Skip to main content

Integration of Systems Biology with Bioprocess Engineering: l-Threonine Production by Systems Metabolic Engineering of Escherichia Coli

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 120))

Abstract

Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing l-threonine production strains of Escherichia coli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  Google Scholar 

  2. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19:454–460

    Article  CAS  Google Scholar 

  3. Park JH, Lee SY, Kim TY et al (2008) Application of systems biology for process development. Trends Biotechnol 26:404–412

    Article  CAS  Google Scholar 

  4. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  5. Lee SY, Papoutsakis ET (1999) Metabolic engineering. Marcel Dekker, New York

    Google Scholar 

  6. Stephanopoulos G, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, San Diego, USA

    Google Scholar 

  7. Lee KH, Park JH, Kim TY et al (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149

    Article  CAS  Google Scholar 

  8. Park JH, Lee KH, Kim TY et al (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802

    Article  CAS  Google Scholar 

  9. Ohnishi J, Katahira R, Mitsuhashi S et al (2005) A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    Article  CAS  Google Scholar 

  10. Ikeda M, Ohnishi J, Hayashi M et al (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615

    Article  CAS  Google Scholar 

  11. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    Article  CAS  Google Scholar 

  12. Ruckert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104:213–228

    Article  CAS  Google Scholar 

  13. McHardy AC, Tauch A, Rückert C et al (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240

    Article  CAS  Google Scholar 

  14. Graham JE, Bryant DA (2008) The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 190:7966–7974

    Article  CAS  Google Scholar 

  15. Posfai G, Plunkett G III, Feher T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  CAS  Google Scholar 

  16. Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9:133–141

    Article  CAS  Google Scholar 

  17. Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24:142–149

    Article  CAS  Google Scholar 

  18. Choi JH, Lee SJ, Lee SJ et al (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69:4737–4742

    Article  CAS  Google Scholar 

  19. Stansen C, Uy D, Delaunay S et al (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  Google Scholar 

  20. Hayashi M, Ohnishi J, Mitsuhashi S et al (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    Article  CAS  Google Scholar 

  21. Hayashi M, Mizoguchi H, Ohnishi J et al (2006) A leuC mutation leading to increased L-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789

    Article  CAS  Google Scholar 

  22. Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    Article  CAS  Google Scholar 

  23. Gasser B, Sauer M, Maurer M et al (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73:6499–6507

    Article  CAS  Google Scholar 

  24. Hibi M, Yukitomo H, Ito M et al (2007) Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding. Appl Environ Microbiol 73:7657–7663

    Article  CAS  Google Scholar 

  25. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  Google Scholar 

  26. Inaoka T, Satomura T, Fujita Y et al (2008) Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.2008.01450.x

    Google Scholar 

  27. Aldor IS, Krawitz DC, Forrest W et al (2005) Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 71:1717–1728

    Article  CAS  Google Scholar 

  28. Lee JW, Lee SY, Song H et al (2006) The proteome of Mannheimia, a capnophilic rumen bacterium. Proteomics 6:3550–3566

    Article  CAS  Google Scholar 

  29. Xia X-X, Han M-J, Lee SY et al (2008) Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8:2089–2103

    Article  CAS  Google Scholar 

  30. Oldiges M, Lütz S, Pflug S et al (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  31. Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287

    Article  CAS  Google Scholar 

  32. Kiefer P, Heinzle E, Zelder O et al (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239

    Article  CAS  Google Scholar 

  33. Becker J, Klopprogge C, Herold A et al (2007) Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109

    Article  CAS  Google Scholar 

  34. Becker J, Klopprogge C, Zelder O et al (2005) Amplified expression of fructose 1, 6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    Article  CAS  Google Scholar 

  35. Wang Q, Chen X, Yang Y et al (2006) Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl Microbiol Biotechnol 73:887–894

    Article  CAS  Google Scholar 

  36. Yoon SH, Han M-J, Lee SY et al (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81:753–767

    Article  CAS  Google Scholar 

  37. Askenazi M, Driggers EM, Holtzman DA et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  Google Scholar 

  38. Krömer JO, Sorgenfrei O, Klopprogge K et al (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    Article  Google Scholar 

  39. Hong SH, Kim JS, Lee SY et al (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22:1275–1281

    Article  CAS  Google Scholar 

  40. Lee SJ, Lee D-Y, Kim TY et al (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71:7880–7887

    Article  CAS  Google Scholar 

  41. Alper H, Jin YS, Moxley JF et al (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  Google Scholar 

  42. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616

    Article  CAS  Google Scholar 

  43. Hüser AT, Chassagnole C, Lindley ND et al (2005) Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268

    Article  Google Scholar 

  44. Ishii N, Nakahigashi K, Baba T et al (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–597

    Article  CAS  Google Scholar 

  45. Takors R, Bathe B, Rieping M et al (2007) Systems biology for industrial strains and fermentation processes-example: amino acids. J Biotechnol 129:181–190

    Article  CAS  Google Scholar 

  46. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35

    CAS  Google Scholar 

  47. Komatsubara S, Kisumi M, Murata K et al (1978) Threonine production by regulatory mutants of Serratia marcescens. Appl Environ Microbiol 35:834–840

    CAS  Google Scholar 

  48. Miwa K, Tsuchida T, Kurahashi O (1983) Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agric Biol Chem 47:2329–2334

    Article  CAS  Google Scholar 

  49. Ishida M, Kawashima H, Sato K et al (1994) Factors improving L-threonine production by a three L-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Biosci Biotech Biochem 58:768–770

    Article  CAS  Google Scholar 

  50. Shimizu E, Oosumi T, Heima H et al (1995) Culture conditions for improvement of L-threonine production using a genetically self-cloned L-threonine hyperproducing strain of Escherichia coli K-12. Biosci Biotech Biochem 59:1095–1098

    Article  CAS  Google Scholar 

  51. Masuda M, Takamatsu S, Nishimura N et al (1992) Improvement of nitrogen supply for L-threonine production by a recombinant strain of Serratia marcescens. Appl Biochem Biotechnol 37:255–265

    Article  CAS  Google Scholar 

  52. Lee MH, Lee HW, Park JH et al (2006) Improved L-threonine production of Escherichia coli mutant by optimization of culture conditions. J Biosci Bioeng 101:127–130

    Article  CAS  Google Scholar 

  53. Okamoto K, Kino K, Ikeda M (1997) Hyperproduction of L-threonine by an Escherichia coli mutant with impaired L-threonine uptake. Biosci Biotech Biochem 61:1877–1882

    Article  CAS  Google Scholar 

  54. Kruse D, Krämer R, Eggeling L et al (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210

    Article  CAS  Google Scholar 

  55. Livshits VA, Zakataeva NP, Aleshin VV et al (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154:123–135

    Article  CAS  Google Scholar 

  56. Simic P, Sahm H, Eggeling L (2001) L-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324

    Article  CAS  Google Scholar 

  57. Ogawa-Miyata Y, Kojima H, Sano K (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production. Biosci Biotech Biochem 65:1149–1154

    Article  CAS  Google Scholar 

  58. Lee JH, Lee DE, Lee BU et al (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  CAS  Google Scholar 

  59. Lee JH, Sung BH, Kim MS et al (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8:2

    Article  Google Scholar 

  60. Akesson M, Forster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6:285–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work described in this chapter was supported by the Korea–Australia Collaborative Research Project on the Development of Sucrose-Based Bioprocess Platform (N02071165) from the Ministry of Knowledge Economy and by the Korean Systems Biology Program from the Ministry of Education, Science and Technology (No. M10309020000-03B5002-00000). Further support by the World Class University (WCU) program from the Ministry of Education, Science and Technology, LG Chem Chair Professorship and Microsoft is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yup Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Lee, S.Y., Park, J.H. (2010). Integration of Systems Biology with Bioprocess Engineering: l-Threonine Production by Systems Metabolic Engineering of Escherichia Coli . In: Wittmann, C., Krull, R. (eds) Biosystems Engineering I. Advances in Biochemical Engineering / Biotechnology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_57

Download citation

Publish with us

Policies and ethics