Skip to main content

Multi-Scale Spatio-Temporal Modeling: Lifelines of Microorganisms in Bioreactors and Tracking Molecules in Cells

  • Chapter
  • First Online:
Biosystems Engineering II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 121))

Abstract

Agent-based models are rigorous tools for simulating the interactions of individual entities, such as organisms or molecules within cells and assessing their effects on the dynamic behavior of the system as a whole. In context with bioprocess and biosystems engineering there are several interesting and important applications. This contribution aims at introducing this strategy with the aid of two examples characterized by striking distinctions in the scale of the individual entities and the mode of their interactions. In the first example a structured-segregated model is applied to travel along the lifelines of single cells in the environment of a three-dimensional turbulent field of a stirred bioreactor. The modeling approach is based on an Euler-Lagrange formulation of the system. The strategy permits one to account for the heterogeneity present in real reactors in both the fluid and cellular phases, respectively. The individual response of the cells to local variations in the extracellular concentrations is pictured by a dynamically structured model of the key reactions of the central metabolism. The approach permits analysis of the lifelines of individual cells in space and time.

The second application of the individual modeling approach deals with dynamic modeling of signal transduction pathways in individual cells. Usually signal transduction networks are portrayed as being wired together in a spatially defined manner. Living circuitry, however, is placed in highly malleable internal architecture. Creating a homogenous bag of molecules, a well-mixed system, the dynamic behavior of which is modeled with a set of ordinary differential equations is normally not valid. The dynamics of the MAP kinase and a steroid hormone pathway serve as examples to illustrate how single molecule tracking can be linked with the stochasticity of biochemical reactions, where diffusion and reaction occur in a probabilistic manner. The problem of hindered diffusion caused by macromolecular crowding is also taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frederickson AG, McGee RD, Tsuchiya HM (1970) Adv Appl Microbiol 23:419

    Article  Google Scholar 

  2. Kitano H (2006) Nat Rev Mol Cell Biol 7:163

    Article  CAS  Google Scholar 

  3. Larsson G et al (1996) Bioproc Eng 14:281

    Article  CAS  Google Scholar 

  4. Noorman H et al (1993) Proceedings of the 3rd international conference on bioreactor and bioprocess fluid dynamics, Cambridge 241:258

    Google Scholar 

  5. Reuss M, Schmalzriedt S, Jenne M (2000) Bioreaction engineering: modeling and control. Springer, Berlin 207:246

    Book  Google Scholar 

  6. Schmalzriedt S et al (2003) Adv Biochem Eng 18:68

    Google Scholar 

  7. Träghardh C (1988) The second international conference on bioreactor fluid dynamics, King, Applied Sciences Publishing, Cambridge 117:134

    Google Scholar 

  8. Lapin A et al (2002) Chem Eng Sci 57:1419

    Article  CAS  Google Scholar 

  9. Sokolochin A et al (1997) Chem Eng Sci 52:61

    Google Scholar 

  10. Bourloutski E, Sommerfeld M (2002) Proceedings of the 10th workshop on two-phase flow predictions, Merseburg 113:223

    Google Scholar 

  11. Van Sint Annaland M, Deen NG, Kuipers JAM (2005) Chem Eng Sci 60:6188

    Google Scholar 

  12. Bezzo F, Macchietto S, Pantelides CC (2003) AIChE J 49:2133

    Article  CAS  Google Scholar 

  13. Henson MA, Müller D, Reuss M (2002) Biochem J 368:433

    Article  CAS  Google Scholar 

  14. Bauer M, Eigenberger G (1999) Chem Eng Sci 54:5109

    Article  CAS  Google Scholar 

  15. Bauer M, Eigenberger G (2001) Chem Eng Sci 56:1067

    Article  CAS  Google Scholar 

  16. Ataii MM, Shuler ML (1985) Biotechnol Bioeng 27:1026

    Google Scholar 

  17. Domach MM, Shuler ML (1984) Biotechnol Bioeng 26:877

    Article  CAS  Google Scholar 

  18. Kim BG, Shuler ML (1990) Biotechnol Bioeng 36:581

    Article  CAS  Google Scholar 

  19. Lapin A, Müller D, Reuss M (2004) Indus Eng Chem Res 43:4647

    Article  CAS  Google Scholar 

  20. Lapin A, Schmid J, Reuss M (2006) Chem Eng Sci 61:4783–4797

    Article  CAS  Google Scholar 

  21. Bylund F, Collet E, Enfors S-O, Larsson G (1998) Bioprocess Eng 18:171

    Article  CAS  Google Scholar 

  22. Bylund F et al (1999) Bioprocess Eng 20:377–389

    Article  CAS  Google Scholar 

  23. Schweder T et al (1999) Biotechnol Bioeng 65:151

    Article  CAS  Google Scholar 

  24. Teich A et al (1999) Biotechnol Prog 15:123

    Article  CAS  Google Scholar 

  25. Xu B et al (1999) Appl Microbiol Biotechnol 51:564

    Article  Google Scholar 

  26. Bajpai RK, Reuss M (1982) Can J Chem Eng 60:384

    Article  CAS  Google Scholar 

  27. Jenne M, Reuss M (1999) Chem Eng Sci 54:3921

    Article  CAS  Google Scholar 

  28. Fox RO (2003) Computational models for turbulent reacting flows. University Press, Cambridge

    Book  Google Scholar 

  29. Chassagnole C et al (2002) Biotechnol Bioeng 79:53

    Article  CAS  Google Scholar 

  30. Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    Book  Google Scholar 

  31. Hewitt CJ, Nebe-Von Caron G (2001) Cytometry 44:179

    Google Scholar 

  32. Hewitt CJ et al (1999) Biotechnol Bioeng 63:705

    Article  CAS  Google Scholar 

  33. Hewitt CJ et al (2000) Biotechnol Bioeng 70:381

    Article  CAS  Google Scholar 

  34. Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Thieme, Stuttgart

    Google Scholar 

  35. Lewis K (2000) Microbiol Mol Biol Rev 64:503

    Article  CAS  Google Scholar 

  36. Loewen PC et al (1998) Can J Microbiol 44:707

    CAS  Google Scholar 

  37. Takahashi K, Arjunan SNV, Tomita M (2005) FEBS Lett 579:1783

    Article  CAS  Google Scholar 

  38. Kholodenko BN (2006) Nat Rev 7:165

    Article  CAS  Google Scholar 

  39. Kholodenko BN (2003) J Exp Biol 206:2073

    Article  CAS  Google Scholar 

  40. Howe CL (2005) Theor Biol Med Model 2:43

    Article  Google Scholar 

  41. Gillespie DT (1976) J Comp Phys 22:165

    Article  Google Scholar 

  42. Stundzia AB, Lumsden CJ (1996) J Comput Phys 127:196

    Article  CAS  Google Scholar 

  43. Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M, Kaplan A, Lemerle C, Tomás-Oliveira I, Serrano L (2004) Sys Biol 1:129

    Article  CAS  Google Scholar 

  44. Tolle DP, Le Novère N (2006) Curr Bioinform 1:3

    Article  Google Scholar 

  45. Andrews SS, Bray D (2004) Phys Biol 1:137

    Article  CAS  Google Scholar 

  46. Stiles JR, Bartol TM (2000) In: de Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC, Boca Raton, FL, p 87

    Google Scholar 

  47. Pogson M, Holcombe M, Smallwood R, Qwarnstrom E (2006) BioSystems 85:37

    Article  CAS  Google Scholar 

  48. Batada NN, Shepp LA, Siegmund DO (2004) Proc Natl Acad Sci USA 101:6445

    Article  CAS  Google Scholar 

  49. Rice SA (1985) In: Bamford CH, Tripper CFH, Compton RG (eds) Diffusion-limited reactions. Amsterdam, Elsevier

    Google Scholar 

  50. Trinh S, Arce P, Locke BR (2000) Transp Porous Media 38:214

    Article  Google Scholar 

  51. Falk M, Klann M, Reuss M, Ertl T (2009) Proceedings of IEEE pacific visualization symposium 2009, Beijing 169:176

    Google Scholar 

  52. Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK (2000) Mol Endocrinol 14:1162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of the Deutsche Forschungsgemeinschaft (DFG) within the collaborative research center “Sonderforschungsbereich 412” and the Ministry of Science, Research and Arts Baden-Württemberg within the Center Systems Biology University Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Lapin, A., Klann, M., Reuss, M. (2010). Multi-Scale Spatio-Temporal Modeling: Lifelines of Microorganisms in Bioreactors and Tracking Molecules in Cells. In: Wittmann, C., Krull, R. (eds) Biosystems Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_53

Download citation

Publish with us

Policies and ethics