis, London

    Google Scholar 

  36. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Google Scholar 

  37. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    CAS  Google Scholar 

  38. Yang J et al (2002) Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials 23(2):471–479

    CAS  Google Scholar 

  39. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginatepolyethylene glycol diamines. Macromolecules 32:5561–5566

    CAS  Google Scholar 

  40. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457

    CAS  Google Scholar 

  41. Eltzov E, Marks RS, Voost S, Wullings B, Heringa BM, Flow-through real time bacterial biosensor for toxic compounds in water, Sens. Actuators B: Chem, submitted, SNB-D-08-00432

    Google Scholar 

  42. Lu MZ et al (2000) Cell encapsulation with alginate and alpha-phenoxycinnamylidene-acetylated poly(allylamine). Biotechnol Bioeng 70(5):479–483

    CAS  Google Scholar 

  43. Livage J (1997) Sol gel processes. Curr Opin Solid City Mater Sci 2:132–138

    CAS  Google Scholar 

  44. Yu D et al (2005) Aqueous sol-gel encapsulation of genetically engineered Moraxella spcells for the detection of organophosphates. Biosens Bioelectron 20(7):1433–1437

    CAS  Google Scholar 

  45. Nassif N et al (2003) A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:203–208

    CAS  Google Scholar 

  46. Coradin T, Nassif N, Livage J (2003) Silica-alginate composites for microencapsulation. Appl Microbiol Biotechnol 61(5/6):429–434

    CAS  Google Scholar 

  47. Premkumar JR et al (2001) Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 55(5):1029–1038

    CAS  Google Scholar 

  48. Bettaieb F et al (2007) Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design. Bioelectrochemistry 71(2):118–125

    CAS  Google Scholar 

  49. Alkorta I et al (2006) Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Rev Environ Health 21(2):139–152

    CAS  Google Scholar 

  50. Bitton G, Dutka BJ (1986) Introduction and review of microbial and biochemical toxicity screening procedures. In: Toxicity testing using microorganisms, vol. 2. CRC, Boca Raton, p 1–8

    Google Scholar 

  51. Mulchandani A et al (1998) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70(19):4140–4145

    CAS  Google Scholar 

  52. Wu M et al (2004) Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide. Anal Bioanal Chem 380(4):619–626

    CAS  Google Scholar 

  53. Ramanathan S et al (1998) Bacteria-based chemiluminescence sensing system using beta-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369(3):189–195

    CAS  Google Scholar 

  54. Lewis JC et al (1998) Applications of reporter genes. Anal Chem 70(17):579a–585a

    CAS  Google Scholar 

  55. Burbaum JJ, Sigal NH (1997) New technologies for high-throughput screening. Curr Opin Chem Biol 1(1):72–78

    CAS  Google Scholar 

  56. Scheirer W (1997) Reporter gene assay applications. In: Devlin (ed) High throughput screening: the discovery of bioactive substances. Marcel Dekker, New York, pp 401–412

    Google Scholar 

  57. Tauriainen S et al (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63(11):4456–4461

    CAS  Google Scholar 

  58. Meighen EA (1988) Enzymes and genes from the lux operon of bioluminescent. Annu Rev Microbiol 42:151–176

    CAS  Google Scholar 

  59. McElroy WD, Seliger HH (1963) The chemistry of light emission. In: Advances in enzymology. Wiley, New York, pp 119–162

    Google Scholar 

  60. Meighen EA, Dunlap PV (1993) Physiological, biochemical and genetic-control of bacterial bioluminescence. Adv Microb Physiol 34:1–67

    CAS  Google Scholar 

  61. Meighen EA, Szittner RB (1992) Multiple repetitive elements and organization of the lux operons of luminescent terrestrial bacteria. J Bacteriol 174(16):5371–5381

    CAS  Google Scholar 

  62. Belkin S et al (1997) A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res 31(12):3009–3016

    CAS  Google Scholar 

  63. Davidov Y et al (2000) Improved bacterial SOS promoter:: lux fusions for genotoxicity detection. Mutat Res Genet Toxicol Environ Mutagen 466(1):97–107

    CAS  Google Scholar 

  64. Vollmer AC et al (1997) Detection of DNA damage by use of Escherichia coli carrying recA’-lux, uvrA’-lux, or alkA’-lux reporter plasmids. Appl Environ Microbiol 63(7):2566–2571

    CAS  Google Scholar 

  65. Vandyk TK et al (1994) Rapid and sensitive pollutant detection by induction of heat-shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60(5):1414–1420

    CAS  Google Scholar 

  66. Michael B et al (2001) SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183(19):5733–5742

    CAS  Google Scholar 

  67. Goh EB et al (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99(26):17025–17030

    CAS  Google Scholar 

  68. Eltzov E et al (2008) Detection of sub-inhibitory antibiotic concentrations via luminescent sensing bacteria and prediction of their mode of action. Sens Actuators B Chem 129(2):685–692

    Google Scholar 

  69. Dukan S et al (1996) Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl Environ Microbiol 62(11):4003–4008

    CAS  Google Scholar 

  70. Pedahzur R, Shuval HI, Ulitzur S (1997) Silver and hydrogen peroxide as potential drinking water disinfectants: their bactericidal effects and possible modes of action. Water Sci Technol 35(11/12):87–93

    CAS  Google Scholar 

  71. Van Dyk TK et al (1998) Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpoS and internal acidification. J Bacteriol 180(4):785–792

    CAS  Google Scholar 

  72. Ben-Israel O, Ben-Israel H, Ulitzur S (1998) Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl Environ Microbiol 64(11):4346–4352

    CAS  Google Scholar 

  73. Daunert S et al (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    CAS  Google Scholar 

  74. Ashley JTF, Baker JE (1999) Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: inventories and sources. Environ Toxicol Chem 18(5):838–849

    CAS  Google Scholar 

  75. Arcaro KF et al (1999) Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells. Toxicology 133(2/3):115–127

    CAS  Google Scholar 

  76. Vinggaard AM, Hnida C, Larsen JC (2000) Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro. Toxicology 145(2/3):173–183

    CAS  Google Scholar 

  77. Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16(9/12):667–674

    CAS  Google Scholar 

  78. Heitzer A et al (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60(5):1487–1494

    CAS  Google Scholar 

  79. Ripp S et al (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34(5):846–853

    CAS  Google Scholar 

  80. Yolcubal I et al (2000) Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Anal Chim Acta 422(2):121–130

    CAS  Google Scholar 

  81. Fine T et al (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens Bioelectron 21(12):2263–2269

    CAS  Google Scholar 

  82. Horry H et al (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens Actuators B Chem 122(2):527–534

    Google Scholar 

  83. Hotchkiss AK et al (2002) Androgens and environmental antiandrogens affect reproductive development and play behavior in the Sprague-Dawley rat. Environ Health Perspect 110(Suppl 3):435–439

    CAS  Google Scholar 

  84. Moore RW et al (2001) Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer di(2-ethylhexyl) phthalate. Environ Health Perspect 109(3):229–237

    CAS  Google Scholar 

  85. Kumar J, Jha SK, D’Souza SF (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21(11):2100–2105

    CAS  Google Scholar 

  86. Gammon DW et al (2005) A risk assessment of atrazine use in California: human health and ecological aspects. Pest Manage Sci 61(4):331–355

    CAS  Google Scholar 

  87. Frense D, Muller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens Actuators B Chem 51(1/3):256–260

    Google Scholar 

  88. Vedrine C et al (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18(4):457–463

    CAS  Google Scholar 

  89. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46(2):181–185

    CAS  Google Scholar 

  90. Hakkila K et al (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342

    CAS  Google Scholar 

  91. Biran I et al (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315(1):106–113

    CAS  Google Scholar 

  92. Ivask A et al (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22(7):1396–1402

    CAS  Google Scholar 

  93. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51(3):206–209

    CAS  Google Scholar 

  94. Gruzina TG et al (2005) Luminescent test based on photobacterium phosphorum b7071 for ionic and colloid gold determination in water. Khimiya i Tekhnologiya Vody 27:200–208

    CAS  Google Scholar 

  95. Leth S et al (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14(1):35–42

    CAS  Google Scholar 

  96. Dennison MJ, Hall JM, Turner APF (1995) Gas-phase microbiosensor for monitoring phenol vapor at Ppb levels. Anal Chem 67(21):3922–3927

    CAS  Google Scholar 

  97. Gil GC et al (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15(1/2):23–30

    CAS  Google Scholar 

  98. Gil GC, Kim YJ, Gu MB (2002) Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. Biosens Bioelectron 17(5):427–432

    CAS  Google Scholar 

  99. Pedahzur R et al (2004) Water toxicity detection by a panel of stress-responsive luminescent bacteria. J Appl Toxicol 24(5):343–348

    CAS  Google Scholar 

  100. Koster M, Gliesche CG, Wardenga R (2006) Microbiosensors for measurement of microbially available dissolved organic carbon: sensor characteristics and preliminary environmental application. Appl Environ Microbiol 72(11):7063–7073

    Google Scholar 

  101. Lin L et al (2006) Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Biosens Bioelectron 21(9):1703–1709

    CAS  Google Scholar 

  102. Campbell DW, Muller C, Reardon KF (2006) Development of a fiber optic enzymatic biosensor for 1,2-dichloroethane. Biotechnol Lett 28(12):883–887

    CAS  Google Scholar 

  103. Ikariyama Y et al (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E-coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber optic end. Anal Chem 69(13):2600–2605

    CAS  Google Scholar 

  104. Merchant D et al (1998) Optical fibre fluorescence and toxicity sensor. Sens Actuators B Chem 48(1/3):476–484

    Google Scholar 

  105. Biran I et al (2003) Optical imaging fiber-based live bacterial cell array biosensor. Anal Biochem 315(1):106–113

    CAS  Google Scholar 

  106. Biran I, Walt DR (2002) Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. Anal Chem 74(13):3046–3054

    CAS  Google Scholar 

  107. Taylor LC, Walt DR (2000) Application of high-density optical microwell arrays in a live-cell biosensing system. Anal Biochem 278(2):132–142

    CAS  Google Scholar 

  108. Gu MB et al (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol Prog 12(3):393–397

    CAS  Google Scholar 

  109. Gu MB, Gil GC, Kim JH (1999) A two-stage minibioreactor system for continuous toxicity monitoring. Biosens Bioelectron 14(4):355–361

    CAS  Google Scholar 

  110. 110.Gu MB et al (2001) The continuous monitoring of field water samples with a novel multi-channel two-stage mini-bioreactor system. Environ Monit Assess 70(1/2):71–81

    CAS  Google Scholar 

  111. Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17(5):433–440

    CAS  Google Scholar 

  112. Thouand G et al (2003) Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain. Appl Microbiol Biotechnol 62(2/3):218–225

    CAS  Google Scholar 

  113. Magrisso M et al (2006) Fiber-optic biosensor to assess circulating phagocyte activity by chemiluminescence. Biosens Bioelectron 21(7):1210–1218

    CAS  Google Scholar 

  114. Prilutsky D et al (2008) Dynamic component chemiluminescent sensor for assessing circulating polymorphonuclear leukocyte activity of peritoneal dialysis patients. Anal Chem 80(13):5131–5138

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Marks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eltzov, E., Marks, R.S. (2009). Fiber-Optic Based Cell Sensors. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing Systems I. Advances in Biochemical Engineering / Biotechnology, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_6

Download citation

Publish with us

Policies and ethics