Skip to main content

Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 117))

Abstract

Luminescent whole-cell biosensing systems have been developed for a variety of analytes of environmental, clinical, and biological interest. These analytical tools allow for sensitive, rapid, simple, and inexpensive quantitative detection of target analytes. Furthermore, they can be designed to be nonspecific, semispecific, or highly specific/selective. A notable feature of such sensing systems employing living cells is that they provide information on the analyte bioavailability and activity. These characteristics, along with their suitability to miniaturization, make cell-based sensors ideal for field applications. However, a major limitation to on-site use is their “shelf-life.” To address this problem, various methods for preservation of sensing cells have been reported, including freeze-drying, immobilization in different types of matrices, and formation of spores. Among these, the use of spores emerged as a promising strategy for long-term storage of whole-cell sensing systems at room temperature as well as in extreme environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deo SK, Daunert S (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in high throughput analysis. Fresenius' J Anal Chem 369(3):258–266

    Article  CAS  Google Scholar 

  2. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55(1):123–142

    CAS  Google Scholar 

  3. Aboul-Enein HY, Stefan R-I, van Staden JF (1999) Chemiluminescence-based (bio)sensors – an overview. Crit Rev Anal Chem 29:323–331

    Article  CAS  Google Scholar 

  4. Bulich AA, Isenberg DL (1981) Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans 20(1):29–33

    CAS  Google Scholar 

  5. Dalzell DJB, Alte S, Aspichueta E, de la Sota A, Etxebarria J, Gutierrez M, Hoffmann CC, Sales D, Obst U, Christofi N (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere 47(5):535–545

    Article  CAS  Google Scholar 

  6. Preston S, Coad N, Townend J, Killham K, Paton GI (2000) Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? Environ Toxicol Chem 19(3):775–780

    Article  CAS  Google Scholar 

  7. Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5(3):259–265

    Article  Google Scholar 

  8. Ulitzur S, Lahav T, Ulitzur N (2002) A novel and sensitive test for rapid determination of water toxicity. Environ Toxicol 17(3):291–296

    Article  CAS  Google Scholar 

  9. Gooding JJ (2003) Biosensors for detecting metal ions: new trends. Aust J Chem 56(2–3):159

    Article  CAS  Google Scholar 

  10. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568(1–2):200–210

    Article  CAS  Google Scholar 

  11. Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18(2):121–129

    Article  CAS  Google Scholar 

  12. Wanekaya AK, Chen W, Mulchandani A (2008) Recent biosensing developments in environmental security. J Environ Monitor 10(6):703–712

    Article  CAS  Google Scholar 

  13. Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  CAS  Google Scholar 

  14. Feliciano J, Pasini P, Deo SK, Daunert S (2006) Photoproteins as reporters in whole-cell sensing. In: Daunert S, Deo SK (eds) Photoproteins in bioanalysis. Wiley-VCH, Weinheim, pp 131–154

    Chapter  Google Scholar 

  15. Galluzzi L, Karp M (2006) Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials. Comb Chem High Throughput Screen 9:501–514

    Article  CAS  Google Scholar 

  16. Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S (2006) Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem 78(22):7603–7609

    Article  CAS  Google Scholar 

  17. Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73(21):5168–5171

    Article  CAS  Google Scholar 

  18. Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67(3):667–669

    Article  CAS  Google Scholar 

  19. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64(2):453–458

    CAS  Google Scholar 

  20. Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S (2003) Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 376(1):11–17

    CAS  Google Scholar 

  21. Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13(9):931–938

    Article  CAS  Google Scholar 

  22. Shetty RS, Deo SK, Liu Y, Daunert S (2004) Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol Bioeng 88(5):664–670

    Article  CAS  Google Scholar 

  23. Guzzo J, Guzzo A, Dubow MS (1992) Characterization of the effects of aluminum on luciferase biosensors for the detection of ecotoxicity. Toxicol Lett 64–65:687–693

    Article  Google Scholar 

  24. Boyanapalli R, Bullerjahn GS, Pohl C, Croot PL, Boyd PW, McKay RML (2007) Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 73(3):1019–1024

    Article  CAS  Google Scholar 

  25. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146(10):2435–2445

    CAS  Google Scholar 

  26. Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole-cell biosensing systems. Anal Chem 79(24):9391–9397

    Article  CAS  Google Scholar 

  27. Riether K, Dollard MA, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57(5):712–716

    Article  CAS  Google Scholar 

  28. Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69(16):3380–3384

    Article  CAS  Google Scholar 

  29. Rothert A, Deo SK, Millner L, Puckett LG, Madou MJ, Daunert S (2005) Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform. Anal Biochem 342(1):11–19

    Article  CAS  Google Scholar 

  30. Taylor CJ, Bain LA, Richardson DJ, Spiro S, Russell DA (2004) Construction of a whole-cell gene reporter for the fluorescent bioassay of nitrate. Anal Biochem 328(1):60–66

    Article  CAS  Google Scholar 

  31. Dollard M-A, Billard P (2003) Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J Microbiol Meth 55(1):221–229

    Article  CAS  Google Scholar 

  32. Sticher P, Jaspers M, Stemmler K, Harms H, Zehnder A, van der Meer J (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63(10):4053–4060

    CAS  Google Scholar 

  33. Ikariyama Y, Nishiguchi S, Koyama T, Kobatake E, Aizawa M, Tsuda M, Nakazawa T (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69(13):2600–2605

    Article  CAS  Google Scholar 

  34. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68(4):1962–1971

    Article  CAS  Google Scholar 

  35. Phoenix A, Keane A, Patel H, Bergeron S, Ghoshal PC, Lau K (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environ Microbiol 5(12):1309–1327

    Article  CAS  Google Scholar 

  36. Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64(12):5023–5026

    CAS  Google Scholar 

  37. Guan X, d'Angelo E, Luo W, Daunert S (2002) Whole-cell biosensing of 3-chlorocatechol in liquids and soils. Anal Bioanal Chem 374(5):841–847

    Article  CAS  Google Scholar 

  38. Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S (2000) Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 72(11):2423–2427

    Article  CAS  Google Scholar 

  39. Feliciano J, Xu S, Guan X, Lehmler H-J, Bachas L, Daunert S (2006) ClcR-based biosensing system in the detection of cis-dihydroxylated (chloro-)biphenyls. Anal Bioanal Chem 385(5):807–813

    Article  CAS  Google Scholar 

  40. Turner K, Xu S, Pasini P, Deo S, Bachas L, Daunert S (2007) Hydroxylated polychlorinated biphenyl detection based on a genetically engineered bioluminescent whole-cell sensing system. Anal Chem 79(15):5740–5745

    Article  CAS  Google Scholar 

  41. Shetty RS, Ramanathan S, Badr IHA, Wolford JL, Daunert S (1999) Green fluorescent protein in the design of a living biosensing system for l-arabinose. Anal Chem 71(4):763–768

    Article  CAS  Google Scholar 

  42. Bahl MI, Hansen LH, Licht TR, Sorensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48(4):1112–1117

    Article  CAS  Google Scholar 

  43. Belkin S, Smulski D, Vollmer A, Van Dyk T, LaRossa R (1996) Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion. Appl Environ Microbiol 62(7):2252–2256

    CAS  Google Scholar 

  44. Lee H, Gu M (2003) Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Appl Microbiol Biotechnol 60(5):577–580

    CAS  Google Scholar 

  45. Mitchell RJ, Gu MB (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64(1):46–52

    Article  CAS  Google Scholar 

  46. Cha HJ, Srivastava R, Vakharia VN, Rao G, Bentley WE (1999) Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl Environ Microbiol 65(2):409–414

    CAS  Google Scholar 

  47. Sagi E, Hever N, Rosen R, Bartolome AJ, Rajan Premkumar J, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B Chem 90(1–3):2–8

    Article  Google Scholar 

  48. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60(5):1414–1420

    Google Scholar 

  49. Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Meth 48(1):43–51

    Article  CAS  Google Scholar 

  50. Norman A, Hestbjerg HL, Sorensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71(5):2338–2346

    Article  CAS  Google Scholar 

  51. Vollmer A, Belkin S, Smulski D, Van Dyk T, LaRossa R (1997) Detection of DNA damage by use of Escherichia coli carrying recA'::lux, uvrA'::lux, or alkA'::lux reporter plasmids. Appl Environ Microbiol 63(7):2566–2571

    CAS  Google Scholar 

  52. Bechor O, Smulski DR, Van Dyk TK, LaRossa RA, Belkin S (2002) Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA'::lux fusions. J Biotechnol 94(1):125–132

    Article  CAS  Google Scholar 

  53. Bozoglu TF, Özilgen M, Bakir U (1987) Survival kinetics of lactic acid starter cultures during and after freeze drying. Enzyme Microb Technol 9(9):531–537

    Article  Google Scholar 

  54. Corcoran RP, Ross GF, Stanton FC (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96(5):1024–1039

    Article  CAS  Google Scholar 

  55. Boumahdi M, Mary P, Hornez JP (1999) Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia. J Appl Microbiol 87(4):611–619

    Article  CAS  Google Scholar 

  56. Costa E, Usall J, Teixidó N, Garcia N, Viñas I (2000) Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J Appl Microbiol 89(5):793–800

    Article  CAS  Google Scholar 

  57. Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119(1):36–43

    Article  CAS  Google Scholar 

  58. Carvalho AS, Silva J, Ho P, Teixeira FP, Malcata X, Gibbs P (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnol Prog 20(1):248–254

    Article  CAS  Google Scholar 

  59. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003) Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. J Appl Microbiol 94(6):947–952

    Article  CAS  Google Scholar 

  60. Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95(3):484–491

    Article  CAS  Google Scholar 

  61. Cho J-C, Park K-J, Ihm H-S, Park J-E, Kim S-Y, Kang I, Lee K-H, Jahng D, Lee D-H, Kim S-J (2004) A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosens Bioelectron 20(2):338–344

    Article  CAS  Google Scholar 

  62. Pedahzur R, Rosen R, Belkin S (2004) Stabilization of recombinant bioluminescent bacteria for biosensor applications. Cell Preserv Technol 2(4):260–269

    Article  CAS  Google Scholar 

  63. Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46(3):205–229

    Article  Google Scholar 

  64. Leslie S, Israeli E, Lighthart B, Crowe J, Crowe L (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61(10):3592–3597

    CAS  Google Scholar 

  65. Linders LJM, Wolkers WF, Hoekstra FA, van't Riet K (1997) Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum. Cryobiology 35(1):31–40

    Article  CAS  Google Scholar 

  66. Lodato P, Segovia de Huergo M, Buera MP (1999) Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl Microbiol Biotechnol 52(2):215–220

    Article  CAS  Google Scholar 

  67. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37(20):4743–4750

    Article  CAS  Google Scholar 

  68. Yu D, Volponi J, Chhabra S, Brinker CJ, Mulchandani A, Singh AK (2005) Aqueous sol-gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosens Bioelectron 20(7):1433–1437

    Article  CAS  Google Scholar 

  69. Premkumar JR, Lev O, Rosen R, Belkin S (2001) Encapsulation of luminous recombinant E. coli in sol-gel silicate films. Adv Mater 13(23):1773–1775

    Article  CAS  Google Scholar 

  70. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol-gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta 462(1):11–23

    Article  Google Scholar 

  71. Amoura M, Nassif N, Roux C, Livage J, Coradin T (2007) Sol-gel encapsulation of cells is not limited to silica: long-term viability of bacteria in alumina matrices. Chem Commun 39:4015–4017

    Article  Google Scholar 

  72. Tessema DA, Rosen R, Pedazur R, Belkin S, Gun J, Ekeltchik I, Lev O (2006) Freeze-drying of sol-gel encapsulated recombinant bioluminescent E. coli by using lyo-protectants. Sens Actuators B Chem 113(2):768–773

    Article  Google Scholar 

  73. Park KS, Baumstark-Khan C, Rettberg P, Horneck G, Rabbow E, Gu MB (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors. Radiat Environ Biophys 44(1):69–71

    Article  CAS  Google Scholar 

  74. Mitchell RJ, Gu MB (2006) Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens Bioelectron 22(2):192–199

    Article  CAS  Google Scholar 

  75. López-Fouz M, Pilar-Izquierdo MC, Martínez-Mayo I, Ortega N, Pérez-Mateos M, Busto MD (2007) Immobilization of Rhodococcus fascians cells in poly(vinyl alcohol) cryogels for the debittering of citrus juices. J Biotechnol 131(2, Suppl 1):S104

    Article  Google Scholar 

  76. Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49(1):29–54

    Article  CAS  Google Scholar 

  77. Popham DL (2002) Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59(3):426–433

    Article  CAS  Google Scholar 

  78. Takamatsu H, Watabe K (2002) Assembly and genetics of spore protective structures. Cell Mol Life Sci 59(3):434–444

    Article  CAS  Google Scholar 

  79. Santo LY, Doi RH (1974) Ultrastructural analysis during germination and outgrowth of bacillus subtilis spores. J Bacteriol 120(1):475–481

    CAS  Google Scholar 

  80. Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29(4):813–835

    Article  CAS  Google Scholar 

  81. Rotman B, Cote MA (2003) Application of a real-time biosensor to detect bacteria in platelet concentrates. Biochem Biophys Res Commun 300(1):197–200

    Article  CAS  Google Scholar 

  82. Marston CK, Hoffmaster AR, Wilson KE, Bragg SL, Plikaytis B, Brachman P, Johnson S, Kaufmann AF, Popovic T (2005) Effects of long-term storage on plasmid stability in Bacillus anthracis. Appl Environ Microbiol 71(12):7778–7780

    Article  CAS  Google Scholar 

  83. Lee K-B, Hwan Jung Y, Lee Z-W, Kim S, Choi IS (2007) Biospecific anchoring and spatially confined germination of bacterial spores in non-biofouling microwells. Biomaterials 28(36):5594–5600

    Article  CAS  Google Scholar 

  84. Du C, Chan WC, McKeithan TW, Nickerson KW (2005) Surface display of recombinant proteins on Bacillus thuringiensis spores. Appl Environ Microbiol 71(6):3337–3341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Science Foundation, Grants CHE-0416553 and CHE-0718844, the National Institute of Environmental Health Sciences, Grant P42ES07380, and the United States–Israel Binational Agricultural Research and Development Fund, Grant US-3864-06. In addition, SD would like to acknowledge support from the Gill Endowment of the College of Arts & Sciences for a Gill Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Daunert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Date, A., Pasini, P., Daunert, S. (2010). Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing Systems I. Advances in Biochemical Engineering / Biotechnology, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_22

Download citation

Publish with us

Policies and ethics